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1. INTRODUCTION

Screening experiments  typically
contain a large number of potential factors.
Practitioners are constantly faced with
distinguishing between the factors that have
an actual effect and those factors whose
apparent effects are due to random error.
The "null" factors are then adjusted to lower
the cost, and the "non-null" (active) factors
are used to yield better quality results. To
distinguish the difference, a large number of
factors can often be listed as possible
sources of effect. It is not unusual, however,
that among those factors only a small
portion are, in fact, active.  This is
sometimes called "effect sparsity.” Usually,
further investigation on the nonsignificant
effects is not of interest. Estimating all
effects may be wasteful if the goal is simply
to detect those few active factors.

When there are many factors, the
usual advice given to them is to run so-
called main-effect designs (Resolution III
designs in the orthogonal case) which
require at least k+1 runs for investigating k£
factors. However, estimating all main
effects may be wasteful if the goal is only to
detect those active factors. This 1is
particularly true when the number of factors
is large and a small number of runs is
required. In such situations, a supersaturated
design can save considerable costs.

A supersaturated design is a fraction
of a factorial design with n observations in

which the number of factors, k is more than
n-1. When such a design is used, the
abandonment of orthogonality is inevitable,
because otherwise, these columns would
form a set of more than n orthogonal vectors
in n dimensional space. The usefulness of
such a supersaturated design relies upon the
realism of effect sparsity; namely, the
number of the dominant active factors is
small. As previously mentioned, the goal
here is to identify these active factors. For
a brief review of early work in
supersaturated design, see Lin (1991).

Apart from some ad hoc procedures
and computer-generated designs, the
construction problem has not been addressed
until very recently. See, Lin (1991, 1993a,
1995), Wu (1993). Most of these
supersaturated designs, though constructed
based upon different viewpoints, show that
a Hadamard matrix is indeed a useful tool
for constructing a supersaturated design.
Indeed, Deng, Lin and Wang (1994) provide
a universal form of a supersaturated design
using a Hadamard matrix, which will cover
all of the above construction methods as
special cases. Moreover, they show that a
supersaturated design constructed with such
a universal form is superior to others, in
terms of various criteria.

In this paper, we discuss several
existing criteria for evaluating the goodness
of a supersaturated design. Two specific
criteria for orthogonality and estimability
respectively are proposed.



2. CLASSICAL CRITERIA
FOR SUPERSATURATED DESIGNS

To screen a large number of factors
in a small number of runs, the abandonment
of orthogonality in a supersaturated design is
inevitable.  Since lack of orthogonality
results in lower efficiency, it is always
desirable to make the design as nearly
orthogonal as possible when the perfect
orthogonality is unattainable. This clearly
suggests several criteria to be suitable for
supersaturated designs.

(C1) s =max (s;), where s; = XX;
for all 1<i<j<k.

Here we denote the ith column of the design
matrix X by x, The value of s is the
maximum correlation among any pair of
design columns. Certainly, the smaller, the
better.

(C2) E(d) = Xs}/(3), where s; = xix;
for all 1<icjk.

Booth and Cox (1962) first proposed the
E(s?) criterion to evaluate the goodness of a
supersaturated design, and it has been
intensively used by others.

Note that once the few dominant
active factors are identified, the initial design
is then projected into a much smaller
dimension. The implicit assumption under
E(s?) criterion is that there are, at most, two
active factors. If the number of active
factors, ¢, is larger than 2, there is no
guarantee that the projective (reduced)
design will be of full rank, i.e., a main effect
model consists only of those active factors
that may not be estimable.

(C3) p = Z5/(3), where r; = Corr (x;,%)
for all 1<i<j<k.

Lin (1994) modifies the E(s), by taking into
the run size n into account and proposes an
equivalent criterion, mean square correlation
p as shown above. The disadvantage of
E(s?) is also shared by the criterion p.

3. EXTENSION OF SOME
OPTIMAL DESIGN CRITERIA

Let X, be the design matrix with
entries 1, and let ¢ be the number of active
factors, i.e., the number of design columns
of the projected design matrix. For a given
s=(l,,....l.), s set of size ¢ from (1,...,k), we
can construct a n x ¢ sub-matrix X; from X.
Following the idea of E(s%) which gives an
efficiency measurement in an average sense,
we can measure the "orthogonality” of X as

follows:
1
k
c

where v(X,) is a function to measure the
"orthogonality" of X, and the summation is
taken over all possible choice of s.

V(X) = D)0, 08 1)

As an extension of the classical
design optimality, some natural choices of
v(X,) are:

(C4)  w(X,) = detXX)"

(C5) w(X,) = trace (X;X,)™

(C6) (X)) = A, (X;X,)", where A,
denotes the largest eigenvalue of
the matrix (XX,).

Notes:

1. When ¢ = k £ n, these criteria are
corresponding to: (i) D optimal, (ii)



A optimal, and (iii)) E optimal
criteria, respectively. When k& > n
(see Section 5), the value of ¢ can
not be larger than &, and in fact, is
normally much smaller than k.

2. When ¢ = 2, all criteria are reduced
to the criterion similar to the one
proposed by Booth and Cox (1962)
and Lin (1993a). One should note
that the first two criteria will
optimize a design by minimizing

1

n?-s

E( )

2

where as the criterion considered by
Booth and Cox (1962) and Lin

(1993a) is
E(s%).
Note also that
2
1 = _l_. 1 = ._1_ 1+_5:__+...
ni-s2 n?® 1-s¥n* n? n?

