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Handling spuriosity in the Kalman filter
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Abstract: The Kalman filter, which is in popular use in various branches of engineering, is essentially a least squares procedure.
One well-recognized concern in this least squares procedure is its non-robustness to spuriously generated observations that give rise
to outlying observations, rendering the Kalman filter unstable, with devastating consequences in some situations. Much evidence
exists that data almost always contain a small proportion of spuriously generated observations, and indeed, one wild observation
can make the Kalman filter unstable. To handle this, we introduce a new recursive estimation scheme which is found to be robust
to spurious observations. Examples are given to illustrate the new scheme.
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1. Introduction

A basic problem in stochastic control is that of
separating the signal from the noise. There has
been much work on this so-called “filtering’ prob-
lem (a filter is used in daily life to separate the
good from the bad). One major development,
called the Kalman filter, has been used in many
areas, from on-line process control in industry to
applications in economics (see e.g., Phadke, 1981).

The Kalman filter is a recursive procedure to
estimate the state parameters of the system at the
current time, to predict the next observation, and
to update the value of the parameter state vector
when the next measurement is observed. Kalman’s
(1960) results, popular with control engineers and
other physical scientists, are reproducible using a
Bayes approach with normal theory, conditional
on known values of the variances and covariances
involved. The structure of the standard Kalman
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filter is displayed in Table 1. The reader is re-
ferred to Aoki (1967) for its derivation.
Referring to Table 1, our goal is to make
inference about 6,, called the state of nature. The
observed values of the variance of interest y,
depend on the unobservable 6, at time ¢. The

Table 1
The standard Kalman filter

Model:
y,=A0,+e, & ~NOC)
0,=0,0,_+u, u~NQOR)

Initial setting:
6y ~ Ny, V)

Prediction:
Ky 1™ E@,ly,_)=02u,_,
Vz[f—l =Var(g, |y, )=R, +02V,_,0,
§/=Azﬁ’~m~1
M =C + AtVtyt-lA;

Updating of the parameters:
He=po1t Vt\z~1A;Mril(y1 - Az"’“r}z—l)
V.= Vz\1~1 - V/\r~1A;M171A1V/J1-1
Filter=Vl(,,1AjMf1
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relationship between y, and 6, is known as the
observation equation, whereas, the dynamic fea-
ture between 8, and 6,_, is known as the system
equation. The matrices A, in the observation
equation, {2, in the system equation, as well as
the covariance matrices C, and R, are assumed
to be known. Often, the variation for the observa-
tion equation is larger than that of system equa-
tion, i.e., C, > R, in some sense.

Under such a recursive scheme, after choices
for the initial values p, and V), an update esti-
mation of 6, is carried out when a new observa-
tion y, is available, for +=1,2,... . At each
stage, time ¢ say, the update estimation makes
use of knowledge from both the previous estima-
tion at time ¢ — 1 and the new observation y,, as
described in Table 1.

Essentially, the Kalman filter process is a least
squares procedure. One well-recognized concern
in the least square procedure is its non-robust-
ness to extreme observations, with the result that
the Kalman filter becomes unstable, with devas-
tating consequences in some situations (see e.g.,
Kitagawa, 1987). Much evidence exists that data
almost always contain a small proportion of spuri-
ously generated observations, and indeed, one

Table 2
The Guttman and Pena (1985) robust filter
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wild observation can make the Kalman filter un-
stable.

Several authors have suggested procedures to
deal with this problem (see e.g., Harrison and
Stevens, 1976; Box and Tiao, 1968; Abraham and
Box, 1979; Pena and Guttman, 1989; Meinhold
and Singpurwalla, 1989). In this paper, we are
particularly interested in using a mixture of nor-
mals as a model for the distributions of the noise
in the observation and/or the state space equa-
tions. The use of a mixture of two normals in the
observation equation leads to sensible results that
are easy to implement in the resulting recursive
scheme, which enjoys a certain optimal property
(see Pefia and Guttman, 1989). We discuss the
robust filter given by Pefia and Guttman in Sec-
tion 2, and introduce our new easily applied filter
in Section 3. Two examples are given for compar-
ison in section 4 to underline the value of the
new filter.

