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distribution, and installation processes. Because of [these advan- 
tages, companies are beginning to implement computer plans 
designed to track such system life data and generate compo- 
nent reliability estimates [9]. 

In practice, however, this type of analysis is often con- 
founded by the problem of masking, viz, the exact cause of 
system failure is unknown. This occurs frequently in complex 
systems and in field data where the failure cause might be 
isolated only to some subset of components, such as a circuit 
card containing many individual components. The quantities 
observed are then: 1) the lifelength of the system, and 2) par- 
tial information on the cause of failure. 

Miyakawa [6] considers a 1-out-of-2:F system of exponen- 
tial components and derives closed-form expressiions for the 
MLE. Under the same exponential assumption. Usher & 
Hodgson [lo] extend Miyakawa's results to a I-out-of-3:F 
system; in all but several special cases, closed-form MLE are 
intractable. Thus a simple solution using Picard iteration was 
proposed. Ref [3] extended & clarified the derivation of the 
general likelihood in the masked-data case, and examined the 
effect of masking on the bias and mean square error of the MLE 

Summary & Conclusions - This paper estimates component 
reliability from masked series-system life data, viz, data where the 
exact component causing system failure might be unknown. We 

the results of Usher & Hodgson (1988) by deriving exact 
mewood @timators WE) for the general of a 

series system of3 exponentid components with independent mask- for a SpeCial-CaSe: l-out-of-3:F System Of exponential COm- 
ing. Their previous work shows that closed-form MLE are intrac- 
table, and they propose an iterative method for the solution of a 
system of 3 non-linear likelihood equations. They do not, however, 
prove convergence for their iterative method. As such, we show 
how this system of non-linear equations can be replaced by a single 
quartic equation, whose solution is straight-forward. Since it does 
not depend upon the convergence of numerical solution algorithms, 
the results are exact. Though the resulting estimators are somewhat 
lengthy & cumbersome to fund manually, they can be written as 
a straightforward computer code. The calculations can then be easi- 
ly performed on a personal computer. This method for reducing 
the likelihood equations to simpler-to-solve forms can be extended 
readily to a higher number of components. In many cases for more 
than 3 components it is easier while for others it is more com- 
plicated; even in the more complicated cases, this simplification 
makes the problems much more tractable. 

1. INTRODUCTION 

The reliability of components from system life data is often 
estimated by assuming a 1-out-of-n:F competing-risk system. 
The observable quantities of interest are the lifelength of the 
system (failure or censoring time) and the exact component caus- 
ing failure. Finding maximum likelihood estimates (MLE) for 
component life distribution parameters is widely addressed in 
the literature. For numerous references & results, see [4,7]. 

The component-reliability estimates from analysis of 
system life data are extremely useful because they reflect the 
reliability of components after their assembly into an operational 
system. As such, the estimates account for the many degrading 
effects introduced by the system manufacturing, assembly, 

ponents. These results are based upon an assumption of s- 
independent masking, ie, masking occurs s-independently of the 
cause of failure. A recent extension of this work [5] investigates 
the effects of varying degrees of proportional sdependent mask- 
ing on the MLE for a 1-out-of-2:F system. 

Ebrahimi [ 11 develops helpful methods for s-independent 
masked data that broadly allow for mis-specification of the cause 
of failure. See Gross [2] and his work on non-masked data. For 
a recent survey of masked data see [8]. 

This paper extends the results of [ 101 by der wing exact 
MLE for the general case of a 1-out-of-3:F system ( If exponen- 
tial components with s-independent masking. In particular we 
show how the 3 non-linear likelihood equations can be replac- 
ed by a single quartic equation, whose solution leads to the re- 
quired MLE. Our results are illustrated with a numerical 
example. 

Acronym' 

MLE maximum likelihood estimator. 

Notation 

j 
i 
Tu 
7): 
fi( t) ,Ri( t) [pdf, Sfl of component j lifelength 
Ki 

index for component, j = 1,. . . ,J 
index for system, i = l ,  ..., n 
lifelength of component j in system i, a I.v. 
lifelength of system i ,  7): = min( TI,. . . , 'Tg) 

index of the component causing failure of system i 

'The singular & plural of an acronym are always spelled the same. 
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Mi,& [minimum random, observed] subset of components Assumption . .  

