

Statistics based upon data EDA: Exploratory Data Analysis (Tukey)

- Learning from Data
- What can the data tell you?
- Show me your problems?
- Show me your data?
- Tell me how were the data collected?

\$
0
β
α
γ

**Statistical" Simulation Research Random Number Generators © Deng and Lin (1997, 2001, 2007)

 Robustness of transformation (Sensitivity Analysis)
 Grom Uniform random numbers to other

distributions

facto	ors in 1	16 run	c 1100		· .						
			s. The	numb	ers in	the ta	ble she nit hyp	ould be	e divid	ed by	15 to
2	2	2	scue i	l e	ign io	-	a nyp	ercube	10		10
1	2	3	4	2	0	/	8	9	10	11	12
-15	5	9	-3	7	11	-11	7	-9	3	-15	5
-13	1	1	13	-7	-11	11	-7	-1	-13	-13	1
-11	7	-7	-11	13	-1	-1	-13	9	-3	15	-5
-9	3	-15	5	-13	1	1	13	1	13	13	-1
-7	-11	11	-7	11	-7	7	11	5	15	-3	-9
-5	-15	3	9	-11	7	-7	-11	13	-1	-1	-13
-3	-9	-5	-15	1	13	13	-1	- 5	-15	3	9
$^{-1}$	-13	-13	1	-1	-13	-13	1	-13	1	1	13
1	13	13	-1	-9	3	-15	5	11	-7	7	11
3	9	5	15	9	-3	15	-5	3	9	5	15
5	15	-3	-9	-3	-9	-5	-15	-11	7	-7	-11
7	11	-11	7	3	9	5	15	-3	-9	-5	-15
9	-3	15	- 5	-5	-15	3	9	-7	-11	11	-7
11	-7	7	11	5	15	-3	-9	-15	5	9	-3
13	-1	-1	-13	-15	5	9	-3	7	11	-11	7
15	-5	-9	3	15	-5	-9	3	15	-5	-9	3

	Ye (1998, JASA)						
Table	Table 1. A 5 \times 2 Orthogonal Latin Hypercube						
	1	-2					
	2	1					
	0	0					
	-1	. 2					
	2	-1					
Tabl	-2 e 2. A 9 × 4 Ortho	-1 ogonal Latin Hyp	ercube				
Tabl	-2 e 2. A 9 × 4 Ortho -2	-1 ogonal Latin Hyp	ercube 3				
1 2 2	-2 $e 2. A 9 \times 4 Ortho -2 1 4$	-1 ogonal Latin Hyp 4 3 2	aercube 3 -4				
Tabl 1 2 3	-2 $e 2. A 9 \times 4 Ortho$ -2 1 -4 2	-1 ogonal Latin Hyp 4 3 -2	3 -4 -1				
Tabl 1 2 3 4 0	-2 $= 2. A 9 \times 4 \text{ Ortho}$ -2 1 -4 3 0	-1 ogonal Latin Hyp 4 3 -2 -1 0	3 -4 -1 2 0				
Tabl 1 2 3 4 0	-2 $= 2. A 9 \times 4 \text{ Ortho}$ -2 -1 -4 3 0 -3	-1 pgonal Latin Hyp 4 3 -2 -1 0 1	3 -4 -1 2 0 -2				
Tabl	-2 <i>B</i> 2. A 9 × 4 Ortho -2 1 -4 3 0 -3 4	-1 ogonal Latin Hyp 4 3 -2 -1 0 1 2	3 -4 -1 2 0 -2				
Tabl 1 2 3 4 0 -4 -3 -2	-2 $0 2. A 9 \times 4 \text{ Ortho}$ -2 1 -4 3 0 -3 4 -1	-1 pgonal Latin Hyp 4 3 -2 -1 0 1 2 -3	3 -4 -1 2 0 -2 1 4				

