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The problem of constructing first-order saturated designs that are optimal in some sense has
received a great deal of attention in the literature. Since these saturated designs are frequently
used in screening situations, the focus will be on the potential projective models rather than
the full model. This article discusses some practical concerns in choosing a design and presents
some first-order saturated designs having two desirable properties, (near-) equal occurrence
and (near-) orthogonality. These saturated designs are shown to be reasonably efficient for
estimating the parameters of projective submodels and thus are called p-efficient designs.
Comparisons with the efficiency of D-optimal designs are given for designs for all n from 3

to 30.
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We are constantly faced with certain constraints
when running experiments. For example, the exper-
iment has to be completed within a certain time pe-
riod, equipment (such as the number of machines
available) to conduct the experiment is limited, and
so on. In one study at Oak Ridge National Labo-
ratory, for example, an experiment was conducted
to test irradiation effects on heavy-section steels. The
project was aimed at obtaining fracture toughness
data based on two weldments with high-copper con-
tents to determine the shift and shape of the actual
fracture toughness (K,;) curve as a sequence of ir-
radiation. Radiation experimentation is extremely
expensive so the experiment must be run with min-
imum size. This is a common problem in many in-
dustries—the number of runs in the experiment is
fixed or has to be minimized. In this article, I con-
sider first-order saturated designs for such problems.

Consider an experimental situation in which a re-
sponse y depends on k factors x,, . . . , x, with the
first-order relationship of the form E(y) = 8, + B,x,
+ - + Bx, = XB, where y is an n X 1 vector
of observations; the design matrix X isn x (k + 1)
whose jth row is of the form (1, x,;, x5, . . ., X)),
j=1,2,...,n;and Bis the (k + 1) x 1 vector
of coefficients to be estimated. In a two-level fac-
torial design, each x; can be coded as + 1. The design
is then determined by the n X k matrix of elements
=1. The ith column gives the sequence of factor
levels for factor x;; each row constitutes a run. When
k = n — 1, the design is called a saturated design
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and the design matrix X is an n X n square matrix.
Note that n = k + 11is the minimal number of points
(rows) required to estimate all coefficients of interest
(the B;’s).

Much theoretical work has been done in this area
to select designs that meet certain optimization cri-
teria. Note that a typical preliminary investigation
contains many potentially relevant factors, but often
only a few are believed to have actual effects. This
is sometimes called effect-sparsity. Once these actual
effects are identified, the initial design is then pro-
jected into a much smaller dimension. In such a
screening situation, considering the optimality prop-
erties based on the full model is irrelevant. In this
article, we focus on the potential projective models
and construct a series of designs that are quite effi-
cient in terms of the projective model.

In Section 1, D-optimal designs are briefly re-
viewed and discussed. Note that D-optimal designs
are used only for comparison with designs given here.
Other previously known criteria can be viewed in a
similar manner. In Section 2, some practical consid-
erations for choosing a design are discussed and the
construction method is formulated. In Section 3, a
computer algorithm to construct the proposed de-
signs is described. In Sections 4, 5, 6, and 7, com-
parisons with D-optimal designs are given for n = 0
(mod 4), n =1 (mod 4), n = 2 (mod 4), and n = 3
(mod 4). In Section 8, I further discuss some prop-
erties for the new designs when the full design is
projected into p = 2, 3, 4, and 5 dimensions.
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1. D-OPTIMAL DESIGNS

Several criteria have been advanced for the pur-
pose of comparing designs and for constructing op-
timal designs. One of the most popular is the D-
optimality criterion, which seeks to maximize ||X'X|],
the determinant of the X'X matrix. Recall that for
any n X n matrix, H, consisting entirely of elements
+1, the maximum determinant possible is |[H'H|| =
n” (Hadamard 1893). Following Kiefer (1959), I de-
fine d efficiency as

[H'H]

1/n
||X'X||] _ XX
n

d efficiency = [

Clearly, D-optimal designs will yield the highest d-
efficiency values, this being the reason for their name.
Under our setting, the d efficiency is equal to 1 only
for Plackett and Burman designs; usually it is less
than 1.

