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Abstract: Because of cost and time factors the exact cause of system failure may be known only
partially. For example, the cause is narrowed down to a component in a subsystem or a smaller set of
components. This is called “masking” of the exact failure mode. OQur paper focuses on reliability
estimation when the masking probability is dependent on the particular cause of failure.

1. INTRODUCTION

In field data and prototype data of system life the exact cause may be unknown because of cost
and time factors. The cause is narrowed down to a component in a subsystem or a smaller set of
components, but is not precisely determined. For engineering examples, see Usher [1] , Miyakawa [2],
Usher and Hodgson [3] , and Guess, Usher and Hodgson [4,5]. For biological examples compare Dinse

[6,7)and Gross [8]. This has been called masking of the cause of failure.

References 1 —5 need the probability of masking with a certain subset of components to be
independent of the cause of failure and discuss several situations where this is realistic. = See our
Section 2 for more technical details. References 1 and 3—5 warn to check for this type of

independence of masking.

This paper discusses analysis of such system and component life data when the masking
probabilities are dependent upon the component in the masking set. We suggest a simple way of
checking for this independence or dependence via subsampling, while minimizing the total cost of early
prototype and later field life testing of systems.  Section 2 sets up basic notation and the likelihood
for this dependent data. Section 3 presents proportional dependent masking and illustrates how far
off the maximum likelihood estimates (MLE’s) of failure rates assuming independent masking can be
from the correct MLE’s under various degrees of dependent masking. Conclusions are stated in

Section 4.

2. DEPENDENT MASKING AND LIKELIHOOD

Following the notation of Guess, Usher, and Hodgson [4,5] , we let Ti be the random life for
the ith system where i=1,...,n in a sample of n systems each consisting of J components in series.

Let Tij be the random life of the jth component in the jth system where j=1,...J. Note that

Tizlnin(Til,.,.,TiJ)

for i=1,..., n. We assume that the Tij’s are independent. {Aside: dependence among the components

lifetimes could be modeled using a dependent multivariate distribution and a competing risk model.
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See, for example, References 9 — 13.) For each fixed j the le, . Tnj would represent a sample of size

n from component j’s life distribution Fj'

We require the very mild condition that Fj has a density fJ indexed by a parameter vector ﬁj'
For each j, a different number of parameters in ﬁj is allowed if needed. Let Fj(t) =1~ Fj(t) be the
reliability of component j at time t. Let K; be the index of the component causing the failure of
system i. Due to the life distributions being continuous the cause of failure Ki is unique. Note that Ki
is a random variable and that K, may or may not be observed. That is, the component causing system
failure may be masked. Before the sample is taken there is the minimum random subset, M;, of
components known to contain the true cause of failure of system i. In short, Ki € Mi and Mi is

minimum.

After the sample data is obtained, we have M; = Si c {1,2,..J} and T, = t; where i=1,...,n.
Note that as t; is the realized sample value of T} , so is S; the realized sample set of M, . If §; = {i}
then we know that K, = j, and hence, the cause of failure is not masked. If, for example, Si = {1,2},

we have that Ki € Si but the true value of Ki is masked. The observed data here is

(t1,S9) 5 -+ s (tps Sp)-
As derived in Guess, Usher, and Hodgson [4,5], the full likelihood for this data is

Lp = igl { jgi(fj {t;) ) Fs () - P(M;=S; | T;=t;, Ki:j))} .
S

il e

l.
i

Note that the term fj {t;) f-ll F {t;) is from system i failing at time t; due to cause j
=y
(i.e., due to component j).

The expression P(Mizsi | T;=t;, Kizj) represents the conditional probability that the
observed minimum random subset is Si given that system i failed at time t and the true cause was
component j. For §, = {3}, this expression is the conditional probability that the cause of failure is
known. For Si containing more than j, it yields the conditional probability of masking with the set S; -
It should also be noted for J = 2, the masking probabilities are similar to Dinse’s [7] uncertainty rates.
For J > 2, however, the masking probabilities generalize his uncertainty rates. Also, note that our

assumption (2.1) relates to his excellent discussion of equal uncertainty rates in studying diseases.