0	rtho	gonal (n=2º	Latin °+1 o	Hyperc r 2 ^c)	ube
Design	Ye (1998) _{JASA}	C&L (2007) Technometrics	S&L (2006) Biometrika	PLL (2009) Sinica	SLL (2009) Biometrika
No. of Factor	2(c-1)	c(c-1)/2+1	c[(n-1)/c]	c[(n-1)/c/(q-1)]	2 ^{c-1}
c=4 c=8 c large	6 14	7 29	12 -	12 -	8 256
Main Orthog	Yes	Yes	Yes	Yes	Yes
Second- Order Othog	Yes	yes	No	No	Yes

Sun, Liu and Lin (2009, Biometrika)
• Let $M_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, $S_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
2 Let $M_c = \begin{pmatrix} M_{c-1} & M_{c-1} + 2^{c-1}J_{2^{c-1}} \\ M_{c-1} + 2^{c-1}J_{2^{c-1}} & M_{c-1} \end{pmatrix}$,
$S_{c} = \begin{pmatrix} S_{c-1} & -S_{c-1}^{*} \\ S_{c-1} & S_{c-1}^{*} \end{pmatrix}.$
$M_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ \hline 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}, S_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ \hline 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$

$n \times k$ matrix $L(n)$ uniformly spaced	n, k): n runs, k levels.	facto	rs, ea	ch fac	tor includes <i>r</i>
	(1	2	3	4	١
	2	$^{-1}$	-4	3	
	3	4	-1	$^{-2}$	
$\begin{pmatrix} T_2 \end{pmatrix}$	4	-3	2	-1	
$L_2 = \begin{bmatrix} 0'_4 \end{bmatrix} L$	(9,4) = 0	0	0	0	
$\left(-T_{2}\right)$	-1	-2	-3	-4	
	-2	1	4	-3	
	-3	-4	1	2	
	(-4	3	$^{-2}$	1)	

CTA.		Pie.	roude	113	peakers
1973	Box	1986	Schilling	1999	Bacon
1974	Daniel	1987	Hahn	2000	Vining
1975	Eisenhart	1988	Godfrey	2001	Myers
1976	Smith	1989	Marquardt	2002	Meeker
1977	Hunter	1990	Golomski	2003	Hahn
1978	Mandel	1991	Lawton	2004	Woodall
1979	Freund	1992	Cornell	2005	Bisgaard
1980	Nelson	1993	Hare	2006	Cornell
1981	Smith	1994	Hoerl	2007	Nair
1982	Nicholson	1995	MacGregor	2008	Anderson-Cook
1983	Hunter	1996	Lucus	2009	Piepel
1984	Joiner	1997	Ranney	2010	Lin
1985	Snee	1998	Montgomery	- Starte	and the first of the

Youden Squear, George Box and Latin Hypercube: Conclusion

- Youden Square is not a Square
 ait's in fact a rectangle!
- George Box is not a box
 AND he did not invent Box plot!
- Latin Hypercube is not a Latin
 Although it is indeed a hypercube!
- New design (data collection) concept is needed for the informatic/computational age.

PhD in Chemistry (1924, Columbia Univ)— An Excellent Chemist! First (formal) Statistical Course, through Hotelling (Columbia University) in 1932. Youden Square, termed by Fisher, in 1938. Youden Diagram in 1959. Youden will never be abel to receive COPPS Award (40-) Spent his life improving the way measurements are taken.

- All Modes are wrong, some are useful.
- Statistician, like artist, has the bad habit of easily falling in love with his model.

Remember Today (Lin)

- 1997—Rotated Full Factorials (to form a new class of Latin Hypercube)
- Orthogonal Latin Hypercube
- Second-Order Orthogonal Latin Hypercube
 Steinberger and Lin (*Biometrika, 2006*)
 Pang, Liu and Lin (*Statistica Sinica, 2009*)
 Sun, Liu and Lin (Biometrika, 2009)
- Nearly Orthogonal Latin Hypercube (for flexible run sizes)
- New design (data collection) concept is needed for the informatic/computational age.