6. Component life-lengths are exponentially distributed. 4 
known to contain the true cause of failure of system i 
implies the MLE 

L likelihood function. n r  1 

Lr = n 1 [h,*exp(h,*ti). exp(hs.ti)] 
Other, standard notation is given in “Information for Readers i = l  s€S, 
& Authors” at the rear of each issue. 

Assumptions 

not-failed. 
1. The components & system are 2-state: failed or 

2. The system is l-out-of-JF; n such systems are observed. 
3. The Tj are mutually s-independent r.v; they are i.i.d. 

for a given j .  (While this assumption is restrictive, it is a 
reasonable approximation for a wide variety of systems & com- 
ponents.) 4 

2. THE LIKELIHOOD FUNCTION 

2.1 General Formulation 
Assumption 

To find the values of hj that maximize (4), take partial 
derivatives and equate them to 0: 

The ij are the values of A, that satisfy (5) .  

in closed form. 
Miyakawa [6] showed that the MLE for J= 2 are available 

3. 3-COMPONENT EXPONENTIAL CASE 
4. Each system is observed until failure, viz, no censor- 

For each system, the observed quantities are ti, the realized 
value of Ti, and Si C {1,2 ,..., .I}, the realized value of Mk2 
If, for example, Si = { 1,2}, we know that Ki E Si but the true 
value of Ki is masked. For a complete (uncensored) sample, 
the full likelihood is [3] is: 

L F = h  [ b(ti)+n Rj( t i ) .Pr{Mi=SiI&=t i ,Ki=s} ]  

Assumptions ing . 4 
1. - 6. (Same as in the special case of section 2.3) 
7. J=3.  

3.1 General Derivation 

Notation [ 101 

nk 
njk 

number of failures where Si = { k } ,  k =  1,;!,3 
number of failures where Si = G,k} ,  j , k  = { 1,2}, 

i = l  s€S, j € J s  1 {1,3}, {2,3} 
(1) n123 number of failures where Si = {1,2,3} 

T CY==, ti 

nf’  no if k = i  or k = j ;  0 otherwise. J, = (1 )...) s - l , S + l )  ... ) J}. 

2.2 Independent Masking nl + r~ + n3 + n12 + n13 + n23 + n123 = n. 

Assumption The likelihood equations from ( 5 )  are [lo]: 

0 = - T + [nk/h,J + [n{i) /  ( h1 +A2)] + [n@/(X1 +A3)] 

+ [n$I/(h2+h3)] + [n123/(hl +h2+Ah3)]; k= 1,2, Zi. 

5 .  Masking is s-independent of the cause of failure. (Whde 
masking can depend upon the time of failure and/or the cause 
of failure, we consider only the time-independent case here. 

4 

The reduced (partial) likelihood is: 

(6) 

Ref [lo] concluded that the solutions to (6) are intraclable, sug- 
gested Picard iteration as a solution technique, and presented 
several special cases where MLE are available in closed form. 

By appropriate algebraic manipulation, (6) can be put into 
the form: 

See [5] for more on s-dependent madcing.) 

(2) 

2.3 Exponentially Distributed Component-Life with Indepen- 
dent Masking 

[ n l / a l ]  - [n23/ (a2+a3)] = 1, 

[n2/a21 - [ n l d ( a l f a 3 ) 1  = 1, 

’If si=( j}  then Ki=j  and the cause of failure is not masked. [n3/cr31 - [n1~/(cr1+a2)1 = 1, (7c) 
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a k  E ik .T/A,  

A i 1 + biz/(ai+a2)1 + [nd(ai+a3)]  

+ [%3/(%+Q3)1 + [ni23/(ai+%+%)]. 

Then solve (7) for the (Yk, which is much easier than solving 
(6). And, finally, 

>;k = A*ak/T. (8) 

3.2 Special Cases 

These special cases illustrate the general derivation; in each 
special case, relabeling can cover all permutations, eg, in case 
3, relabeling covers the case where n13=0 or nlz=O. 

Case 1. n12 = n13 = n23=O 

CYk=nk, k = 1,2,3 

A = 1 + [n123/(ni+nz+n3)]. 

Use (8) to find the 5. These are the same as the case 1 
estimators in [lo].  

Case 2. nl3=n23=O 

al=nl ,  az=n2, a3= n31[l+ nlz/(nl+n2)],  

A = 1 + [nlZ/(nl+n2)1 + n123'(nl+n2+n12)/[(nl+n2) 

* (ni  + n2 +n3 + ni2)1. 

