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Abstract: This paper tackles the following question: For a two-level experimental design with a
given number, N =29, of runs and a specified resolution R, what is the maximum number, &, of
factors that can be accommodated? This problem is intimately connected with other problems
that have been extensively studied by previous authors. Prior results are summarized, explained,
and extended.
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1. Introduction

Consider a two-level fractional factorial design of resolution R for investigating
k factors in N (=29) runs. Given any two of the quantities (R, k, g), it is of interest
to ask what value can be achieved for the third quantity. The choices are:

(1) Fix k£ and g, investigate what maximum value of R is possible. Box and
Hunter (1961a,1961b) solved this for small k& and g. For larger designs, upper
bounds were sought by Robillard (1968), Fujii (1976), Webb (1968), Margolin
(1969), and Fries and Hunter (1980).

(2) Fix R and k, investigate what minimum value of ¢ (and thus N=29) is pos-
sible. This was investigated by Webb (1968) and Margolin (1969).

(3) Fix R and g and seek the maximum possible value of £. Work on this aspect
includes Addelman (1965), Draper and Mitchell (1967), Draper and Lin (1988).

Of course, the three problems are essentially equivalent, but sometimes it is easier
to tackle a problem in one manner rather than another. Our intention in the present
paper is to follow the third approach, and to produce a comprehensive table for the
(connected) ranges 111 < R < XIII, 4 < k<4095, and 3 <g=<12. This table reproduces
the results published to date, and extends them.

* Presently at University of Tennessee, Department of Statistics, Knoxville, TN 37996, U.S.A.
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2. Notation and definitions

A 2% factorial design is one in which k variables or factors, labeled (1,2, ...,k),
are each allocated two levels, conventionally + 1 in coded coordinates, and every
possible combination of the + signs is run, typically in a randomized, or randomized
block, order. A fractional two-level design is one that employs only a fraction of
the 2% runs. Many such designs use a 27” fraction of the whole 2¥ runs and so have
been designated 2% =7 fractional factorials. However, strictly speaking, any selec-
tion of the 2* runs forms a fractional design, but not necessarily a 2¥ 7 fraction.
Two-level factorial and fractional factorial designs have been used for many years,
and certainly since Yates (1935). A large compilation of 277 designs was made
available by the National Bureau of Standards (1957), for example. Alternatives to
the classical methods of formation and analysis were given by Box and Hunter
(1961a, 1961b); see also Box, Hunter and Hunter (1978) and Box and Draper (1987).
We follow the Box and Hunter (1961a) notation and development in this paper. The
numbers 1,2, ..., k, attached to the factors, are called letters. A product of any sub-
set of these variables, or /letters, is called a word. Associated with every 2k-p design
is a set of p words, W,, W,, ..., W,, called generators. For p>1, a set of generators
is not unique, and the same design may be described via different sets of generators.
Let I be the identity defined so that, for all words W, IW =WI=W and W?=1I.
This enables us to write the product UW of two words U and W in a minimally
reduced form. The set of distinct words formed by all possible products involving
the p generators gives the defining relation, which contains 27 terms including the
identity term L.

An important characteristic of a 27 design is its resolution, defined by Box
and Hunter (1961, p. 319) as follows: ‘‘A design of resolution R is one in which no
p factor effect is confounded with any other effect containing less than R —p fac-
tors. ... In general, the resolution of a two-level fractional design is the length of
the shortest word in the defining relation.”’

In fact, one way to characterize a Zf{p (‘“‘two to the & minus p, resolution R’’)
fractional factorial design is by its word length pattern. Suppose a design D of
resolution R has y, words of length ¢ in the defining relation of D, where =
R,R+1,...,k. The vector y =(yg,..., ¥;) Will be calied the word length pattern of
D. If the word length patterns of two designs are different, the designs are neces-
sarily different. However, different designs can have the same word length pattern,
e.g., designs 3.4 and 3.5 of Table 1 in Draper and Mitchell (1968).