2. Robust Kalman filter

Spuriously generated observations that give rise
to outliers often mean that the error distributions

Model:
y,=A80,+e,. e ~aNQO,C, )+a,NO,C,,)
0,=020,_+u, u~NQO R)

Initial setting
6y ~ N(uy, V,)) and specified a; (¢, =1—a;)

Prediction:
/"“lu—l:‘()z/"“/—l’ VI\I—IZR1+‘QzVI—1‘Q;’ §1=All‘l“l\{—l
My =Ca+avii-1A; and M, , =C,,+ AV, 4]

Compute posterior probabilities:

az( Il M,_l [
ay ||M1.2||

a,=1-a,,
@, ; = posterior probability of y, ~ N(A,6,, C, )

a1 :[

Updating of the parameters:
o= He-1 + V,‘[,IA;(C(“M,T[I + az,zM:Zl)(yz - Az/"“zu—l)
V,=V,“71—V;“71A;B{A[V;“71
B, = a/,lejll + 0‘1.2]‘4172l - H,

HI = az,lar,z(]wtjl1 - Mtj21)(yz - Az/"“z“—l)(yt - Af/"“fn—l)l(MrTII -
Filter = Vt\/-lA;(a/.lMtjll + a/,ZMITZI)z E:‘2=lat,iV:\1—1"41’/‘4&1

)2 eXD{é(Y: - Al#’l!l—l)’(M:11 - szzl)()’z - A//"“tu—l))]_l

M;D
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involved have tails heavier than those of the
normal distribution. Guttman and Pena (1985)
thus replaced the assumption of normality by the
so-called scaled-contaminated model (Jeffreys,
1961). Instead of a single normal distribution in
the standard Kalman filter, a mixture of normals
is used as a model for the observation errors ¢,’s.
Their approach is illustrated in Table 2.

Initially, a preliminary ‘estimate’ of the prior
behaviour of 6 is made, say 6,~ N(u,, V;); as
well as choices for a; (i=1,2), a; +a,=1. At
each stage, after observing y,, they compute the
updated estimates of the a,’s say «,,’s, and then
update the estimation of u, using the relevant
formula found in Table 2.

Based on their model, the resulting posteriors
involve a mixture of normal distributions. In or-
der to keep the recursive procedure simple, they
collapse, at each stage, a certain mixture of two
normals into one normal, by fitting first and sec-
ond moments. This collapsing method (see Table
2) is proved to be optimum in the sense of mini-
mizing a Kullback-Leibler distance (Pefia and
Guttman, 1989, Theorem 4.1).

Although precise values of a; =A are chosen
that are specific to the user’s experience, we
quote Box and Tiao (1968, p. 724): “...in practi-
cal applications, o« would usually be small and
a = 0.1 is already too extreme a value for realistic
consideration. Some insight into the reasonable
range for a can be obtained by considering a
‘typical’ experiment involving, say, twenty runs. A
fairly optimistic data analyst might perhaps ex-
pect some discrepant observations 50% of the
time. A rather pessimistic analyst might expect
discrepant ones 75% of the time. Using the Pois-
son approximation, these probabilities would cor-
respond to values of « equal to 0.035 and 0.07
respectively. On the other hand, a = 0.1, implies
that at least one of the observations will be bad
(i.e., spurious) 86% of the time, a rather unac-
ceptable situation, less often met.” Because of
the above, we will assume that 0 < a < 0.05.

3. A different collapsing procedure

The use of a scaled-contaminated model for the
observation errors, ¢,’s, leads to extremely sensi-
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ble results when the experience of spurious ob-
servation is a concern. The novel idea of Guttman
and Pefia (1985, 1989), however, can be improved
by a different collapsing scheme for the two mix-
ture of normals.

