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Resolution IIT* designs are resolution IIT designs in which no two-factor interactions are
confounded with one another. They arise naturally in the search for small composite designs
and were first suggested by Hartley (1959). New results given here link resolution ITI* designs
to resolution V designs, enabling passage between the two types of designs to be made. This
means that previously untabulated resolution IIT* designs can be derived directly from known
resolution V designs. For example, a Hartley-type composite design can be based on a 2]
design (derived from a 2§' design); the “usual” composite design is based on a 2§ design,
double the number of factorial runs. The resolution III* designs can also be usefully modified
for specific industrial applications (Box and Jones 1989). Moreover, the maximum number
of factors it is possible to accommodate in a resolution III* design of a given size can be
obtained directly from the known maximum for resolution V designs of the same size.
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1. INTRODUCTION

A 2* factorial design is one in which k variables
or factors, labeled (1, 2, . . . , k), are each allocated
two levels, conventionally =1 in coded coordinates,
and every possible combination of the =+ signs is run,
typically in a randomized or randomized block order.
A fractional two-level design is one that employs only
a fraction of the 2* runs. Many such designs use a
277 fraction of the whole 2* runs and so have been
designated 2%~ fractional factorials. Strictly speak-
ing, however, any selection of the 2* runs forms a
fractional design, but not necessarily a 2*~7 fraction.
Two-level factorial and fractional factorial designs
have been used for many years, certainly since Yates
(1935). A large compilation of 2¢~7 designs was made
available by the National Bureau of Standards
(1957), for example. Alternatives to the classical
methods of formation and analysis were given by Box
and Hunter (1961); see also Box, Hunter, and
Hunter (1978) and Box and Draper (1987). We fol-
low the Box and Hunter (1961) notation and devel-
opment in this article. The numbers 1, 2, . . . | k,
attached to the factors, are called letters. A product
of any subset of these variables, or letters, is called
a word. Associated with every 2¢~7 design is a set of
p words, W;, W,, . . ., W,, called generators. For
p > 1, aset of generators is not unique, and the same
design may be described via different sets of gener-
ators. Let / be the identity, defined so that, for all
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words W, IW = WI = W and W? = I. This enables
us to write the product UW of two words, U and W,
in a minimally reduced form. The set of distinct
words formed by all possible products involving the
p generators gives the defining relation, which con-
tains 27 terms including the identity term 1.

An important characteristic of a 2¢=7 design is its
resolution, a concept recognized by Bose (1947) and
Rao (1947) and defined by Box and Hunter (1961),
as follows: “A design of resolution R is one in which
no p factor effect is confounded with any other effect
containing less than R — p factors. . . . In general,
the resolution of a two-level fractional design is the
length of the shortest word in the defining relation”
(p. 319). Therefore, a resolution V design permits
the estimation of all main effects and two-factor in-
teractions when higher-order interaction effects are
negligible. Every word in its defining relation con-
tains five or more letters. One way to characterize a
2§77 (two to the k minus p, resolution R) fractional
factorial design is by its word-length pattern. Suppose
that a design D of resolution R has y, words of length
tin the defining relation of D, wheret = R, R + 1,
..., k. The vectory = (y&, . . . , 7) will be called
the word-length pattern of D. If the word-length pat-
terns are different, the designs are necessarily dif-
ferent.

This article discusses a special class of designs that
has a resolution we call III*, the value of which was
first pointed out by Hartley (1959) in connection with
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the formation of reduced designs of the composite
type (Box and Hunter 1957). A link between the
little-known resolution III* designs and the well-
known resolution V designs makes resolution III*
designs easy to obtain. We discuss resolution III*
designs and provide some specific examples without
derivation in Section 2. Theorem 1 in Section 3 pro-
vides a way to derive resolution V designs from res-
olution III* designs, and the reverse derivation,
which enables us to obtain resolution III* from those
of resolution V, is given in Section 4. In Section 3,
we give extensions of some of our results to designs
of resolution ‘“odd-star”—that is, V*, VII*, and so
on—and also mention work by Box and Jones (1989)
that makes practical use of III* designs.