A major use of two-level fractional factorials is for screening experiments, in
which many factors are examined in relatively few runs, to identify those (few) fac-
tors that exert large effects on one or more response variables. If a design’s resolu-
tion is specified, and if the number of runs is fixed, then the design will accom-
modate only a certain maximum number of factors. Such a design can be called a
saturated design.
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3. Construction methods

When R and q are given, we seek the maximum possible value of 4. The following
features were used to obtain values of ..

Computer algorithms. Generators are picked successively in an entry sequence ex-
plained below. When a new potential generator is added, the potential defining
relation is constructed and checked to see if all its words satisfy the resolution re-
quirements. If not, the potential generator is dropped, and the search continues. As
mentioned by Draper and Lin (1988, p. 16), the design produced depends on the
chosen generator entry sequence. Two different generator entry sequences were
actually used. One was Addelman’s (1965, p. 440) approach, in which lower gener-
ators were introduced before higher order ones. Generators of the same order were
added as long as the desired resolution was maintained. Another generator entry
sequence followed the Yates’ order. (See Box, Hunter and Hunter, 1978, p. 323; or
Box and Draper, 1987, p. 127.)

Deletion. Deletion of a variable d from a design implies the removal of all words
in the defining relation that involve the variable d. Such a reduced design is thus
a fractional factorial with the same number of runs, but with one less variable, one
less generator, and a defining relation of half the previous length. Deletion allows
us to obtain a (k —1)-factor design of resolution greater than or equal to R from a
k-factor design of resolution R in the same number of runs. (The resolution would
increase, for example, if there was only one smallest-sized-word and it was removed
by a deletion.) Note that if we do not wish to use all of the factors that are possible
for specified values of R and N=27 some factors can simply be deleted. So we can
focus on saturated designs without loss of generality.

Erasure. By the erasure of a variable is meant (Draper and Mitchell, 1967, p. 1113)
the removal of its symbol from the defining relation of a higher resolution design
to create the defining relation of a lower resolution design. No words are deleted.
Erasure allows us to obtain a k-factor design of resolution 2/—1 from a (k+1)-
factor design of resolution 2/. The reverse of erasure is atfachment which is essen-
tially foldover.

Foldover. Foldover was introduced by Box and Hunter (1961a, p. 337). Suppose A
represents the block of signs in the factor columns of a 2’2‘,1’; design (ignoring the
I column for the moment). Then if we foldover A to obtain —A, the block of signs

A
—-A

defines a 2’2‘,*(”71) design. It is also possible to fold over the I column as well to
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introduce a new variable. The folded design can then be written

A 1
-A -1
which is a 2%“)_” design. Such a design can also be viewed as obtained by

attaching an extra variable letter k+1 to each of the 277! odd words in the de-
fining relation of the original design. Foldover allows the construction of saturated
even resolution (2/ say) designs from saturated odd resolution 2/—1 designs. To
obtain the defining relation of a folded design we can either seek the common part
of the defining relations of the two pieces (original and folded portion), or we can
apply the U-L rule due to Box and Hunter (1961a, p. 328).

U-L Rule: Suppose two generating relations for two designs of the same family
have L generators common and of the same (or LIKE) sign and U= p —~ L generators
which are the same apart from a sign change (i.e., are of UNLIKE sign). Then the
L generators of like sign together with U—1 generators arising from independent
even products of the U generators of unlike sign provide L + U—1=p — 1 generators
for the combined design.

Robillard rule. In the case k=g + 1, the maximum resolution is obviously R=k=
g+ 1. In terms of paragraph (3) of Section 1, this means that if =g + 1 then kX must
be g+1 and this is the maximum number of factors that can be accommodated.
Robillard (1968) showed that, for the case k=g + 2, Rpa = [2k/3], where [x] is the
integer part of x. Thus, according to Robillard’s rule, if g+1=R>[%(g +2)] then
k=g +1 is the maximum number of factors that can be accommodated. Otherwise,
if R=<[%(g+2)] then at least ¢+ 2 factors can be accommodated.

