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Standard composite designs for fitting second-order response surfaces typically have a fairly
large number of points, especially when k is large. In some circumstances, it is desirable to
reduce the number of runs as much as possible while maintaining the ability to estimate all
of the terms in the model. We first review prior work on small composite designs and then
suggest some alternatives for k < 10 factors. In some cases, even minimal-point designs are

possible.
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1. INTRODUCTION

Consider the situation in which a response y de-
pends on k factors, coded as x|, x,, ..., x;. The true
response function is unknown, and we shall approx-
imate it over a limited experimental region by a poly-
nomial representation. If a first-order fitted model y
= by + bix; + byx, + -+ + b,x, suffers from lack
of fit arising from the existence of surface curvature,
the first-order model can be upgraded by adding
higher-order terms to it. We might then wish to fit,
by least squares, a quadratic response-surface model
of the form

k
Z Bixix; + e.

i>j=1

(1)

The quadratic model has a constant term, k first-

order terms, k quadratic terms, and k(k — 1)/2 in-

teraction terms and thus has a total of p = (k +
1)(k + 2)/2 terms.

Many possible second-order designs may be used
to obtain the data for such a model fitting. The spe-
cific choice of design would depend on the relative
importance to the experimenter of various design
features (see Box and Draper 1987, pp. 502-503).
In this work, we specifically look for small designs
of composite design form (see Sec. 2) such that the
number of runs is as little in excess of p as possible.
In addition, of course, the corresponding X’ X matrix
must be nonsingular. A minimal-point design is one
with exactly p runs.

2. SMALL COMPOSITE DESIGNS

Composite designs for fitting second-order sur-
faces were first introduced by Box and Wilson (1951)

k k
y=5+ Zﬂixi + Zﬂﬁx? + 2
i=1 i=1
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and followed up by Box and Hunter (1957). A com-
posite design consists of a 2* factorial or a 2¢~ frac-
tional factorial portion (conventionally called a
cube), with runs selected from the 2* runs (x,, x,, ...,
x) = (%1, %1, +1) usually of resolution V or
higher, plus a set of 2k axial points at a distance a
from the origin, plus n, center points. Thus we have
a total of 2~ + 2k + n, points. In general, the
2k-¢ portion or cube may be repeated ¢ times and
the axial points or star may be repeated s times. The
values of a, ny, c, and s are to be selected by the
experimenter (see Box and Draper 1987, pp. 477-
478). Composite designs are extremely useful for se-
quential experimentation in which the cube portion
is used to allow estimation of the first-order effects
and the later addition of the star points permits sec-
ond-order terms to be added to the model and es-
timated. If desired, a blocking variable can be added
as well, if the number of runs permits it.

When experimentation is expensive, difficult, or
time-consuming, small designs might be appropriate,
especially when an independent estimate of experi-
mental error is available. Hartley (1959) pointed out
that, for estimation of the quadratic surface, the cube
portion of the composite design need not be of res-
olution V. It could be of resolution as low as III,
provided that two-factor interactions were not al-
iased with other two-factor interactions. Hartley em-
ployed a smaller fraction of the 2* factorial than is
used in the original Box—Wilson designs and so re-
duced the total number of design points. Hartley’s
cubes may be designated resolution III*, meaning a
design of resolution III but with no words of length
four in the defining relation; see Draper and Lin (in
press). Hartley thus obtained minimal- or near-min-
imal-point second-order designs for k = 2, 3, 4, and
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6. For k = 5, 7, 9, and higher numbers, there was
then the possibility that a worthwhile improvement
could be made.

Westlake (1965) provided a method for generating
composite designs based on irregular fractions of the
2* factorial system (see Addelman 1961) rather than
using the complete factorials or regular fractions of
factorials employed by Box and Wilson (1951) and
Hartley (1959). Westlake gave designs for the fol-
lowing:

1. k = 5, based on a 3/8 fraction of the 2’ factorial

2. k = 7, based on a 13/64 fraction of the 27 fac-
torial

3. k =9, based on an 11/128 fraction of the 2°
factorial.