The approach to be discussed here is different

from Guttman and Pefa (1985, 1989). Instead of
collapsing the mixture posterior at the end
of each stage, here we collapse the initial
mixture likelihood function. Thus, after comput-
ing the posterior probabilities that y, comes
from N(A4,8,, C,)) or N(A4,8,, C,,), say a,,, or
a,,=1-a,,, we approximate a, N, C, )
+a,,NQ, C,,) by: N, a,,C,, +a,,C,,), and
are then able to apply the standard Kalman filter.
The new filter thus obtained combines the advan-
tages of the filters due to Kalman (1960) and
Guttman and Pefia (1985). It is as efficient as the
‘robust Kalman filter’ developed by Guttman and
Pefia (1985) when spurious observations occur,
and most of their good features have been re-
tained.- It is also, computationally, as simple as
the standard Kalman filter (the derivation is simi-
lar to Guttman and Pefia (1985), but with a
different collapsing method).
.+ We now proceed as follows, starting from time
t = 1, we first compute the posterior probabilities,
a;, and «,,, using the formula in Table 2 (see
Guttman and Pena, 1985, for its derivation). Here,
@, is the posterior probability that y, has been
generated from N(A4,6,, C, ) and «, is the pos-
terior probability that y, has been generated
from N(A,6,, C,,). Then, we collapse the esti-
mated mixture noise distribution «, N(0, C, ) +
a,,N(0, C, ,) using moments, by

N0, a;,C,; +a,,Cy,).

The likelihood function is then taken to be
yi10; ~N(A4,0y, a) ,C; +a,,C ),
while the prior for 8, is given by

6, ~N(uy, R, +182,V,42]).

It is now easy to see that the posterior of 6,
given y, is

(91|y1) ~N(u, V1),
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where

s =ty ot Vi ATMT (v — Ay o)
and

V= Vuo - Vl\OAiMllelVHO

with

,u,1|0=.()1p,0,

Vi =R, + 2V, (2,

and

M =a,,C +a,C, +A1V1|0A’1.

The posterior of 8, |y, is our prior for the next
stage. We continue in this way, and the resulting
algorithm for proceeding in this manner at time ¢
to t + 1 is described in Table 3. Apart from the
collapsing process at beginning, the derivation is
identical to the standard Kalman filter.

4. Examples and discussion

We now reconsider two examples to illustrate the
preceding mechanism and its performance.

Table 3
The new robust filter
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Example 1. Consider the example given in Pena
and Guttman (1989).

y,=0,+te, € ~N(0,4),
6,=6,_,+u,, u, ~N(0,1).

Here, C,=4, R,=1,a,=1, w,= 1, for all ¢, and
we assume that p,= 10, V; =10000. Pena and
Guttman (1989) discussed the standard Kalman
filter when

g, ~0.95 N(0, 4) + 0.05 N(0, 100).

Table 4 summarizes the performance of the
standard Kalman filter, the robust filter of Pefia
and Guttman, and the new (robust) filter of Sec-
tion 3 of this paper. Note that the set of data
contains ‘y,,’ that has been replaced by the value
35, and as intended, is an extreme outlier. We
display the comparisons in Figures 1 to 3.

Figure 1 shows the performances of the up-
dated mean for the three filters (u,’s). We see
that when y, comes from a ‘good run’ (see Box
and Tiao, 1968), all three approaches behave
similarly. But if y, is a ‘bad run’ (e.g., y,), the
new filter and the Pefta and Guttman filter are
stable, as Figure 1 shows. In contrast the stand-
ard Kalman filter is badly affected by y,;, and

Model:
vi=A0,+¢, & ~aNQO,C D)+ a,NQO,C,,)
8,=0,6,_,+u,, u ~NQOR,)
Initial setting:
6o~ Ny, V) and specified a; (ay, =1—a;)
Prediction:
M1 = Qp_y, Vr\l—l =R, + QtVf—lnz’a V.= A/IJ’I\I*I
M, =C,+ AtVz\z—lA; and M, =C,, + AfVm—lAf
Compute posterior probabilities:
(25} ” M,J “