4. Designs of various resolutions

We now discuss the existence of saturated designs of resolutions from III to XIII
for g=<12.

Fact 1. The maximum number of variables, ky,,, that can be accommodated in a
resolution 111 design of N (=29) runs is 29—1.

This can obviously be achieved by assigning new factors to all possible interaction
effects generated from the original g basic factors. There are

7 (DY (TNt (D) =291

1 2 3 q
of these. For example, if N=23 and R=III, the basic factors are 1,2,3, and the
generators are 4(=12), 5(=13), 6(=23) and 7(=123). Therefore, ky,,=2>-1=7.
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Fact 2. The maximum number of variables, ky,y, that can be accommodated in a
resolution 1V design of N (=29) runs is 2971,

This can be achieved by assigning new factors to all possible odd-ordered inter-
action effects. There are

((3)e()-

of these, where g* is the largest odd integer not exceeding g. (See Box and Hunter,
1961, p. 341.) For example, if N=2%and R=1V, the basic factors are 1,2,3,4, and
the generators are 5(=123), 6(=124), 7(=134) and 8(=234). Therefore, Ay, =
PARLES

Fact 3. A saturated design of resolution R =2I can be obtained by folding over a
saturated design of resolution 21— 1 plus an 1 column. Also, this procedure can be
reversed via erasure of one variable.

Thus Webb’s (1968, p. 297) conjecture for the resolution IV case, proved by
Margolin (1969), is re-confirmed and extended.

Fact 2 can be viewed as special case of Fact 3, i.e., folding over a N=29"! run
saturated resolution III design which contains 29 ! —1 factors results in a N=29
run saturated resolution IV design containing (297 '—1)+1=29""! factors.

The following discussion on designs of resolutions III to XIII will focus on odd
resolution cases. All saturated even resolution designs will automatically be con-
structed by foldover as described in Fact 3.

Resolution III. Fact 1 is applied to this case; kppay =/ N—1=29-1 whenever N=29,
However, finding the minimum aberration design of resolution III for k <kyg,, is
still an interesting problem, although it will not be considered here.

Resolution V. Box and Hunter (1961) provided ky,, for cases g<7. Also see Rao
(1947). The value ky,, =17 for the case g =8 was conjectured by Addelman (1965)
and later confirmed by Draper and Mitchell (1967). For ¢ =9, see Mitchell (1966,
p. 104). For cases 10=g <12, see Verhoeff (1987). The ky,, values are shown in
Table 4.

Resolution VII. The program used by Draper and Lin (1988) is also employed here
to produce Table 1, which lists resolution VII designs for k=7,8, ...,24.

Resolution IX. Table 2 shows computer generated saturated resolution IX designs
for £=9,10, 11, 12, 13, 14. In all cases p=2, which means that Robillard’s (1968) rule
can be applied to confirm that the k& values are maximal.
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Table 1
Resolution VII designs
q N Type Generators KMax
6 64 20 +7=123456 7
7 128 285! +8=123456 8
8 256 2% +9=123456 9
9 512 23402 +10 = 123456 11
+11=123789
10 1024 2573 +11=123456 15
+12=123789

+13=1457810
+14=2467910
+15=3568910

11 2048 2B +12=123456 23
+13=123789
+14 = 1457810
+15=2467910
+16 =3568910
+17=3467811
+18 = 1567910
+19 = 2458911
+20 =23571011
+21=12681011
+22 =13491011
+23=12345678910 11

12 4096 2312 +13 =123456 24
+14=123789
+15=1457810
+16 =2467910
+17=3568910
+18 = 3467811
+19=1567910
+20 =2458911
+21=23571011
+22 =12681011
+23 =13491011
+24=2567812

Resolution XI. Table 3 shows computer generated saturated resolution XI designs
for k=11,12,13. Again Robillard’s rule confirms that only one generator is possible
in all cases.