An alternative approach to obtaining small com-
posite designs was used by Draper (1985), who em-
ployed columns of the Plackett and Burman designs
rather than regular or irregular fractions. [Plackett
and Burman (1946) provided orthogonal designs for
N equal to a multiple of 4 and for all such N < 100
(except 92). The missing N = 92 case was later given
by Baumert, Golomb, and Hall (1962).] An advan-
tage of this Plackett and Burman type of approach
is that the designs are easy to construct. Specifically,
(a) we can use, for the cube portion of the design,
k columns of a Plackett and Burman (1946) design,
and (b) where repeat runs exist, we can remove one
of each set of duplicates if we wish to reduce the
number of runs required.

Applying this method, Draper (1985) used 12-run,
28-run, and 44-run Plackett and Burman designs and
obtained second-order response-surface designs with
22, 42, and 62 total runs (i.e., cube plus star points)
for k = 5,7, and 9, respectively. Deleting one of
each duplicate pair gave 21 runs for k = 5 (a minimal-
point design, beating Westlake’s design by one run),
39 runs for k = 7 (again, one run fewer than West-
lake’s), and 60 runs for £ = 9 (two runs fewer than
Westlake’s designs).

Table 1 shows the total number of points in cube
plus star, excluding center points, in the various com-
posite designs discussed previously. We next give this
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method more detailed scrutiny and discuss the ex-
tension into higher dimensions.

3. CHARACTERIZING DESIGNS

For our cube, we choose k columns from an Mpp-
run Plackett and Burman design. A question of in-
terest is how many such designs there are for given
k and n,,. We need to be able to distinguish designs
that are intrinsically different and designs that are
obtainable from others via sign changes in the col-
umns, rearrangement of rows (points), and rear-
rangement of columns (renaming of variables).
There are several methods of characterizing designs.

1. Sign Pattern. To obtain the so-called sign pat-
tern, one counts the occurrences of +’s and —’s in
each run and summarizes their pattern over the
whole design.

2. Repeat and Mirror-Image Pattern. (For con-
venience, we shorten this to repeat patterns only.)
We record how many repeat pairs are in the design,
how many triple runs are in the design, how many
mirror-image pairs are in the design, how many sin-
gles are in the design (i.e., neither pair nor mirror-
image involved), how many triples that are such that
two are a pair and the third a mirror-image or vice
versa, and so on. For examples, see Table 2. The
repeat-pattern characterization is invariant not only
under changing column order but also under the
switching of signs in any set of columns. Therefore,
it provides a better criterion than the sign pattern to
characterize a design. Obviously, identical designs
give the same repeat pattern. Whether the same re-
peat pattern implies identical designs is not known,
however, and needs further study. This is particularly
true when a design consists of all single runs (i.e.,
no repeats and no mirror images).

3. D Value. The D value = |X'X|/n?, which de-
scribes the “information per point” for the design,
is often used to make comparisons among designs.
When we have a number of designs of similar type—
as we shall when we pick k columns with all coor-
dinates +1 from a Plackett and Burman design—it
makes sense to use the D values as one basis for

Table 1. Total Points Excluding Center Points in Some Small Composite Designs

Factors, k
2 3 4 5 6 7 8 9
Coefficients, p 6 10 15 21 28 36 45 55
Points in Box-Hunter (1957) design 8 14 24 26 44 78 80 146
Hartley’s number of points 6 10 16 26 28 46 80 82
Westlake's number of points — — — 22 — 40 — 62
Draper’s number of points — — — 22 — 42 — 62

NOTE: Hartley’s number of points for k = 8 should be the 80 shown, not the 48 in Westlake's paper (see Draper and Lin, in

press).
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Table 2. Sign and Repeat Patterns for Choice of Columns (1, 2, 3, 4, 5} From a 24-Run
Plackett and Burman Design