The problem of finding a D-optimal design has
been very thoroughly explored mathematically; two
early articles were by Hotelling (1944) and Mood
(1946). The practical value of saturated D-optimal
designs, apart from Plackett and Burman (1946) de-
signs, is worthy of further investigation. First, these
designs do not contain an equal number of high-level
and low-level values. This can be quite disturbing to
experimenters. The nonequal-occurrence property
implies that the factor is being partially confounded
with the constant term (the column with all +°’s),
which is usually significantly different from 0. Sec-
ond, unlike orthogonal designs, these designs lack
similarity relationships among all the columns. For
example, the correlations between every pair of col-
umns are not necessarily the same. This raises ques-
tions about which factors to assign to which columns
and whether it matters.

2. SOME PRACTICAL CONCERNS

In the screening situation, a D-optimal design for
the full model is not necessarily D-optimal for the
submodel that contains only the active factors. Since
we do not know in advance which factors will be
important, it is reasonable to have designs that are
balanced in all factors. This naturally leads to the
desirability of the (near-) equal occurrence and
(near-) orthogonality properties as explained in the
following:

1. (Near-) equal occurrence. For each factor, both
high-and low-level values are usually of equal inter-
est, and each experimental result, y,, should have
equal influence. This leads to the equal-occurrence
property—an equal number of high-level and low-

level points for each factor in a design. When n is
odd, however, the equal-occurrence property is un-
attainable. We thus seek a design that will be as near
to equal occurrence as possible by specifying that the
numbers of +’s and —’s should differ by no more
than 1. Without loss of generality, for odd n, we
assume that there are (n + 1)/2 +’s and (n — 1)/2
—’s. Denote the largest absolute correlation with the
constant term among all factors by ¢ as a measure
of equal occurrence. A large value for c is undesir-
able. The designs given here have ¢ = 0 for even n
and ¢ = 1/n for odd n.

2. (Near-) orthogonality. Orthogonality as an im-
portant design principle was pointed out by the work
of R. A. Fisher and F. Yates back in the 1920s. The
degree of nonorthogonality between factors x; and
x;can be measured by s; = 27, _; x;,x;, (s; = 0 implies
orthogonality). Even if circumstances are such that
exact orthogonality is unattainable, it is still prefer-
able to make the design as nearly orthogonal as pos-
sible. Denote the largest |s,| among all pairs of fac-
tors for a given design by s (s = 0). We thus desire
a design to have a minimum value for s. Under the
equal-occurrence assumption, it is shown in the ap-
pendix that 5; = n (mod 4)—namely, that the small-
ests = |s;| possible are 0, 1,2, and 1 forn = 0, 1,
2, and 3 (mod 4). If two designs have the same value
of s, we prefer the one in which the frequency of
such s is smaller. Thus we minimize the average of
52, denoted by ave(s?). For a specific design, ave(s?)
is computed by Zs?f,/(3'), where f; is the frequency
of 5; of all (37!) pairs of columns. This criterion was
first proposed by Booth and Cox (1962) in the con-
text of supersaturated designs. It is similar to the §
criterion (Kiefer 1974), which minimizes tr(X'X)2.
We see that when n = 0 (mod 4) the Plackett and
Burman designs are optimal in the sense of meeting
both of these requirements.

Suppose that such a design is used for screening
purposes. Now, consider its projective property; that
is, consider the submodel that contains only the p
(=k = n — 1) active factors. The projective design
in any p of the k factor dimensions will always pre-
serve the original (near-) equal-occurrence property
and (near-) orthogonality no matter which p factors
are designated as the survivor columns. Moreover, as
we shall see in Section 8, these designs have high d
efficiency in terms of the reduced model when p is
small—for example p = 5. Because of this property,
we call them p-efficient designs.