Resolution XIII. This is the maximum resolution that can be achieved for 2'?
runs; this implies a 2;31;‘ design with one generator 13=123456789101112.
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Table 2

Resolution IX designs

q N (=29) Type Generators KMax
8 256 20! +9=12345678 9
9 512 21071 +10=12345678 10
10 1024 245! +11 = 12345678 1
11 2048 237! +12 = 12345678 12
12 4096 21572 +13=12345678 14

+14=12349101112

Table 3

Resolution XI designs

q N (=29) Type Generators KMax
10 1024 257! +11=12345678910 1
11 2048 237! +12=12345678910 12
12 4096 237! +13=12345678910 13

Table 4 summarises the results above. This table can be used in three ways: To
solve the first step in minimum aberration problems (searching for maximum R,
given k and q), to solve minimum design problems (searching for minimum N, given
k and R) and to solve most factors problems (searching for maximum k, given g
and R). We next illustrate these three cases more fully with examples.

Table 4
Maximal number of factors in two-level designs of resolution R
q 3 4 5 6 7 8 9 10 11 12

N (=29 8 16 32 64 128 256 512 1024 2048 4096
Resolution 111 7 15 31 63 127 255 511 1023 2047 4095
Resolution IV 4 8 16 32 64 128 256 512 1024 2048
Resolution V - 5 6 8 11 17 23 322 412 652
Resolution VI - - 6 7 9 12 18 24 332 412
Resolution VII - - - 7 8 9 11 15 23 24
Resolution VIII - - - - 8 9 10 12 16 24
Resolution IX - - - ~ - 9 10 11 12 14
Resolution X - - - - - - 10 11 12 13
Resolution XI - - - - - - - 11 12 13
Resolution XII - - - - - - - - 12 13
Resolution XIII - - - - - - - - - 13

2 These values are believed to be maximal but, unlike the rest, are nct guaranteed.
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/

(1) Suppose k=25, N=512 (=2%). Table 4 shows, in the g=9 column, that a
resolution V plan can accommodate at most 23 factors, whereas a resolution 1V
plan can accommodate up to 256 factors. Thus R=1V is the best achievable for
k=25, g=9.

(2) Suppose we choose k=10 and R=V; how many runs are needed? In the
resolution V row of Table 4, we see that a 64-run design can accommodate eight
factors, whereas a 128-run design can accommodate 11 factors. Therefore, N=128
(=2") runs are needed.

(3) Suppose we choose N=256 (i.e., g=8) and R=V. In Table 4 the entry in the
g=28 column and R=V row gives the maximum number of factors that can be
accommodated as 17.

Some of the entries in Table 4 provide corrections to values given by Fries and
Hunter (1980, p. 605, Table 2). Appropriate specific changes are given in Table 5.
Similar changes are implicit in Franklin (1984, Table 1).

Table 5
Changes to Fries and Hunter (1980, p. 605, Table 2)

Rpax 10 Change
k D g=k—p Fries & Hunter Rpax to
12 S 7 v v
13 S 8 v \'
132 3 10 VI VII
14 S 9 \Y VI
14 4 10 VI VII
142 3 11 VIl VIII

2 In these two cases, Fries and Hunter’s (1980, p. 605, Table 2) Rpjax
bounds (1) and (2) must also be increased by one unit.

5. Designs of resolution star

A two-level fractional factorial design will be said to be of resolution R* (‘resolu-
tion R star’), if it is of resolution R and there is no word in the defining relation
of length R + 1. Resolution III* designs, namely, resolution III designs with no four-
letter word in defining relation, were used by Hartley (1959). For additional discus-
sion, see Westlake (1965) and Draper and Lin (1988). Any design of even resolution,
2/ say, obtained by foldover is automatically a resolution (2/)* design because its
defining relation will contain no words of odd length.