For the observation (ti, S;) we sum over all possible failure causes j in S; - The product is

then over each of the observations to yield the full likelihood Lg.

For the industrial problems in References 1—5, they found their masking typically occurred

due to constraints of time and the expense of failure analysis. Schedules often dictated that complete
failure analysis (to determine the true cause of failure) be curtailed. In such settings they found that

for j’ fixed and in S; that
P(M;=S; | T;=t; Ki:j') = PM;=S; | T;=t;, K;=j) foralljeS;. (2.1)
We call these masking probabilities independent over the causes j € 5, . When for any je Si
P(M;=S; | T;=t,, Kizj') #  PM=S; | T;=t, K;=j) for somej e S;. (2.1

the masking probabilities are dependent in S; -

Note that the masking probabilities can be a function of time. We assume only that the
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masking probabilities conditional on time are not functions of the life distribution parameters. For

future reference , we state this as

P(Mi=Si | T;=t;, Ki=j) does not depend on (2.2)

the life distribution parameters.

This is analogous to a censoring distribution not depending on the life distribution parameters.

Compare Miller [14] and Lawless {15].

As a result of (2.1) and (2.2), the reduced or proper partial likelihood is

L —ﬁ{z(f(t ﬁf(t))}
R=1 jeSij ) S;I. s (&) -
s#]

Under (2.1) and (2.2), maximizing Ly with respect to the life parameters is equivalent to using Ly .

This is similar to the usual derivation of a time censored (and not masked) data partial likelihood.

The full likelihood from Guess, Usher, and Hodgson [4,5] clarifies and extends Miyakawa’s [2]
likelihood. They point out that it is best to view his likelihood (as well as Lg above) as a partial
likelihood that under appropriate conditions will yield good, consistent estimators. Under (2.1) such a
partial likelihood can yield inconsistent estimators. For proper statistical applications, they stress that
it is important to be clearly aware of the effects of masking probabilities and checking for needed

conditions. For further details on that and to easily allow for system lifetime censoring, see Guess,

Usher, Hodgson [4,5]. In the next section we discuss (2.1’) further and a type of dependent masking.
3. PROPORTIONAL DEPENDENT MASKING AND EXAMPLES

A natural setting where (2.1') would occur instead of (2.1) is for high heat generating
components that sometimes sear a subsystem (module) black and a repair scheme of replacing the
entire subsystem (module) whenever it is blackened. For example, suppose a module consist of two
components 1 and 2 such that due to the size and heat generation of component 2 it is twice as

likely at anytime to sear the entire module black as component 1.  Here we have
2 P(Mi={1,2} | Tizti, Ki=1) = P(Mi:{1,2} | Ti:ti, Ki=2) # P(Mi:{l,Z} | Ti:ti, Ki=1)

and (2.1’) applies with it dependent in Si = {1,2} masking. More generally we have proportional
probabilities for j’, j ¢ S; and j'# j when

P(M;=S; | T;=t;, K;=i') = cPM=S; | Ty=t, K;=i) (3.1)

where ¢ > 0. The c is implicitly a function of j’ and j . Note that for ¢ # 1 there is the dependent
masking over Si of (2.1") , while for ¢ =1 the special case of independent masking over §; of (2.1)
holds. For ¢ =0 and P(Mi=si | T;=t;, K;=)) >0 a very extreme form of dependent masking would

occur.

Without loss of generality we can assume ¢ < 1 by simply dividing by ¢ and relabeling in
(3.1). E. g., in the case of the two component module ¢ was 2, but it is easy to divide and relabel

to get the new ¢ is % .

With (3.1) we illustrate the effects of various degrees of dependent masking on the MLE’s of
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the failure rate for exponentially distributes components in a series of J components.

For simplicity as
in Usher and Guess [16] and Miyakawa [2], we let

J = 2. Next set

p = P(Miz {1,2} | Tizti, Ki:l)
cp = P(M;= {1,2} | T;=t;, Ki=2)
pl = P(Miz {1} | Ti:ti, Kizl)
Py = P(M;= {2} | Tj=t;, K;=2)
and let
- At _ - At
fj(t) =)e J° and Fj(t) =e J, fort>0, andj=1,2.