Consider the case n = 7 to investigate six factors,
as an example. Suppose that two factors are found
to be important (the first two columns, say). The D-
optimal design for the full model (see Williamson
1946) could then project into (+ — + — + + +)’ and
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Table 1. The Vectors r and q' to Construct p-Efficient Designs
n Vectors r and q'
5 r=(+++)
qQ =(+++-)
9 r=(+—-—--—++4)
qQ =(———+++++)
13 See Table 2.
17 r=(-———+++++-+----)
qQ=(---—-=--- +++++++++)
21 r=(-———+++++++++-—--—-—-— )
qQ=(----=-—-=-=-= ++++ A+ttt +)
25 r=(-——+—-++-——-+++-++-+--—-—-—-—-— )
qQ=(-——--- +-—4+—t+++++++++——++)
29 r=(—-+-—-+—-++—-4++++++++-——+-———++—+)
qQ=(————4++-——+—-t++++++—+++-——+—-——++-)
(+++—-———) whose calculated to check whether it satisfies the require-
7 3 1 ment (s = 0, 1,2, 1forn =0, 1, 2, and 3 (mod 4)).
' _ If not, the potential column is dropped and the search
XinXer = | 3 7 1 ; p PP
1 1 7 continues.

is no longer D-optimal for the submodel. On the
other hand, we shall see that the p-efficient design
results in X;,, X, = 8I-J, which is optimal in many
senses (including D-optimality), no matter which two
columns are selected.

3. THE BASIC CONSTRUCTION PROCEDURE

In this section, I describe the computer search rou-
tine that I used to construct p-efficient designs. Once
the number of runs » is specified, the routine gen-
erates all possible combinations of columns (n/2 of
+’s and —’s, when n is even; (n + 1)/2 of +’s and
(n — 1)/2 of —’s, when nis odd) and then randomizes
their orders. At each stage, a potential column enters
and the s value with all other columns retained is

One difficulty with this routine arises from the fact
that the s-value property is not transitive; namely,
when x;, x; produce s value = s* and x;, x; produce
s value = s*, this does not imply that x;, x, will have
s value = s*. To handle this, two modifications were
made to the search procedure. These were as follows:
(1) Those candidate columns that meet the require-
ment for all but one retained column were saved in
a queue. Whenever two columns in the queue linked
to the same retained columns, this retained column
was removed and replaced by the two columns in the
queue. (2) Allowance was made for another loop
with different random order of entrance for each
possible candidate if less than n — 1 columns were
obtained (at most, three loops were tried). This search
procedure worked for all cases I considered except

Table 2. Design forn = 13 (X'X = 25 x 1272)
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Table 3. Comparisons With D-optimal Designs
Forn=1(mod 4)

n Design c ave(s?) d efficiency
5 D-optimal 1/5 1 941
p-efficient 1/5 1 941
9 D-optimal 1/9 1.67 .932
p-efficient 1/9 1.67 .932
13 D-optimal 113 1 977
p-efficient 1/13 1 977
17 D-optimal 317 1.94 .966
p-efficient 117 2.06 .954
21 D-optimal 5/21 1.63 .976
p-efficient 1/21 2.26 .963
25 D-optimal 7/25 1.61 .974
p-efficient 1/25 2.20 .969
29 p-efficient 1/29 2.27 974

forn =9, 17, 21, 22, and 25, for which it has been
proved that designs with minimum s do not exist (for
example, see Galil and Kiefer 1980). In these cases,
only n — 2 columns were found. Instead of using a
branch-and-bound feature, I used a brute-force search
for the very last column based on the criterion ave(s?)
to ensure the optimal results. Details of the program
are available from me.

Much work has been done in constructing D-optimal
(+1, —1) designs. For example, see DETMAX
(Mitchell 1974a), branch-and-bound (Welch 1982),
and annealing algorithm (Haines 1987). Compared
with these, the approach given here is much simpler
and is computationally inexpensive, in part because
of the special structure of our problem. Specifically,
(a) due to the equal-occurrence concern, the can-
didate space is much smaller, which allows us to search
for designs with large n (here we show the results
for n up to 30); (b) unlike other algorithms that find
a set of columns at each stage to evaluate || X'X],
here the design columns are added sequentially; and
(c) rather than evaluating | X'X]|, only s; = Z7_, x,x,,
is computed here. This is a much easier computa-
tional task.