Run number 1 2 3 4 5 No. of +'s Repeat and mirror
1 + + + + + 5 Mirror of 24
2 + + + + - 4 Mirror of 20
3 + + + - + 4
4 + + - + - 3 Mirror of 15
5 + - + - + 3 Mirror of 16
6 - + - + + 3 Mirror of 17
7 + - + + - 3
8 - + + - - 2 Mirror of 10 and identical to 12
9 + + - - + 3 Mirror of 11 and identical to 13
10 + - - + + 3 Mirror of 8 and 12
1 - - + + - 2 Mirror of 9 and 13
12 - + + - - 2 Mirror of 10 and identical to 8
13 + + - - + 3 Mirror of 11 and identical to 9
14 + - - + - 2
15 - - + - + 2 Mirror of 4
16 - + — + - 2 Mirror of 5
17 + - + - - 2 Mirror of 6
18 - + - - - 1
19 + - - - - 1 Mirror of 23
20 - - - - + 1 Mirror of 2
21 - - - + + 2
22 - - + + + 3
23 - + + + + 4 Mirror of 19
24 - - - - - 0 Mirror of 1

NOTE: The sign pattern is 1-3-8-8-3-1, and the repeat pattern is 6-4-0-12-2.

comparison. In this way, we shall find the design that
is most spread out in the =1 coordinate space we
are working with.

We feel, however, that it can be a mistake to use
this D value as a method for absolute comparison
among designs of different types constructed for dif-
ferent purposes. We initially did this ourselves in an
earlier version of this article, causing the referees to
comment that our new designs were not as good
(smaller D value) as some previous ones constructed
on a different basis for other reasons. If these are
regarded as designs whose points must be restricted
to the coded unit cube, this criticism is certainly valid;
our designs are not the best way to fill the unit cube
if the largest D value is required. It must be remem-
bered that the D criterion is just one aspect of a
design. Using it involves the assumption that the
model is correct as well as having a precisely defined
region to work within. No account is taken of the
fact that the model may not be perfect, which is the
normal situation in practice. Even a modest amount
of model bias would require the design to be shrunk
away from the edges of the region, for example,
forcing the choice of a reduced D value (e.g., see
Box and Draper 1959, 1963).

We thus do not claim that the designs we shall give
have the highest D values possible for all designs
within or on the unit cube. We claim only that our
designs are small designs of composite type and that,

of the possible ways of choosing the factorial points
for these designs from the Plackett and Burman col-
umns, we have examined all possibilities for k = 8
and many of the possibilities for £k = 9 and 10 and
have exhibited the best relative choices. Our im-
provements over Draper (1985) are (a) we now have
designs for higher values of k and (b) we have also
reduced the number of design points in certain cases
by finding designs that the previous article conjec-
tured did not exist in a nonsingular version.

4. Partition Method. The Plackett and Burman
designs have special cyclic structures. For example,
in the 12-run case, we always have (c, ¢, ..., ¢;) =
(e, +i,¢c;+ i, ...,¢c +i)mod 11 fori = 1,2, 3,
..., 10, where ¢, c,, ..., ¢, are column numbers. This
leads to the fact that, for any combination of column
numbers, we can always find another design-equiva-
lent combination with ¢, = 1. Thus to choose k col-
umns from an n,-run Plackett and Burman design
with the first column fixed as number 1 is equivalent
to partitioning an integer n,, — 1 into k parts (see
Andrews 1976). This greatly reduces the number of
combinations to check for any specified criterion.

5. Structure of X'X. If we rearrange the order
of terms in Model (1), the X matrix can be recast
with column headings (1, x3, x3, ..., x%, x1, X2, --., X4,
X1X2, X1 X3, ..., Xx—1X;) and can be split into the three
portions headed by (1, x3, x3, ..., x}), (x1, X, ..., Xi),
and (x,x,, X,X3, ..., X;_;X;); note that (x, x,, ..., x;)
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are the k columns chosen from an 7n,,-run Plackett
and Burman design with 2k star points added. The
form of X' X is then

Z 0 O
XX=10 D, A},
O A" D,
where D, = diag(n,, + 2d°, n,, + 2d°, ..., n,, +

2a?) and D, = diag(n,,, My, ..., n,). Note that Z,
D,, and D, are not affected by the choice of the
specific columns from the Plackett and Burman de-
signs. The A matrix, however, depends on the spe-
cific k columns chosen.