@, =0+ —= ()2 exp{%(y, - At/"'t|r—1)r(M/T11 - Ml—,ZI)(yt - Az:“’r\t—l)}]_l

a M,
a, = 1- aq

’
M, = al,lMl,l + a/,th,Z = af,lct,l + at,ZCl,Z + ArVr\/-lAl

Updating of the parameters:
My =Myt Vt\t—lA:Mfl(yz - Au“’:lt—l)
V,= Vm—l - Vf}z—lA;Mt_lAqut—l
Filter = Vr|/—1A1’Mz_1 = tiz—lA;(aI,lMl,l + az,zMr,z)‘l
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v, affects p,,, and u,,. We note that here
computationally the new filter is much simpler to
handle than the Pefia and Guttman filter.

Figure 2 shows the comparison of updated
variances among the three filters. Frequently, the
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updated variance of the new filter is larger than
that of Pefia and Guttman filter, and of the
standard Kalman filter. This will be explained

Figure 3 shows the comparison of «,, (the
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posterior probability that y, was generated as a
‘good run’) between the Pefia and Guttman filter
and the new filters. The Pena and Guttman filter
always has smaller «,, than that of the new filter,
and the «,, values of Pefia and Guttman filter
for moderately behaved observations may seri-
ously underestimate the probability that such an
observation is truly generated from the source
N(0, 4) — see, for example, Figure 3 for a,,’s.
We shall provide a more detailed discussion after
the next example.

Example 2. Consider the example given in Mein-
hold and Singpurwalla (1983).
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where C,=2, R,=1, w,=3(—1)". The coeffi-
cients a,’s are also given by Meinhold and
Singpurwalla (1983, Table 1). The initial values
were taken as p, = 4.183, IV, = 1. We assume that

e, ~0.95 N(0, 2) + 0.05 N(0, 30).

Note that it is assumed that there is no outlier in
the original example, and we replaced their y,,
by 10, which is indicated as an outlier.

Table 5 summarizes the performance of the
updated mean for the standard Kalman filter, the
robust filter in Pefla and Guttman, and the new
filter. Note that the posterior probabilities are

identical, up to the second decimal, for the Pefa
and Guttman filter and the new filter of this
paper, for the data of this example. Figures 4 and