Table 4. Design forn = 6 (| X'X|| = 62 x 4%

/ 1 2 3 4 5
+ - + - - -
+ - - - + +
+ + + - + +
+ + - + + -
+ - + + - +
+ + - + - -

Table 5. Design forn = 10 (|X'X|| = 70? x 8°%)

/ 7 2 3 4 5 6 7 8 9
+ o+ o+ + - -+ - - -
+ o+ o+ -+ + - -+ +
S -+ + o+ + o+ -
+ o+ - + - - - -+ +
+ o+ - + o+ -+ + - +
+ - - - - + - + - +
+ - - + o+ + - - - -
+ + + - + o+ + 4 -
+ -+ -+ - - + - -
+ -+ - - -+ -+ +

4. DESIGNS FOR n = 0 (MOD 4)

For n = 0 (mod 4), the smallest s value possible
is 0—that is, an orthogonal design. The designs given
by Plackett and Burman (1946) are not only orthog-
onal but also are of equal occurrence and thus are
highly recommended. For n < 24, all of their designs
can be obtained by cyclic permutation row by row
by using the following sequences: Initially, write down
the first row, remove the rightmost sign, place it on
the extreme left, and move all signs one place to the
right; finally add a row with all —1s. Forn = 8, 12,
16, 20, and 24, the signs for the first row are

n=8 +++—+-——

n=12++-+++—-—-—+—
n=16++++—-+-—++-——+———
n=2004++——4+4+++—F+—+————++—
n=24+++++-+—F++-——F+——F—F————,

For the 28-run case, the Plackett and Burman design
is formulated by permuting three 9 x 9 blocks of
signs and then adding a row of minus signs. These
values of n are used for testing the algorithm given
in Section 3. The program successfully produced these
designs as required.

5. DESIGNS FOR n =1 (MOD 4)

The smallest s value possible is 1; such a design,
if it exists, would be a D-optimal design because the
determinant of X'X reaches the upper bound. It is
known, however, that such a design does not exist
if 2n — 1 is not the square of an integer. [In fact,
even for n = 25, the D-optimal design given by-
Raghavarao (1959, p. 302) does not have all s = 1—
e.g., columns 10 and 11.] The search routine suc-
cessfully produced the only possible designs for n =
5 and 13. For n = 9, 17, 21, and 25, as mentioned,
a further search for the last column is made by letting
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Table 6. Design forn = 14 (| X'X|| = 142 x 12?)

/ 1 2 3 4 5 6 7 8 9 10 11 12 13
+ - + + + - - - + + - +

+ + - - - + - + - + + + -
+ + - - - - + + + + - - +
+ + - - + - - - + - + + +
+ - + - + - + - - + - + - +
+ - + + - - + + - - + + -
+ - + + - + - - + - + - - +
+ + + + + + + + + + + + + +
+ - - + - - + + - + + + - -
+ - - - + + + - - - + - + +
+ - + - - + - + + + - - + -
+ + - + + + + - + - - - -
+ + + + - - + + - - - - +
+ + + - + + - + - - + - -

s be the next smallest number (in this case 5), and
choosing the column that produces the minimum
number of s = 5 among all pairs associated with the
last column. The frequency of s = 5 appears 1, 6,
10, 15, and 21 times for n = 9, 17, 21, 25, and 29,
respectively. For these cases, the factor thought to
be least likely to be retained should be assigned to
the last column in practice.

As suggested by one referee, these designs can also
be constructed by adding a row and a column to the
standard Plackett and Burman designs of the form

PBn—l q
r — b

where PB,_,is an (n — 1) X (n — 2) Plackett and
Burman orthogonal array, risal X (n — 2) row

vector of +’s, and q is an (n — 1) X 1 column vector
of +’s. The vectors r and q are given in Table 1
(p. 286). The case n = 13 does not follow this rule
and is given separately in Table 2. Note that these
vectors are obtained using the standard Plackett and
Burman designs (see Sec. 4); if other equivalent
Plackett and Burman type designs (permutation on
rows or columns) are used, they need to be modified
accordingly. The D-optimal designs forn = 9,17, 21,
and 25 were given by Mitchell (1974b), Moyssiadis and
Kounias (1982), Chadjipantelis, Kounias, and Moys-
siadis (1987), and Raghavaro (1959), respectively.
The D-optimal design for n = 29 is not available.
As shown in Table 3, the p-efficient designs are
identical to D-optimal designs for n = 5, 9, and 13.
For n = 17, 21, and 25, the p-efficient designs have
their d-efficiency values close to that of D-optimal