4. CHOOSING THE COLUMNS

When n,, is a power of 2, the Plackett and Burman
designs are equivalent to 2%~ fractional factorial de-
signs. Thus choosing k columns from the Plackett
and Burman design is now equivalent to choosing
the defining relation for a 2*-" fractional factorial
design. (It might be of resolution as low as III.) This
leads to the following fact: All the designs provided
by Hartley (1959) and by Box and Hunter (1957) can
be obtained by choosing columns from appropriately
sized Plackett and Burman designs. Examples are k
= 4, in which Hartley’s design is equivalent to choos-
ing columns (1, 2, 3, 6) of the eight-run Plackett and
Burman design; &k = 5, in which Hartley’s design is
equivalent to choosing columns (1, 2, 3, 4, 7) of the
16-run Plackett and Burman design; and k& = 6, in
which Hartley’s design is equivalent to choosing col-
umns (1, 2, 3, 4, 5, 14) of the 16-run Plackett and
Burman design.

This is not true for Westlake’s designs, which do
not have the equal occurrence property; that is, each
level does not occur the same number of times.

Moreover, some of his designs are not orthogonal
(e.g., see Westlake 1965, p. 333).

Minimal-point designs can be obtained when the
minimal number of points required for the cube por-
tion is a multiple of 4—namely, p — 2k = (k + 2)(k
+ 1)/2 — 2k = 0 (mod 4). Solutions for this equation
are either k = 3 (mod 8) or k = 6 (mod 8). Therefore,
minimal-point designs can be automatically obtained
when k = 3, 6, 11, 14, ... . Note that for k¥ = 3 and
6, this will produce Hartley’s (1959) results.

An elaborate computer search was done for all
possible choices of selecting k& columns from certain
ny,-run Plackett and Burman designs. A detailed list
of results was given by Draper and Lin (1988). In
Table 3, we summarize the major results related to
fitting a second-order model, listing the cube points
needed for the composite designs discussed previ-
ously. In all cases, center points and star points have
been omitted from the table. New designs are given
for k = 7, 8,9, and 10. Note that, for both cases &
= 7 and k = 9, Draper’s (1985) results have been
improved.

Comments on Table 3

Case k = 3. As discussed previously, the four-
run Plackett and Burman design is a minimal-point
design. It is equivalent to Hartley’s design and is a
231 design.

Case k = 4. The minimum possible number of
cube points required is 7, so the eight-run Plackett
and Burman design is considered. Columns (1, 2, 3,
6) give the highest D value. This 2{;;.' design is equiv-
alent to Hartley’s design. There is one run more than
the minimum number required in the cube.

Case k = 5. Five columns of the 12-run Plackett
and Burman design are used, because 11 is the min-
imum possible number of cube points required. As

Table 3. Numbers of Cube Points in Some Small Composite Designs

Factors, k
3 4 5 6 7 8 9 10
Coefficients
p=(k+ 1)(k+ 2)/2 10 15 21 28 36 45 55 66
Star points 2k 6 8 10 12 14 16 18 20
Minimal points in cube 4 7 1 16 22 29 37 46
Box and Hunter (1957) 8 16 16 32 64 64 128 128
(23) (24) (2577 (251 (271 (252 (2572 (2°-3)
Hartley (1959) 4 8 16 32 64
(281 (27" - (22 (2f2 - (282 -
Westlake (1965) _ 12 26 44
- (3/8 x 29) (13/64 x 27) - (117128 x 29) -
Draper (1985) — — 12 — 28 — 44 —
Minimal runs via
Plackett and Burman 4 8 12 16 24 36 40 48
After elimination
of repeat 4 8 1" 16 22 30 38 46
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Draper (1985, p. 174) showed, there are two basic
types of designs, one with a repeat pair and one with
a mirror-image pair. All other choices are equivalent
to one of these. The columns (1, 2, 3, 7, 11) produce
a mirror-image pair and the higher D value. The
columns (1, 2, 3,9, 11) produce a repeat pair, leading
to a minimal-point design with 11 runs in the cube
portion after removal of a duplicate run.

Case k = 6. Again, a minimal-point design is
automatically obtained when six appropriate col-
umns are chosen from a 16-run Plackett and Burman
design. Based on the D criterion, the choice of col-
umns (1, 2, 3, 4, 5, 14) is recommended. This is
equivalent to Hartley’s 2§72 design.