yt=a191+8w 61~N(072),
6,=w06,_,+u, u ~N(0,1),

Table 4
Comparison among three filters (Example 1)
t ¥, 6, Mean (u,) Variance (V) @,
Hsd Hp&G Honew Vaa Vesc Vaew Xpg G X new
1 8.65 10.00 9.66 9.66 9.66 4.0 8.7 8.8 0.95 0.95
2 7.28 9.83 8.34 8.01 8.19 22 3.0 3.8 0.97 0.99
3 7.44 9.98 7.94 7.73 7.84 1.8 2.0 2.5 0.99 0.99
4 11.13 8.99 9.25 9.12 8.99 1.6 1.9 23 0.94 0.97
5 11.18 9.36 10.02 9.97 9.79 1.6 1.7 2.1 0.98 0.98
6 5.45 8.50 8.22 8.46 8.61 1.6 23 2.3 0.81 0.95
7 6.17 8.90 7.42 7.45 7.75 1.6 1.9 2.1 0.97 0.98
8 3.92 8.20 6.05 6.07 6.61 1.6 1.9 22 0.93 0.96
9 12.32 8.47 8.50 6.91 7.67 1.6 3.6 2.6 0.27 0.90
10 6.95 7.46 7.90 6.93 7.38 1.6 2.2 2.1 0.99 0.99
11 10.46 6.49 8.90 8.40 8.40 1.6 20 2.1 0.93 0.97
12 9.54 7.34 9.15 8.88 8.82 1.6 1.7 2.0 0.98 0.99
13 7.07 7.82 8.33 8.16 8.21 1.6 1.7 1.9 0.98 0.98
14 8.17 7.06 8.27 8.16 8.19 1.6 1.6 1.9 0.99 0.99
15 5.59 6.85 7.22 7.18 7.35 1.6 1.6 1.9 0.97 0.98
16 5.99 5.67 6.74 6.71 6.87 1.6 1.6 1.9 0.98 0.99
17 7.29 3.69 6.95 6.94 7.02 1.6 1.6 1.9 0.99 0.99
18 5.94 337 6.56 6.55 6.64 1.6 1.6 1.9 0.98 0.99
19 1.96 3.25 4.76 5.10 5.55 1.6 2.2 2.2 0.79 0.94
20 35.00 2.81 16.76 6.04 6.47 1.6 3.1 3.1 0.00 0.00
21 —0.62 2.36 9.86 4.81 5.41 1.6 5.5 35 0.31 0.80
22 4.13 2.46 7.62 4.40 4.84 1.6 25 2.5 0.98 0.98
23 —-0.84 0.82 4.32 2.61 3.64 1.6 34 2.7 0.71 0.90
24 2.78 0.24 3.72 2.70 3.29 1.6 2.1 2.2 0.99 0.99
25 1.93 1.62 3.02 2.37 2.79 1.6 1.8 2.0 0.99 0.99
26 0.45 1.46 2.02 1.60 1.99 1.6 1.7 2.0 0.98 0.98
27 2.54 1.96 2.22 1.97 2.19 1.6 1.6 1.9 0.99 0.99
28 —-0.95 2.62 0.98 0.86 1.21 1.6 1.7 2.0 0.96 0.97
29 2.69 2.95 1.65 1.58 1.74 1.6 1.6 1.9 0.98 0.98
30 —-0.89 1.40 0.66 0.63 0.88 1.6 1.6 2.0 0.97 0.98
31 2.83 2.84 1.51 1.48 1.55 1.6 1.6 1.9 0.97 0.98
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Table 5
Comparison among three filters (Example 2)
t v, 0, Mean (g,) Variance (V) a,
g HpP&G Hnew Vsld VP&G Vncw ay p&G Q5 new
1 1.01 1.06 —-0.62 -0.72 —1.12 0.61 0.77 0.83 0.924 0.924
2 —-0.37 —-0.49 -0.35 -0.39 —0.54 0.84 0.87 0.92 0.984 0.984
3 -1.76 -0.96 —0.53 —0.50 -0.31 0.81 0.84 0.91 0.972 0.971
4 1.28 —-0.33 0.34 0.34 0.32 0.70 0.72 0.78 0.977 0.978
5 -0.90 —-0.16 —-0.43 —043 —-0.40 0.64 0.65 0.71 0.981 0.981
6 0.11 0.37 —-0.10 -0.10 -0.10 0.73 0.74 0.80 0.983 0.983
7 -1.52 0.22 —0.55 -0.54 -0.46 0.69 0.71 0.78 0.977 0.977
8 —-241 -0.96 —-1.05 -1.02 —-0.84 0.79 0.82 0.90 0.968 0.967
9 1.04 0.67 0.73 0.72 0.63 0.81 0.82 0.87 0.983 0.983
10 0.37 0.07 0.37 0.36 0.33 Q.75 0.76 0.82 0.983 0.983
11 -0.30 0.37 —-0.21 -0.21 -0.20 0.64 0.65 0.71 0.982 0.982
12 —1.66 —0.60 —-0.64 —0.63 —-0.54 0.85 0.86 0.92 0.977 0.977
13 2.04 0.69 0.97 0.95 0.83 0.70 0.72 0.79 0.975 0.975
14 —-1.30 —0.41 —0.04 ~0.04 0.00 091 0.93 0.98 0.976 0.977
15 -0.92 0.09 —-0.32 -0.32 -0.29 0.82 0.83 0.89 0.982 0.982
16 1.43 0.57 0.44 0.42 0.35 0.75 0.77 0.84 0.977 0.977
17 10.00 -0.06 3.74 0.29 0.33 0.59 1.12 1.13 0.001 0.001
18 -0.35 ~0.39 0.98 —0.05 —-0.02 0.68 0.73 0.79 0.982 0.982
19 1.64 -0.71 0.36 0.63 0.54 0.63 0.66 0.73 0.976 0.976
20 0.37 —1.24 0.25 0.34 0.31 0.79 0.80 0.85 0.984 0.984
21 -1.23 0.64 —0.50 -0.53 —-0.46 0.93 0.93 0.98 0.981 0.981
22 1.64 0.95 0.29 0.27 0.19 1.01 1.02 1.07 0.973 0.974
23 —1.55 -0.79 —0.69 —0.68 —0.58 0.71 0.73 0.80 0.978 0.978
24 -1.19 —0.61 —0.66 —0.65 —0.58 0.74 0.75 0.81 0.982 0.981
25 0.12 2.23 0.26 0.26 0.24 0.80 0.81 0.86 0.984 0.984
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5 provide a visual comparison, of the updated v,;; where the standard Kalman filter, as ex-
mean and variance respectively. pected, becomes unstable (this also affects pq).
Figure 4 shows the near-identical perfor- Figure S shows the comparison of updated vari-
mances of the two robust filters, and both behave ances among the three filters. It is of interest to
closely to the standard Kalman filter except for note that the updated variance of the new filter is
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Fig. 5.
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consistently larger than that of Penia and Guttman
filter, and that of the standard filter. The differ-
ences are not substantial, however.