2. RESOLUTION III* DESIGNS

We define a 2*~7 fractional factorial design to be
of resolution III* if it is of resolution III and its
defining relation contains no four-letter word. Thus
the word-length pattern of a resolution III* design
is (3, 0, 5, . . ., %), where y; # 0. The value of
such a design was first shown by Hartley (1959). In
presenting their useful composite designs, Box and
Hunter (1957, p. 227) combined a 27 design with
a set of 2k axial points (*a, 0, ..., 0), (0, *a,
...,0),...,(0,0,. .., *a) to estimate the coef-
ficients of a second-order polynomial model. They
recommended that the 27 design be of resolution
V or higher because then two-factor interactions
would nowhere be confounded with two-factor in-
teractions. Hartley pointed out that 2%-7 designs of
resolution IIT* could also be used. Even though some
main effects would then be confounded with two-
factor interactions in the factorial portion of the de-
sign, the coefficients thus aliased could essentially be
immediately de-aliased using the additional main-
effect information derived from the pairs of axial
points. Hartley (1959, pp. 613-615) offered two ex-
amples, a saturated 2{;.' generated by I = 123 when
v = (1, 0) and a saturated 2$;? with defining relation
I = 123 = 456 = 123456 (any two of the three words
shown can be used as generators) for which y = (2,
0,0, 1). Of the 15 two-factor interactions in the latter,
6 are confounded with main effects and the remain-
ing 9 are confounded with four-factor interactions.
No two-factor interaction is confounded with any
other two-factor interaction, however. Hartley also
showed that there is no 27 design.

Westlake (1965, p. 325) provided a table indicating
the existence of resolution III* designs for k = 7, 8,
and 9 with 27 = 32, 32, and 64 runs, respectively.
In fact, for 32 runs (¢ = 5), seven is the maximum
number of factors possible for a resolution III* de-
sign, so Westlake’s entry for eight factors and 32 runs
is an error. This error was also made by Draper
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(1985, p. 174) and Box and Draper (1987, p. 521).
Both eight factors and nine factors require 64 runs
(q = 6) for resolution III*, and nine is the maximum
possible for 64 runs (g = 6). For 10 to 12 factors,
128 runs (g = 7) are needed to get a resolution IIT*
design, 12 being the maximum possible. Examples
of such resolution IIT* designs are the following:

1. AnN = 2%k = 7, 2] design; I = 126 = 347
(= 123467) withy = (2,0, 0, 1).

2. An N = 2% k = 9, 2% design; I = 127 =
348 = 569 (= 123478 = 125679 = 345678 =
123456789), with y = (3,0, 0, 3,0, 0, 1). For k =
8, delete any variable, for example, 9.

3. An N = 27, k = 12, 2{f=° design; I = 128 =
13579 = 234510 = 134611 = 123456712 (= their
products) with y = (1, 0, 9, 12, 3, 3, 3, 0, 0, 0).
(Here we use an overbar to distinguish between, e.g.,
“twelve” and “one-two.”)

4. An N =27, k = 12, 2{37° design; I = 128 =
349 = 5610 = 135711 = 246712 (= their products)
withy = (3,0, 3,12,9,3,1, 0,0, 0). For k = 11,
delete any variable, for example, 8. For k = 10,
delete any two variables, for example, 8 and 9.

Note that the word-length patterns of the two
given 2{fi-° designs are different. It is possible to show
[see Corollary 3 and, for example, Box and Hunter
(1961, p. 449)] that no more than 12 factors can be
accommodated in a 2’-run design of resolution ITT*.
Thus a unique design does not exist, even for the
case involving the maximum number of factors. The
first of these designs has less aberration than the sec-
ond, however. Fries and Hunter (1980) described the
idea of aberration: “When comparing two designs
using resolution as the criterion, one considers the
lengths of the shortest word in each defining relation.
If these lengths are equal, the two designs are re-
garded as being equivalent. With aberration as the
criterion, however, one continues to examine the
length of the next shortest word in each defining
relation until one design is ranked superior to the
other” (p. 602). If we apply this rule, clearly design
3 is preferred over design 4.

3. RESOLUTION V DESIGNS FROM
RESOLUTION IlII* DESIGNS

We now discuss how to derive resolution V designs
from resolution IIT* designs via a general theorem.

Theorem 1. Any k-factor two-level fractional fac-
torial design of resolution III* forms a base that can
be converted into a (k — 1)-factor design of reso-
lution V in the same number of runs.

Proof. Suppose that x,, x,, . .., x, are the k
factors that form the given resolution III* design.
Then the matrix X = [1, x1x5, X1X3, . . ., X _1)X],
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where the symbols within the brackets are column
designations, must be of full rank, since two-factor
interactions are not confounded with one another.
Select any of the factors—for example, x;, and define
yi = xix;wheni =1...k(i#1[). Thenyy; = x;x;
foralll =i<j=k(i,j#1). If we select x, = x,,
the matrix

Y =[L,y, 25 Yu-1) Y12,
Yiys, -+, y(k—Z)y(k—l)]
= [1, X1Xk, X2Xps -+ o 5 Xge—1)Xks
X1X2, X1X35 -+ . 5 X(k-2) x(k—l)]’

which is a reordering of the columns of X and is
therefore of full rank; that is, main effects and two-
factor interactions in the y’s are not confounded with
one another. Thus yy, y,, . . ., yy-y) form a (k —
1)-factor design of at least resolution V.