Use (8) to find the >;i. These are equivalent to the case 3 
estimators in [3,10]. 

Case 3. n23=0 

q =q, 

(Yk = %[+k + n2'n3 + nl.(nk-nk*) - (nl+nl2) 

. ( n l + n 1 3 ) ] / ( n l + n l k , + n k . ) ,  for k=2,3; k'=5-k; 

b 2 k  [n21 + nl'n2 + nl'n3 + nz'n3+ nl'(n12+n13)]2 

- 4nk-nl2+nl3. 

Use (8) to find the Xj. 

Case 4. nl=n2=n3=O 

No knowncause failures are observed for any of the com- 
ponents. We could solve the equations but they yield inap- 
propriate (non-positive) estimates for some components. It is 

obviously difficult to obtain estimates when no known-cause 
failures are observed. 

Case 5. nl=n2=0 

(yk  = Vi (4 - 2n3 + nkt3 - 3nk3 - n12) ,  fork = 1,2; k ' = 3 - k; 

a3 = Vi(-+ + 2n3 - n23 - n13 + n12) 

4' E (2n3 - n12 + n13 + n23)' + 8n3an12. 

Use (8) to find the &. 
3.3 General Case 

No simplifying assumptions are made regardinig the possi- 
ble masking sets, except that nj > 0 for somej; label t h e j  SO 

that j = 1 is one of those j. 

a1 = nl' (a',?+(r3)/((r2+a3+n23) (9) 

(Y2'(Y3'((Y2+(Y3) + (nl+nlk,)a2k - n k * a 2 k T  

+ (nl+n23+nlkt- nk)'ak'(Yk' + (n lk"n23 -.- nl'nk) 

"Yk - n k * ( n l + n 2 3 ) * Q k ~  = 0, k=2,3; k '=5-k.  (10) 

Let - 

p = a3Ici2. 

p = [A3.(T/A)]/[A2.(T/A)] = A3/A2 2 0. 

Then - 

a2 = (en,,& + P . e n u d [ ( l  +P) *edenom] 

end nl.n3 - n1-n2 + n3'n23 + n13'n23, 

On,,& = n1.n2 - ni'n3 + n2*n23 + n12sn23, 

edenom P'(nl+n2+n12) - (nl+n3+n13).  

a.p4 + bap3 + c.p2 + d . p  + e = 0. (13) 

The a, b, c, d,  e are functions of nl ,  n2, n3, n12, 1713, n23; see 

The roots of the fourth-order polynomial (13) can be found 
in various ways. Using the SOLVE routine of MACSYMA, 
a standard symbolic manipulation program, the roots can be ex- 
pressed in an extremely lengthy closed form. Alternatively, the 
roots could be found using common numerical techniques. 

If n2 = 0, then the polynomial is cubic which has known 
closed-form solutions. After relabeling, this is case 6 in section 2.2. 

(14). 

'If all nj=O, forj=1,2,3, then see case 4 in section 3,.2. 
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Since p r o ,  then ( Y k l O  for k= 1,2,3. From (14) - 

-10800p4 - glOp3 + 23580p2 + 126p - 115;10 = 0, 

with positive roots: 

After solving for the appropriate root of (13), the value of p 
is substituted into (12), ( l l ) ,  (9) to find the Use (8) to find 
the >;i. These are computationally straightforward and easy to 
find using a computer. 

p=l.126079 andp=0.8981638. 

Substitute these values into (9), (1 l), (12); only p = :  1.126079 
yields positive values for the MLE4: i1 = O .  8588016, 
);,=0.9890027, x3= 1.1136952. These values close1 y coincide 
with those from the iterative procedure in [ 101. 

TABLE 1 
Simulqted System-Life Data with Masking [lo] 

[l-out-of-3:F System, N = 301 

REFERENCES Table 1, from [lo], is a set of masked data. These data, 
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nI2 = 3, n13 = 1, n23 = 3 
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[2] A.J. Gross, "Minimization of misclassification of comprment failures 

in a two-component system", IEEE Trans. Reliability, vcml R-19, 1970 
Aug, pp 120-122. 

n123 = 3 

T = 10.13 

b e  number of significant figures is not intended to iniply any ac- 
curacy in the estimates, but to illustrate the arithmetic. It is likely that 
the uncertainty in the results is at least f20%. 
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