Case k = 7. There are 36 coefficients to estimate
and 14 star points. Thus a minimum of 22 cube points
is required. The smallest Plackett and Burman design
that can be used is thus the one with 24 runs. We
wish to pick seven columns. Draper (1985) tried four
different combinations, all of which produced sin-
gular X’X matrices, and conjectured that all of the
other 245,153 possible column choices would also
produce a singular X’ X matrix, necessitating his use
of the 28-run Plackett and Burman design. In fact,
this conjecture is not true. There are 12 possible
repeat patterns, 5 of which produce nonsingular sec-
ond-order X' X matrices (see Draper and Lin 1988).
The choice of columns (1, 2, 3, 5, 6, 7, 9) will give
the highest D value. The choice of columns (1, 2, 5,
6,7, 9, 10), however, will produce two repeat pairs,
permitting the elimination of two runs, one from
each pair. This minimal-point 22-run design is not
only smaller than Hartley’s 32-run design, but it is
also smaller than Westlake’s 26-run design.

Case k = 8. There are 45 coefficients to estimate,
and 16 star points, so a minimum of 29 cube points
is required. The 32-run Plackett and Burman design
thus suggests itself. The choice of eight columns from
this design constitutes a 283 design. There is no
283 design of resolution III*, however. [The table
by Westlake (1965, p. 325) incorrectly suggested that
there is.] The minimum so far consists of the 64-run
design, 2¥72, of Box and Hunter (1957). Fewer runs
can be obtained by using the 36-run Plackett and
Burman design. Columns (1, 3, 4, 5, 6, 7, 8, 9) will
give the highest D value. Columns (1, 3, 4, 6, 8, 10,
16, 17) will produce six repeat pairs, of which one
run each can be eliminated to obtain only 30 runs in
the cube portion, one run more than the minimum
number required.

Case k = 9. There are 55 coefficients to estimate
and 18 star points. Thus a minimum of 37 cube points
is required. This suggests use of nine columns of the
40-run Plackett and Burman design. Draper (1985)
found that two tries with columns (1-9) and (2-9,
39) failed, producing a singular X’ X matrix, and con-

jectured that all of the other 211,915,130 possible
choices would fail similarly. Again, this is not true.
There are at least 50 different repeat patterns (see
Draper and Lin 1988). Because of the enormous
amount of computing time required, we have carried
out only a partial investigation. The highest D value
found is obtained by choosing columns (1, 2, 5, 6,
8,21, 22, 23, 26). Columns (1, 2, 3, 33, 34, 35, 36,
37, 38) provide two repeat pairs, however, in each
of which one run could be eliminated to give a two-
level design of 38 points. This compares with 128
runs for Box and Hunter (1957, p. 233), 64 runs for
Hartley (1959), and 44 runs for Westlake (1965, p.
331) and Draper (1985, p. 179). Columns (1, 8, 15,
19, 21, 24, 25, 26, 30) will produce three repeat pairs
but lead to a singular X’ X matrix.

Case k = 10. For k = 10 factors, the smallest
2477 design requires 128 runs, as does the smallest
2fi# design (see Draper and Lin 1990, table 4). The
former was thus the best choice known to date. There
are 66 coefficients to estimate and 20 star points, so
a minimum of 46 cube points is required. The obvious
choice is to try 10 columns of the 48-run Plackett and
Burman design; this, in fact, works. Because of the
enormous amount of computing time required, we
have carried out only a partial investigation. Thirty-
two types of design were found according to their
repeat patterns, and the highest D value among them
was obtained by choosing the columns (1, 2, 3, 4, 5,
6, 8,9, 17, 18). Choice of the columns 1, 4,5,7,
10, 11, 14, 16, 17, 20), however, produces two repeat
pairs, permitting elimination of one run from each
pair to obtain a minimal-point design.

Table 4 summarizes, for 3 < k < 10, those column
choices already described that provide the highest
relative D values.