Corollary 1. If k is the maximum number of fac-
tors that can be accommodated in a resolution IIT*
design, then the maximum number of factors that
can be accommodated in a resolution V design with
the same number of runs is at least (k — 1).

In the theorem, we have used variable k as the
conversion multiplier. In fact, any letter could be
used. For convenience in presentation, we use the
letter 1 in the following examples to illustrate the
application of Theorem 1. These employ designs 1,
2, 3, and 4 given previously. In all cases, the reso-
lution V design has one fewer factor than the reso-
lution IIT* design, but the same number of runs. The
numbers 1-4 correspond with the design numbers in
Section 2; Example S is new. The examples are as
follows:

1. An N = 2°, k = 7, 2];? design; the original
seven factors arel 2,3,4,5,6(=12),7(= 34). We
nowseta =12,b =13, c = 14,d = 15, e = 16,
and f = 17 and consider what design is formed for
these six factors (a, b, ¢, d, e, f). Theorem 1 says
that this derived design must be of resolution V. One
(somewhat tedious) way to actually confirm this,
would be to take all possible products of a, b, . . . ,
f: only one, namely abcef, reduces to /. This can also
be seen more quickly by takinga = 12, b = 13, ¢
=14,d = 15, and e = 16 = 2 as basic columns.
(They are obviously orthogonal to one another be-
cause 1,2, 3,4, 5, and 6 are.) Then f = 17 = 134
= abce is a single generator for the new design. We
have thus defined a 32-run 2¢~! design generated by
I = abcef with y = (1, 0).

2. A 2%°? design with y =
obtained similarly via design 2.

3. An N = 27, k = 12, 2{;+* design. Examining

(2, 1, 0, 0) may be

the defining relation, we see that, by deleting any
one variable from the only three-letter word—for
example, variable 8 —we obtain a 2{/ ~* design right
away. This is always true for any resolution III* de-
sign with only one three-letter word. The general
method of Theorem 1 could also be applied here,
however,—for example, by settinga = 12, b = 13,
c=14,d=15e =16,f = 17, andg = 18 = 2
as basic columns and then h = 19 = 357 = abdfg,
i=110 = 12345 = bedg, j = 111 = 346 = abceg,
and k = = 234567 = abcdef. The resulting
defining relation is [ = abdfgh = bedgi = abcegj =
abedefk = (their products) withy = (6, 6,2, 1, 0,
0, 0), so the 11 factors (a, b, . . . , k) form a 2} -*
design.

4. A2} ~*design withy = (6,6,2,1,0,0,0) can
be obtained similarly via design 4.

5. A 21719 — 2i7~? design. Addelman (1965) ob-
tained a specific 2{/ - design, which was shown to be
unique by Draper and Mitchell (1967). We now show
how this design can be obtained from a specific

21§10 design, using Theorem 1. The left portion of
Table 1 shows a 2ifi-1° design generated via a com-
puter program written specifically to seek such de-
signs. The right portion of Table 1 is obtained by
applying Theorem 1 using 1 as the conversion mul-
tiplier, thus providing a 2¥/~-° design.

4. RESOLUTION III* DESIGNS FROM
RESOLUTION V DESIGNS

An obvious question is whether or not we can
simply add one new generator of word-length three

Table 1. Obtaining a 2{/-° Design From a 2} Design

= v

1

2 a=12

3 b=13

4 c=14

5 d=15

6 e =16

7 f=17

8 g=18
9=12 h=19=2
10 = 1345 i = 110 = 345 = abcdh
11 = 2346 j = 111 = 12346 = bceh
12 = 2357 k = 112 = 12357 = bdfh
13 = 1467 | = 113 = 467 = acefh
14 = 2458 m = 114 = 12458 = cdgh
15 = 1568 n = 115 = 568 = adegh
16 = 3478 0 = 116 = 13478 = abcfgh
17 = 14678 p = 117 = 4678 = cefg
18 = 2345678 q = 118 = 12345678 = abcdefg

NOTE: The word-length pattern for the 2% 1° design in variables (1, 2,
18)is Y+ = (3,0, 36,102,117, 153 200, 153,117, 102, 36,0, 3,0, 0, 1). Theword-
length pattern for the derived 2y’ ~° design in variables (a, b, . . ., q)isyv = (34,
68, 68, 85, 85, 68, 68, 34, 0, 0, 0, 0, 1). This is the same as Addelman’s (1965)
design.
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to a (k — 1)-factor resolution V design to obtain a
k-factor resolution III* design for the converse of
Theorem 1. In general, the answer is no, but a less
straightforward converse is always possible.