Now we rewrite the full likelihood as

TR (/\le—(/\l+/\2)ti pl) i (A2e_“1+ M)t p2)
s;=11) s;={2}

X H ((/\lp + /\2cp)e_(/\l+ 2y )
8;={1.2}

Even though (2.1') holds, because of (2.2) maximizing Ly for A, and X9 is equivalent to
maximizing the partial likelihood

3

L) = ] (,\le—("ﬁ A9) 4 ) 1 (,\2e'("1+ Ao b )
S.={1} Si:{2}

s,={1,2)

e T ()0

Note that Lgy(c) =

Lg for c¢=1, butfor ¢ # 1

Lo(l) # Ly This enables us to
compare how far off the MLE’s of failure rates assuming independent masking over S; can be from the

correct MLE’s under various degrees of dependent masking as indexed by c.

When ¢ = 1 maximizing with respect to LF‘ LR’ or LGJ, yield the same estimates.

We stress
for ¢ # 1, however, that maximizing with respect to Lg is not equivalent to maximizing the Ly, but

maximizing with respect to LGJ, will be equivalent to optimizing the Lp.

First we write the log likelihood equations below

9 logLgy(c) / 0)

n

= on/ M o+ 0/ O+ M) - Dt (3.2a)
i=1
n

dlogLg(c) / 8Xg = ng/ Ay + (e /(A + Age)e - D (3.2b)
i=1

where nj, ny denotes the number of failures with M;={1}, M;={2} respectively and n;o denotes the
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count of Mi.—_{l,2}, i.e., nyg is the number of masked failures here. For ¢ = 1 they are equivalent to

the special cases in Miyakawa [2] and Usher and Hodgson [3] .

Solving for (3.2 a and b), we find the MLE’s under (2.1') and (2.2) are

>)

1 :{——cn2 + (I=c)njg + (1-2¢)my

+J(cn2 - (I-¢)njy + n1)2+4(1—c) ny an}/[2 (1-¢) T]

and

X2 :{nl + (1~¢)njy + (2-¢)ny

—\J(c(nz + o) — (ny + np)ftdcn nQ}/[2 1-oT ,

n
where T = Z t
i=1
is the total time on test. (For another quick check, note that these estimates for the case of ¢ =1

reduces to Miyakawa’s special results.)

The relationships of these estimators to the dependency variable ¢ are best understood

graphically (for various values of ny, Ny, and 1112) in Figures 1.1 = 1.4 and 2.1 —2.4. Recall the case

in (3.1) of ¢ = 1 yields MLE’s of the independent condition (2.1). Under (3.1) as ¢ = 0, thena
strong dependency in S; masking exists (i- e., (2.1') holds strongly).  For example, when the ¢ = 0
extreme case occurs, then all the masking of Si = {1, 2} would be due to Ki = 1, never due to
Ki = 2. For convenience we have rescaled the total time on test to be T = 1.0 units of time. This

simply rescales the vertical axis in each Figure.
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Figure 1.1 (nl, ny, n12) =(1,1,5) and Xl y— b Agaaes
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Note in particular for Figure 2.1 that the true MLE’s of the failure rates actually flip as ¢
varies from 1 down to 0. Intuitively this makes sense due to the larger number of masking nyg =9
being allocated according to the dependency number c. This reemphasizes the warnings in References

1 and 3—5 about possible violations of (2.1).

In this paper we have introduced (3.1) and ¢ to study when violation of (2.1) is-finor and
when it might be a significant problem. In Figures 1.4, 2.3, and 2.4 the MLE’s are seen to change
very little as a function of c. This robustness to c¢ is also true for Figure 1.2 (we have deliberately

blown up the vertical scale in Figure 1.2, since the MLE’s vary only between 5 and 6). The MLE’s are
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Figure 2.1 (ng, ng, n9) =(1,3,9) and X, i X,
also relatively robust in Figure 1.3 although somewhat less robust in Figure 2.2. The Figure 2.1,

however, clearly demonstrates the possible dungerous lack of robustness when dependence in Si holds.