5. DELETING REPEAT RUNS

Repeat runs provide information on pure error.
Some repeat runs can be eliminated, however, if re-
duction in the total number of runs is critical. Table
5 shows the column choices based on deleting repeat

Table 4. Columns That Provide the Highest Relative D
Values Found

Total points

k p ny Columns chosen N
3 10 4 (1,23 10
4 15 8 (1,23,6) 16
5 21 12 (1,2,3,4,5) 22
6 28 16 (1,234,514 28
7 36 24 (1,2,3,5,6,7,9) 38
8 45 36 (1,3,4,56,7,89) 52
9 55 40 (1,35, 6,8, 21,22, 23, 26) 58
10 66 48 (1,23,4,5,6,7, 11,12, 25) 68
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Table 5. Columns Chosen to Obtain Minimum Number of Runs

Run no. Total points
k p Ny Columns chosen deleted N
3 10 4 (1,2,3) None 10*
4 15 8 (1,2,3,6) None 16
5 21 12 (1,2,3,5,8) 7 21*
6 28 16 (1,2,3,4,5,14) None 28*
7 36 24 (1,2,5,6,7,9,10) 3,20 36*
1,5, 10
8 45 36 (1,3,4,6,8, 10, 16, 17) 16, 20, 29 46
9 55 40 (1, 2, 3, 33, 34, 35, 36, 37, 38) 10, 18 56
10 66 48 (1,4,5,7,10, 11, 14, 16, 17, 20) 5 15 66*

*Obtaining minimal-point design.

runs to obtain the minimum total number of runs
after elimination of repeats, N being the reduced
number of runs in cube plus star but without center
points. Note that for £ = 3 and 6, minimal-point
designs occur directly, for k = 5, 7, and 10, they can
be obtained by deleting repeats, and for k = 4, 8§,
and 9, almost minimal-point designs are obtained.
When repeat runs are eliminated, the orthogonality
is lost, causing correlations among the estimates.

6. COMPARISONS WITH MINIMAL-POINT
DESIGNS NOT OF COMPOSITE FORM

Attention has been focused in Section 4 on finding
minimal-point designs, because they require only as
many runs as there are parameters to be estimated.
They do not, however, provide an estimate of ex-
perimental error and so require a prior estimate of
that error. We now compare our minimal-point de-
signs of composite type to others that are not of
composite type. We restrict all design points to the
unit cube for this particular comparison.

Lucas (1974) gave minimal-point designs not of
composite type that he called “smallest symmetric
composite designs,” which consist of one center
point, 2k star points, and (%) ““edge points.” An edge
point is a k X 1 vector having ones in the ith and
Jth location and zeros elsewhere. Note that the edge
point designs do not contain any two-level factorial
points. For this design, | X' X| = 2%*a%; therefore, its
D value is 2%*a%/p.

Rechtschaffner (1967) used four different so-called
design generators (actually point sets) to construct

minimal-point designs for estimating a second-order
surface (see Table 6). The signs of design generators
I, 11, and III can be varied to get a higher D value
(e.g., we may have one — 1 and all other + 1 in design
generator II, say). Rechtschaffner’s designs are avail-
able for k = 2, 3, 4, ..., but, as pointed out by Notz
(1982), they have an asymptotical D efficiency of 0
as k — o with respect to the class of saturated de-
signs.

Box and Draper (1971, 1974) provided other min-
imal-point designs for k = 2, 3, 4, and 5, made up
from the design generators (point sets) shown in Ta-
ble 7. The best / and 4 (to give a maximized D value)
were tabulated in the 1974 article. Kiefer, in unpub-
lished correspondence, established, via an existence
result, that this type of design cannot be D optimal
for k = 7, however. Box and Draper’s designs were
given for k = 5, though they can be generated for
any k.

Mitchell and Bayne (1976) used a computer al-
gorithm called DETMAX that Mitchell (1974) de-
veloped earlier to find an n-run design that maxi-
mizes |X'X|, given n, a specified model, and a set
of “candidate” design points. For each value of k =
2,3,4, and 5, they ran the algorithm 10 times, each
time starting with a different randomly selected initial
n-run design. The algorithm then improved the start-
ing design by adding or removing points according
to a so-called “excursion” scheme until no further
improvement was possible. Because of the large
amounts of computer time needed, Mitchell and
Bayne carried out these calculations only for k < 5.