Converse of Theorem 1. Any (k — 1)-factor two-
level fractional factorial design of resolution V can
be converted into a k-factor design of resolution III*
in the same number of runs.

Proof. Our method involves the addition of one
factor and a redefinition of all the factors. Suppose
that x,, x,, . . ., X4-y form a resolution V design.
Then the matrix X = [1, xy, . . ., Xg-1y, X1X2, -« -,
Xk-2X¥k-1)] is of full rank, since all main effects and
two-factor interactions are not confounded with one
another. Define y, = x,x, (for example; actually,
any two-factor interaction could be selected here),
and set y; = x;x,x; wheni = 1...(k — 1). Then
yiyj = xixjforl1 =i <j=(k - 1) and y;y, = x
for 1 =i = (k — 1). Therefore,

Y = [L,ywy - Ya-nYil
= [Lyiya, s Ya-2Y-1»
YiYis -« s YY)
= [1, x1x2, . . ., Xp-2)Xk-1)>
Xty ooy Xgon)

which is a reordering of the columns of X and so is
of full rank. Thus no two-factor interaction in the
y’s is confounded with any other two-factor inter-
action in the y’s. Since y,y, = x;x, = y,, however,
the new design must be of resolution III. Thus y,,
Y2, - - -, yix form a k-factor design of resolution III*.

Corollary 2. If (k — 1) is the maximum number
of factors that can be accommodated in a resolution
V design, then the maximum number of factors that
can be accommodated in a resolution III* design with
the same number of runs is at least k.

Corollaries 1 and 2 together imply Corollary 3.

Corollary 3. The maximum number of factors
that can be accommodated in a resolution III* design
with N runs exceeds the maximum number of factors
that can be accommodated in a resolution V design
with N runs by exactly 1.

We now obtain the following resolution III* de-
signs by converting the saturated resolution V de-
signs in Box and Hunter (1961). The conversion

Table 2. Obtaining a 2|f~'° Design From a 2)/-° Design

v n*
1 a=121=2
2 b=122=1
3 c =123
4 d =124
5 e =125
6 f =126
7 g =127
8 h = 128
9 = 1234 i=129 =34 =cd
10 = 1256 j = 1210 = 56 = ef
11 = 1278 k = 1211 = 78 = gh
12 = 1357 | = 1212 = 2357 = bceg
13 = 12368 m = 1213 = 368 = abcfh
14 = 13458 n = 1214 = 23458 = acdeh
15 = 14567 0 = 1215 = 24567 = adefg
16 = 24678 p = 1216 = 14678 = bdfgh
17 = 345678 q = 1217 = 12345678 = abcdefgh
r = 12 = ab (new factor)
NOTE: The word-length pattern for the 2?.?-’10 design in variables (a, b, ..., r)

is yme = (4,0,30, 102, 132, 153, 180, 153, 132, 102, 30, 0, 4, 0, 0, 1). This is different
from the Zﬂf-_w design in Table 1.

multiplier used is 12, although any two-letter word
can be used.

6. An N = 2% k = 5, 23! design; the original five
factors are 1, 2, 3, 4, 5(= 1234). Seta = (12)1 =
2,b=(12)2=1,¢c = (12)3,d = (12)4, e = (12)5
=34 = cd, and f = 12 = ab (a new factor) and
consider what design is formed for these six factors
(a,b,c,d, e, f). If we take a, b, ¢, d as basic columns,
then e = cd and f = ab will be two generators. This
establishes the defining relation I = cde = abf(=
abcdef), so these six factors (a, b, ¢, d, e, f) form a
207? design with y = (2, 0, 0, 1). This is essentially
Hartley’s (1959, p. 614) design.

Similarly, a 2]7? design in which y = (1,0, 1, 1,
0), a 2%;? design in which y = (3,0, 0, 3, 0, 0, 1),
and a 2{}:° design in which y = (2,0, 6, 12, 6, 3, 2,
0,0, 0) can be obtained [corresponding to the designs
listed in Box and Hunter (1961, p. 450)].