Remarks. To compare the different filtering pro-
cesses under discussion, we note that the gain
matrices of the three approaches have similar
structure, but are indeed different as follows.

Standard Kalman filter

thtflA;Mt_l’ M1=C1+A1V14:71A;'

Peria and Guttman filter:

’ -1 -1
V:|171A1(az,1Mt,1 +at,2Mt,2 >
Mt,i = Ct,i +AII/[|I—IA;‘

The new filter:

! — ’ -1
V:|z71AzMz = Vz|;—1Az(az,1Mz,1 + az,zM:,z) .

We will use the notation C, > C,, for two
matrices C; and C,, when C,—C, is positive
semidefinite. Now it can be shown that

—1 —1 -1
[az,le,l + at,th,z ] = [at,lMt,l + at,ZMt,Z] ,

(4.1)
and in fact,
[a:,ler,ll + az,zMz_,zl] - [at,lMt,l + a:,zj"[:,z]_1
= at,lat,2(Mt_,ll - Mt_21)(Mt2 - Mt,l)
X[a, M, + a:,zM:,z]_l
>0 (positive semidefinite).

Because of (4.1), if the initial conditions are the
same for all three filters, then the updated vari-
ance of the new filter, which uses an approximate
likelihood will certainly be larger than the up-
dated variance of the Pefta and Guttman filter for
similar «,’s. This explains the behavior of Figure
5, for the two robust filters happen to have near-
identical «,’s.

The equation (4.1) also implies that the up-
dated mean of the new filter is much (robustly)
closer to the mean of the likelihood function than
that of the Pena and Guttman filter, a desirable
property. (See Lin and Guttman (1991), for addi-
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tional explanations.) This explains the behavior of
Figure 3 in which the posterior probability a, | in
the new filter is more ‘stable’ than that of Pena
and Guttman filter.

We also note that the updated variance in the
standard Kalman filter,

Y = — ’ —1
Lt_Ut|t—1 Ur|t—1AtMt AtUut—l

is independent of the observed y,’s. In particular,
when £2,=A4,=1, it will soon converge to the
positive root of equation

V=(R+V)—(R+V)M Y (R+V),
M=R+C+V.

This is illustrated by Example 1 where the value
of 1.6, the updated variance for ¢t >4, is the
positive root of

x=(1+x)—(1+x)(1+4+x)"'(1+x).

The examples given above, take C,; in the
robust filters equal to C, of the standard Kalman
filter and also we take C,,> C,,, leading to an
error with larger variance in the observation
equation. Therefore, the updated variances for
the standard Kalman filter are always less than
that of the two robust filters. Note that the new
filter is much easier to evaluate (cf. Table 2 and
Table 3).
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