Table 6. Rechtschaffner’s (1967) Point Sets

Number Points Design generator (point set) Typical point
| 1 (+1, +1, ., +Nor (=1, =1, .., =1)  (+1, +1,.., +1)
] k One +1 and all other —1 (+1, =-1,.., =1)
mn k(k — 1)/2  Two +1 and all other —1 (+1, +1, -1, ..., =1)
v k One +1 and all other 0 (+1,0,..0)
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Table 7. Point Sets of Box and Draper (1972, 1974)

Number Points Design generator (point set) Typical point

| 1 (+1, +1, .., +Nor (=1, -1,.., —1) (-1, -1,.., -1

I k One +1 and all other —1 (+1, -1, -1, ..., —-1)
] klk — 1)/2  Two 4 and all other —1 (4, 4 =1,.., -1

v k One x and all other 1 (w, 1, ..., 1)

Notz (1982) studied designs for which p = n. He
partitioned X so that

— Z] _ Yll YlZ
x= [Zz] - [Ym Yzz] !
where Z,is (p — k) X pand Z,is k X p.

Note that Yy, is (p — k) X (p — k), Y, is (p —
k)x k, Yy is k X (p — k), and Yy, is k X k, and
we can think of Z, as representing the cube points
and Z, the star points; Y, over Yy, consists of the
columns (x}, x3, ..., x}). Thus (a) all elements in Y,
are either +1or —1, (b) all elements in Y», are either
1 or 0, and, more important, (c) all elements in Y,
are +1. It follows that |X| = [X'X|"? = |Y,| - |Yn
— Jiul, where J,, is a k X k matrix with all of its
elements equal to 1. Maximization of |X'X| is now
equivalent to maximization of |Y},| and |Yy — Ji4]
separately. Notz found new saturated designs for k
= 5 and extended his results to the k = 6 case.

The minimal-point designs previously available
elsewhere for k = 7 comprise the extensions of Lu-
cas’s (1974) or Rechtschaffner’s (1967) or Box and
Draper’s (1971, 1974) designs. New minimal-point
designs can be obtained by using our method for
= 3,5,6,7, and 10. A comparison of the D'” values
for all of the designs we have discussed in this section
is made in Table 8. As discussed in Section 3, par-
agraph 3, our designs do not do well in this com-
parison. They have other virtues, however. They are
easy to construct and of composite form, providing
orthogonal or near orthogonal designs and including
other previously known small composite designs as
special cases.

Note that we have only partially enumerated the
designs for k = 9 and 10 because of the high com-
puting costs. Thus it is possible that higher D'"” val-
ues exist for designs that we did not explore. If such
values exceeded those of Rechtschaffner (1967), they
would represent the best D'? choice for these larger
k. This question is unanswered and needs to be in-
vestigated.

A referee suggests the possibility

that the Draper and Lin designs, the designs of Notz (1982), and
the designs of Rechtschaffner (1967) share a common structure.
The majority of points (at least k(k + 1)/2) are “cube” points.
In all three cases these cube points actually come from balanced
arrays, assuming Plackett and Burman designs are indeed bal-
anced arrays. The remaining points are not cube points but their
number, on the order of &, is a fraction of the total number of
runs which tends to zero as k goes to infinity. This common struc-
ture might be worth noting and, perhaps, investigating since the
properties of balanced arrays are fairly well known (see the paper
by Srivastava and Chopra in the 1971 Annals of Mathematical
Statistics, vol. 42, pp. 722-734).

This seems eminently sensible.
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Table 8. Comparisons of D' for Selected Minimal-Point Designs {a = 1)

Draper and Lucas Notz Mitchell and Box and Rechtschaffner

k Lin (1988) (1974) (1982) Bayne (1976) Draper (1974) (1967)

3 .303 .152 .400 410 .423 .400

4 (.308) .096 .392 425 .423 .392

5 241 .066 .459 .456 .374 .450

6 .263 .048 .446 317 .428

7 .196 .036 ND 227 .383

8 (.321) .028 ND .193 .336

9 (.200) .023 ND .167 .293
10 .165 .018 ND .146 .255

NOTE: ND indicates no design. Parentheses indicate one run more than the minimal-point design.
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