7. A (2V° = 28719 design. The left portion of
Table 2 shows Addelman’s (1965, p. 441) 2V-° de-
sign. Note that his generators are different from
those shown in Table 1, although the design is, of
course, identical (Draper and Mitchell 1967). The
right portion of Table 2 shows the resolution III*

Table 3. Run Size of Two-Level Fractional Factorial Portion of Smallest Possible Composite
Designs of Resolutions Ill* and V

k 6 7 8 9 10 11 12
Resolution lI* design 26-2 272 2872 293 2103 214 2128
Resolution V design 251 2" 282 2972 210-3 AL 2124

TECHNOMETRICS, AUGUST 1990, VOL. 32, NO. 3



TWO-LEVEL DESIGNS OF RESOLUTIONS liI* AND V 287

k-1)-(p-1)

2y

/ \
a 2 k@D

24P >
m* VI

Figure 1. Relationship Among 24°, 2 "*=" and 2% (-1
Designs: a, Foldover; b, Foldover (plus the I column) and
Reverse by Erasure; ¢, Theorem 1 and Its Converse.

design obtained by applying the converse of Theo-
rem 1.

Note 1. For g = 7, the maximum number of
factors that can be accommodated in a resolution V
design is 11; thus there is no resolution V design with
12 factors in 27 runs. An entry for the case in which
k=12andp = 5(i.e.,q = k — p = 7) in table 2
of Fries and Hunter (1980, p. 605) showing R, =
5 is thus erroneous and should be corrected to in-
dicate resolution IV. In their same table 2, Fries and
Hunter (1980, p. 605) showed, for the case in which
k =13and p = 5 (i.e., ¢ = 8), Rysx = 4. This
should be corrected to indicate resolution V. Similar
changes are implicit in Franklin (1984, table 1).

Note 2. Any resolution IIT* design for k factors
can be combined with a set of 2k axial points to form
a second-order design of composite type, as shown
by Hartley (1959). Some possibilities are shown in
Table 3 and compared with the “usual” resolution
V fractional factorial design (Box and Hunter 1957).
Note that no savings in the number of factorial runs
is achieved when k = 8, 10, and 11, but the number
of factorial runs is halved when k = 6, 7, 9, and 12.

5. EXTENSIONS AND APPLICATIONS

In general, we define a resolution ‘“odd-star” de-
sign as a design of odd resolution—R = (2/ — 1),
say—for which no (R + 1)-length word exists in its
defining relation. Thus the word-length pattern is
(Yr> 0, Y®+2)> - - - » 7&)- The following result can be

(k-1)-(p-1)
2 (21+1)

SN

k-p a - ) k-(p-1)
@y @142

2

Figure 2. Relationships Among 2%7r,., 2% %°-", and
247 " Designs: a, Foldover; b, Foldover (plus the I column)
and Reverse by Erasure; ¢, See Lin (1988).

proved in a manner similar to that used in the proof
of Theorem 1.

Theorem 2. Any k-factor two-level fractional fac-
torial design of resolution (2! — 1)* forms a base
that can be converted into a (k — 1)-factor design
of resolution (2! + 1) in the same number of runs.

The converse of Theorem 2 is not always true, how-
ever, (see Lin 1988). The relationships are illustrated
in Figure 1 (for / = 2) and in Figure 2 (for [ = 3).
The arrows indicate where passage is possible. In the
figures, foldover of a design means adding, to the
original design, the design that is obtained by switch-
ing the signs of all the variables (see Box and Hunter
1961, p. 337), and erasure of a variable means the
removal of its symbol from the defining relation of
a higher-resolution design to create the defining re-
lation of a lower-resolution design. The ideas de-
scribed previously can also be extended to general
p-level designs (p = 3) in a straightforward manner,
using modified definitions and notation.

Applications of resolution IIT* designs were sug-
gested by Box and Jones (1989) in the following con-
text. They wished to examine experiments conducted
with both design factors (also called control or inner-
array factors) and environmental factors (also called
noise or outer-array factors). Large numbers of runs
are typically needed in such designs, because each
inner-array design point has an outer-array design at
its location. Box and Jones (1989) assumed a second-
order model and showed that to minimize a certain
criterion of interest it is not actually necessary to
estimate all of the second-order parameters individ-
ually. By using a central composite design, based on
a resolution IIT* design but modified according to
one’s estimation needs, a considerable economy of
experimentation can be achieved. The results of our
article facilitate such an application by making it easy
to obtain resolution III* designs from tables of res-
olution V designs.
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