4. CONCLUSIONS

The graphs and discussion in Section 3 stress the importance for a user verification of (2.1)
when masking is relatively large and not caused solely by scheduling and production constraints or else

a sensitive analysis of ¢ via (3.1). One way to check (2.1) and hold down costs is to take a
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subsample of masked failures when the number of maskings is large relative to the number of observed

unmasked failures.

When the number of maskings is small relative to the numbers of observed failures these
MLE’s will often be relatively robust. Using (3.1) and c¢ provides a user a way of quantifying how

much variability in the MLE’s could arise due to unaccounted dependency in Si masking.
ACKNOWLEDGEMENTS

Dennis K. J. Lin and Frank M. Guess received research support from the University of Tennessee

College of Business Administration Research Fellowships.



1

{2]

3]

(4]

5]

(6]

[7

(8

{9}

Life data analysis

o
— A\\\
o
©
0
4
: o |
.
o
T T T ] T
0.0 0.2 04 0.6 0.8 1.0
c
Figure 2.4 (n}, ng, njg)=(9,1,3) and 1, Ay,
REFERENCES

J.S. Usher, Estimating component reliabilities from incomplete accelerated life test data,
Unpublished Ph.D. dissertation, North Carolina State University, Department of Industrial
Engineering, Raleigh, NC, (1987).

M. Miyakawa, “Analysis of incomplete data in a competing risks model”, I[EEE Transactions on

Reliability, 33, 4, 293-296, (1984).

J.S. Usher and T.J. Hodgson, “Maximum likelihood analysis of component reliability using

masked system life data”, IEEE Transactions on Reliability, 37, 550-555, (1988).

F.M. Guess, J.S. Usher and T.J. Hodgson, “Estimating system and component reliabilities under
partial information on the cause of failure”, Technical Report No. 136, Department of Statistics,

University of South Carolina, (1987).

F.M. Guess, J.S. Usher and T.J. Hodgson, “Estimating system and component reliabilities under

partial information on the cause of failure”, Journal of Statistical Planning & Inference, (1991).

G.E. Dinse, “Nonparametric prevalence and mortality estimators for animal experiments with
incomplete cause-of-death data”, Journal of the American Slalislical Association, 81, 328-336,

(1986).

G.E. Dinse, “Nonparametric estimation for partially-incomplete times and types of failure data”,

Biometrics, 38, 417-431, (1982).

AJ. Gross, “Minimization of Misclassification of Component Failures in a Two-Component

System”, IEEE Transactions on Reliability, 19, 120-122, (1970).

A.P. Basu, “Identifiability problems in the theory of competing and complementary risks — a

543



544

(10]

(11]

(12]

(13]

(14]

[15]

(16]

D. K. J. LiN and F. M. Gusss

survey”, Statistical Distributions in Scientific Work, (Taillie, Patil, and Baldesaari, Eds.), Reidel
Publishing Company, Dorerecht, Holland, 335-348, (1981).

A.P. Basu and J.K. Ghosh, “Identifiability of distributions under competing risks and
complementary risks model,” Commaunications in Statistics: Theory & Methods, 14, 1515-1525,
(1980).

A.P. Basu and J. Klein, Some recent results in competing risks theory, Survival Analysis, Eds. J.

Crowley and R.A. Johnson, Institute of Mathematical Statistics, Hayward, CA. (1982).

R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing: Probability
Models, To Begin With, Silver Spring, MD, (1981).

M.L.Moschberger and H.A. David, The Theory of Compeling Risks, Monograph series, (1978)

R.G. Miller, Survival Analysis, Wiley, New York, (1981).

J.F.Lawless, Statistical Models and Methods for Lifelime Data, Wiley, New York (1982).

J.S. Usher and F.M. Guess, “An iterative approach for estimating component reliability from

masked system life data”, Qualily and Reliability Engincering International, (1989).