Foldover also provides information in searches for ky,,,. For example, suppose
a 2},;” design is folded over. The resulting design has 2~7*' runs. The folded
portion has a word length pattern identical to that of the original design, namely
Y =30, s, Y5 ---» ¥x)- However, the signs of all the odd-length words in its de-
fining relation are reversed from these in the original design. The combined design
will thus have a defining relation consisting of all the (common) even-length words
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and the word length pattern will have y;=0 for all odd i, while y, remains 0; thus
the new p=(%4,0, ¥5,0, Y105 -.-» ¥x)- We thus obtain a resolution VI design. If the
resolution III* design that is folded is saturated, so is the resulting resolution VI
design. Another way of obtaining a saturated resolution VI design by foldover is
to fold a resolution V design together with its I column to introduce a new variable,
as in Fact 3. These relationships are illustrated in Figure 1. (For the relationship be-
tween resolution III* and V designs, see Draper and Lin, 1988.)

The situation described in the foregoing paragraph extends to a general statement
as follows.

Fact 4. [f an N (=29)-run design of resolution (21— 1)* in k factors is folded over,
the combined design is:

(@) a 2N (=29*Y-run design of resolution 21+2 if the original design has
Y2+ 2#0, or

(b) @ 2N (=29"Y-run full factorial design if k<2142, or

(©) a 2N (=29"Y-run design of even resolution higher than 21+ 2, otherwise.

Fact 4 can be established by an argument similar to that above for the II1I* case
which is covered by Fact 4. The general relationship is illustrated in Figure 2. Note
that two of the arrows are one-way unlike these in Figure 1. (It is easily confirmed
that only one-way arrows are possible when />2.)

(k-1)~(p-1)
2V

k-p
2111 *

N
v

k=(p-1)
2v1

Fig. 1. Relationship among Z’flfp, 2(\5‘1)7(”7!) and 2’{,;(’)7 ") designs. (a) Foldover. (b) Foldover (plus

the I column) and reverse by erasure. (c) See Draper and Lin (1988).

(k-1)~(p-1)
2(21+1)

2% z

k—(p—1)
i-1* 2

1+2)

A\

Fig. 2. Relationship among 2((2751)., Zg‘,:ll)*(p* Dand 2’2‘,1(2’)71) designs. (a) Foldover. (b) Foldover (plus
the I column) and reverse by erasure. (¢) See Draper and Lin (1988).
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Table 6
Maximal number of factors in two-level designs of resolution R*
qg 3 4 5 6 7 8 9 10 11 12
N (=29 8 16 32 64 128 256 512 1024 2048 4096
Resolution I11* 4 6 7 9 12 18 24 332 428 662
Resolution IV* 4 8 16 32 64 128 256 512 1024 2048
Resolution V* - 5 6 8 9 10 12 16 23 252
Resolution VI* - - 6 7 9 12 18 24 332 422
Resolution VII* - - - 7 8 9 10 12 13 15
Resolution VIIT* - - - - 8 9 10 12 16 24
Resolution IX* - - - - - 9 10 11 12 14
Resolution X* - - - - - - 10 11 12 13
Resolution XI* - - - - - - - 11 12 13
Resolution XII* - - - - - - - - 12 13
Resolution XIIT* - - - - - - - - - 13

2 These values are believed to be maximal but, unlike the rest, are not guaranteed.

Table 6 shows the maximum number of factors that can be accommodated in
resolution star designs for g=<12. Note that, when R is even, the k values are identi-
cal to those in Table 4.

Remarks on Table 6. (1) If a design of resolution star is used (Hartley, 1959;
Westlake, 1965), then the relationships among g (or equivalently N), R*, and k can
be found from Table 6. A similar discussion on Table 4 allows us to find Ry,
(when k and g are given), or Ny, (when R* and k are given), or ky,, (when g and
R* are specified).

(2) The relationships between designs of resolution (2/—1)* and resolution 2/+1
shown in Figure 2, allows a cross check between Table 4 and Table 6. These con-
necting relationships have been studied by Draper and Lin (1988) for the case /=2,
and will be further investigated.
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