Table 7. Design for n = 18 (d efficiency = .8913)

/ 7 2 3 4 5 6 7 8 9 10 117 12 13 14 15 16 17
+ + + + + + + + + + + + + + + + + +
+ + - + + - + + + + + + - + + - - -
+ + - - + + - + + + + - - - - + + -
+ + + + + + - - - - - + - + - + - +
+ + - + - - + + - - - + + - - + + -
+ + - - + + + - - - - - + + + - + -
+ + + - - - + - + + - - - + - - + +
+ + + - - + - + + - + + + - + - - +
+ + + + - - - - - + + - + - + + - -
+ - - + - - - + - + + + - - + +
+ - - + - + + - + - - - - + + - +
+ - - - - + - + - + - - + - - - - +
+ - - - + - - - - + + + - - + + + +
+ - + + + - + + - - + - - - - - + +
+ - + - + - - + + - - - + + + - -
+ - + + - + - + - + - + - + + - + -
+ - - - - + + - - - + + - + - + -

+ - + - + - + - + + - + + - - - -
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Table 8. Design for n = 22 (d efficiency = .8576)

/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
+ + O+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+t
+ + O+ o+ o+ o+ o+ 4+ o+ o+ o+ o+ -+ ===
+ + - - o+ o+ 4+ 4+ o+ o+ o+ o+ -+ - ===+ - -
+ + - + o+ - 4+ -+ == -+ -+ ===+ o+ o+ o+
+ + o+ - - - - 4+ -+ + - 4+ - =+ = - o+ o+ o+
+ + - o+ -+ - 4+ = - - 4+ o+ o+ -+ o+ -+ ==
+ + + -+ - -+ -+ = == -+ -+ ==+
+ e T S S T I
+ e T I R
+ + o+ o+ - = - -+ -+ o+ = = - -+ -+ =+ -
+ + - - - + -+ o+ - - -+ -+ 4+ o+ = =+

+ R T S S T T S S + o+ -
+ e e
+ - - -+ -+ = = -+ 4+ ===+ -+ ==+
+ -+ - -+ 4+ - = = = - -+ o+ o+ o+ -+ o+ - -
+ - 4+ o+ - - - - -+ - 4+ o+ o+ o+ o+ -+ o+ o+ o+ -
+ T S S T T S
+ - - - + + - + o+ -+ o+ - = =+ = =+ + 4+
+ -+ o+ o+ -+ - =+ o+ - 4+ + - + - - - - -
+ - -+ - - + + - + - + - - 4 = - - - 4 - -
+ R S S e S s R N S

+ e e e S T T

designs, and their ¢ value is much smaller. Moreover,
for n = 21 and 25, D-optimal designs have smaller
ave(s?); this is partially due to their large c¢ value
(which is not desirable).

6. DESIGNS FOR n = 2 (MOD 4)

The smallest s value possible is 2. These saturated
designs are listed in Tables 4-9 (pp. 287-290) for n =
6, 10, 14, 18, 22, and 26. Table 10 shows the compar-
ison with the D-optimal designs given by Ehlich (1964).
As one can see, the p-efficient designs have a slightly
smaller d efficiency and a larger value for ave(s?).

For the D-optimal designs, all factors can be par-
titioned into two equal groups such that all factors
have s = 0 between groups but s = 2 within each
group. (This is certainly unattainable with the equal-
occurrence property.) Thus their ¢, ave(s?), and || X'X]||
are 2/n,2(n — 2)/(n — 1) and 4(n — 2)"~1(n — 1),
respectively. The case n = 22 is not available, however.

For the p-efficient designs, the ave(s?) is always
4(n — 2)/n. The | X'X|| for these designs are n(3n —
2)(n — 2)"72, if 5; = 2 for all pairs of columns, but
often they have s; = =*2, which results in smaller
d-efficiency values. The case n = 22 contains six
elementss = 6in its X'X matrix because the program
produced only 20 columns having all 5; = *2, as
mentioned in Section 3.