Therefore, criteria (C4) - (C6) and (C2)
should be approximately equivalent to each
other because s° is normally much smaller
than n%.

4. A NEW CLASS OF
B-OPTIMAL CRITERIA

Clearly, if a vector y is orthogonal to
a group of vectors Z = (zl,zz,...,zp), then the
regression sum squares must be null, when
regress y on (z,,2,,...,.Z,). Namely, y'Z(Z'Z)
1Z'y=0. Thus, the value of y'Z(ZZ)'Z'y, or
equivalently b'(Z'Z)b, where b = (ZZ)'Zy is
the regression coefficient, provides a good
measurement on how orthogonal the vector

y to Z. Motivated by this, the proposed
criterion, called "B optimality,” reflects the
dependence of a column to all other ¢ - 1
columns by computing the regression
coefficients of one column in X, X;, over
the remaining columns X, ;. For any specific
projection design X, with size n x ¢, we
average x;X, (X!, X,.) "X, x; over all possible
ii = 1,2,..,¢) as a measurement of the
design orthogonality. Of course, the value
of ¢ is typically small (See, for example,

Lin, 1993b).
In general, consider a class of new

functions v,/(X,) to measure the
"orthogonality" of X, for V (X) in (1):

Ve(Xo) = ?‘;‘; B X B @D

namely,
(€7
-1 Y Y px
VC(X) - k . l S[= c ies ﬁs-i(X&iXs-i)ng-i’
c
where

(i) Bs-i = (X.:‘-iX:-i)-IX.:'-IXI"

(i)  x; is the n x 1 column corresponding
to the i-th unit in s,

(i) X,; is the n x (c-1) matrix

corresponding to units in s-{i},

and g can be any scalar value to present the
degree of penalty to the non-singularity of
the X! X, matrix. Note that for g=1, the B-
criterion is equivalent to the well known VIF
criterion (Variance Inflation Factor). In
principle, the B-criterion can apply to any



design when the projection property is under
concern, regardless the number of levels, the
number of factors and the number of runs.

To compute the value of v, (X)) given
in (2), we need the value of (X! X,,)" for
each i £ s. Now, (X X,)"' easily can be
computed from (XX,)". Theorem 1 below
gives the formula for v,(X,) and vy(X)) in
terms of the elements in (XX
Throughout this section, we will consider,
without loss of generality, the sample s =
(,5-..1) as s=(1,...,c).

Theorem 1. Let X=(x,,...,Xx.) be a matrix
with full-rank of dimension nxc and let

W=CCX)T = (wy).

then,

0 wX)=nc- Y 1

i=t W
and
¢ w2
.e 1]
(11) vO(Xs) = E - u
®OW..

11

5. RESOLUTION-RANK CRITERION

Note that once these active factors
are identified, the initial design is then
projected into a much smaller dimension
(see Lin, 1993b). A criterion based upon
such an important projection property, called
resolution rank, is defined as follows.

(C8) DEFINITION. Let X be a column-
balanced design matrix. We define
the resolution-rank (r-rank, for short)
of X as f=d - 1, where d is the

minimum number subset columns
(excluding 1) that will be linearly
dependent.

Clearly, if a supersaturated design, X,
has an r-rank of f, then when X is projected
to any submatrix of f (or less) factors, the
main effects of the projected design are all
estimable. Moreover, in many situations
where the r-ranks are very different for two
supersaturated designs, their D,and A, values
are nearly identical (The maximum
difference is around 1%.).

Theorem 2. If no columns in any
supersaturated design, X, are fully aliased,
then its r-rank at least 3. |

Table below shows the comparisons on a
specific  16-run  supersaturated  design
generated by the method of Wu (1993) and
Deng, Lin and Wang (1994) respectively.
Clearly, a r-rank of 4 and 7 can easily
distinguish the superiority of the later design,
while the A; and D; values are too close to
tell.

Wu (1993) DLW (1994)
oo Dy A Dy
2 0130 11.340 0.130 11.339
3 0.205 9.583 0.204 9.581
4 0.290 8.123 0.287 8.118
5 0.380 6.903
6 0.489  5.886
7 0.619 5.024




6. DISCUSSION

Supersaturated designs can save
considerable <costs in screening
experimentation. Many experimenters are
trying such a design on real examples. To
evaluate the goodness of supersaturated
design, we reviewed certain classical criteria
(C1) - (C3) and extended some optimal
design criteria suitable for supersaturated
design (C4) - (C6).

Moreover, two important criteria
based on projection are proposed: (i) B-
optimal criterion (C7), and (ii) resolution-
rank (C8) criterion. The former directly
associates with multi-factor orthogonality,
while the latter associates with the
estimability of the projective design.

In summary, eight criteria have been
discussed in this paper. They are

(C1) s=maxs;
(C2) E(s) = Zs3/()

(C3) p=3®

[y

(C4) D-criterion = ¥ det (X!X,)"
k
c
(C5) A-criterion = _L_ ¥ wrace (X'X)"
k
d
(C6) E-criterion = T A(XX)!

ﬁ?\*l»—ﬂ

(C7) B-criterion = ﬁ 3 BLXLX, ).
k
c

(C8) resolution rank.
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