7. DESIGNS FOR n = 3 (MOD 4)

The smallest s value possible in absolute value is
1. These designs can be easily obtained by deleting

one row and one column of the (n + 1)-run Plackett
and Burman designs. Such p-efficient designs have
IX’X|| = (n + 1)"~! and are D-optimal only for the
case n = 3. A comparison of p-efficient design with
D-optimal designs is given in Table 11. The case n =
7 is derived from Williamson (1946); n = 11 was
given by Galil and Kiefer (1980); for n = 15, a D-
optimal design is not available.

Table 11 also shows the d efficiency, ave(s?), and
c of these designs, as well as the comparison with
the D-optimal designs, if available. As one can see,
the p-efficient designs have increasing d efficiencies
as n increases and ave(s?) and ¢ reach the minimum
values. [In fact, the d efficiency here is equal to (n +
1)¢"=Y/n/n_ which is a monotonic increasing function
for n.] The relationships among all factors are iden-
tical, with the smallest correlation (¢ = s/n = 1/n).

8. PROJECTION INTO MORE THAN TWO
DIMENSIONS

The designs just given seek to meet two criteria,
(near-) equal occurrence and (near-) orthogonality.
For near-orthogonality, we first control the s value
at its minimum possible and then apply the criterion
ave(s?) to designs that have the same value of s. Even
though ave(s?) is computed by all possible pairs of
factors, the value of s only measures the degree of
nonorthogonality of two factors. Certainly, the true
model may contain more than two factors. The per-
formances of the p-efficient design when the true
model contains more than two factors is thus an im-
portant issue to be addressed.
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Table 10. Comparisons with D-Optimal Designs
forn = 2 (mod 4)
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Table 11. Comparisons With D-Optimal Designs
forn = 3 (mod 4)

n Design c ave(s?) d efficiency n Design c ave(s?) d efficiency
6 D-optimal 2/6 1.60 .905 3 D-optimal 1/3 1 .840
p-efficient 0 2.67 .763 p-efficient 1/3 1 .840
10 D-optimal 2/10 1.78 941 7 D-optimal 377 2.14 .878
p-efficient 0 3.20 .815 p-efficient 177 1 .849
14 D-optimal 2/14 1.85 .957 1 D-optimal 3/11 2.02 .915
p-efficient 0 3.43 .876 p-efficient 111 1 .870
18 D-optimal 2/18 1.88 .967 15 p-efficient 1/15 1 .887
p-efficient 0 3.56 .891 19 p-efficient 119 1 .899
22 p-efficient 0 4.33 .858 23 p-efficient 1/23 1 .909
26 D-optimal 2/26 1.92 977 27 p-efficient 1/27 1 917
p-efficient 0 3.69 .929
30 D-optimal 2/30 1.93 .980
p-efficient 0 3.73 .938

The d efficiencies for all possible projective designs
when p = 2, 3, 4, and 5 dimensions were evaluated
for both D-optimal and p-efficient designs for n <
25. Table 12 shows their minimum and maximum d
efficiencies. If the minimum and maximum values
were identical, only one value was reported. The p-
efficient designs are seen to be superior to D-optimal
designs, even judged by the d-efficiency criterion.
The only exception occurs for the case n = 6 (k =
4 and 5). It should be emphasized, however, that the
D-optimal designs are optimal for the full model.

Some values of n are absent from Table 12. These
are the cases in which either the D-optimal designs
are not available or they are identical to the p-efficient
designs. The p-efficient design retains its basic prop-
erties of (near-) equal occurrence and (near-) or-
thogonality and thus preserves the structure of X'X

matrix no matter which columns were projected.
Therefore, only one value is found in Table 6, except
for some n = 2 (mod 4) cases, where the signs of s;
vary, which results in different d efficiencies.

9. CONCLUDING REMARKS

The fact that saturated designs are often used in
screening situations in which it is expected that there
will only be a few important factors leads to the
practical value of these designs. The p-efficient de-
signs discussed here are attractive because their (near-)
equal-occurrence property and (near-) orthogonality
are preserved when projecting into p(=k) dimen-
sions. Furthermore, for estimating from a submodel,
it is shown that these designs are more efficient than
D-optimal designs. Even for the full model, the D-
optimal designs are not substantially more efficient
than the p-efficient designs as shown in Tables 3, 10,
and 11.

Table 12. Comparisons on D Efficiencies When Projected Into p = 2, 3, 4, and 5 Dimensions

P
n Design 2 3 4 5
6 D-optimal (.905, .962) (.928, .943) .920 .905
p-efficient .962 .928 901 .763
7 D-optimal (.926, .977) (.894, .961) (.901, .923) (.882, .897)
p-efficient .977 .961 .939 .907
10 D-optimal (.964, .987) (.951, .980) (.941, .970) (.951, .964)
p-efficient .987 (.964, .973) (.929, .961) (.906, .937)
1 D-optimal (.970, .991) (.950, .986) (.937, .979) (.928, .972)
p-efficient 1991 .986 .979 .972
14 D-optimal (.981, .993) (.974, .990) (.968, .985) (.962, .981)
p-efficient .993 .986 .979 (.959, .968)
17 D-optimal .979 .976 .974 .973
p-efficient .997 .995 .994 993
18 D-optimal (.988, .996) (.984, .994) (.980, .991) (.976, .988)
p-efficient .996 991 .987 (.973, .983)
21 D-optimal (.962, .998) (.957, .997) (.954, .996) (.961, .995)
p-efficient .998 .997 .996 .995
25 D-optimal (.990, .998) (.989, .998) (.988, .997) (.987, .996)
p-efficient .998 .998 .997 .996
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D optimality has an appealing invariant property
under a nonsingular linear transformation, a prop-
erty that is clearly possessed by the p-efficient design.
This is not true for most of the other optimalities
(including A, E, G, L, and R optimality; see Kiefer
1959, p. 294). We note that blindly following a single
optimality criterion is dangerous, although as pointed
out by one referee, the p-efficient designs should
perform well in general because of their better bal-
ance property.

The designs given here are not unique. This is also
true for most of the D-optimal designs. The contri-
bution of this article is not to find a class of designs
that have higher d efficiency in terms of the projec-
tive model. Rather, it is to illustrate a simpler and
more realistic approach to the class of screening de-
signs when the number of runs is limited. D efficiency
is used here to illustrate that these designs generally
have high efficiency in terms of the projective models.
On the other hand, if a slightly larger run is possible,
the Plackett and Burman type design (where n must
be a multiple of 4) has been proven to be optimal
for many reasons and thus is strongly recommended.
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APPENDIX: PROOF FOR s; = n (MOD 4)

For the cross-product of any two columns, x; and
x;, assume that (+,+), (+,-), (—,+), (—,—) ap-
pears by, b,, b;, and b, times, respectively.

Case I (n is even). Because of the equal-occur-
rence property, we have b, + b, = b, + b, = n/2
(for column x;) and b, + b; = b, + b, = n/2 (for
column x;). Therefore, b, = by = n/2 — b, and b, =
b,. This implies that s; = (b, + b,) — (b, + b;) =
4b, — n. In other words, s; + n =0 (mod 4) or 5=
n (mod 4) because n is even.

Case 2 (nis odd). Without loss of generality, also
assume that each column contains (n + 1)/2 of +1s
and (n — 1)/2 of —1s. We thus have b, + b, =
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by + b, + 1 = (n + 1)/2 (for column x,) and b, +
by = b, + by + 1 = (n + 1)/2 (for column x;).
Therefore, b, = by = (n + 1)/2 — b, and b, =
b, — 1. This implies that s; = (b, + by) — (b, +
b;) = 4b, — n — 2. In other words, s5; + n = 2
(mod 4) or s; = n (mod 4) because # is odd.

Thus, the candidate sets for s;; are n = 0 (mod 4):

s; €{..-8, -4,0,4,8,...},n=1 (mod 4):
s €{...-7,-3,1,5,.. .},n=2(mod 4): 5, €
{..-6,-2,2,6,...},andn =3 (mod 4): 5; €
{..-5 -1,3,7,.. .}

[Received January 1991. Revised December 1992.]
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