

Descriptor	Data Set Size in Bytes	Storage Mode
Tiny	10 ²	Piece of Paper
Small	10 ⁴	A Few Pieces of Paper
Medium	106	A Floppy Disk
Large	10 ⁸	Hard Disk
Huge	10 ¹⁰	Multiple Hard Disks
Massive	1012	Robotic Magnetic Tape
Supermassive	10 ¹⁵	Storage Silos Distributed Data Archives
The	Huber-Wegman Taxonon	ny of Data Set Sizes

Algorith	mic Complexity
O(n ^{1/2})	Plot a Scatterplot
<i>O(n)</i>	Calculate Means, Variances, Kernel Density Estimate
O(n log(n))	Calculate Fast Fourier Transforms
O(n c)	Calculate Singular Value Decomposition of an r x c Matrix; Solve a Multiple Linear Regression
<i>O(n²)</i>	Solve most Clustering Algorithms
$O(a^n)$	Detect Multivariate Outliers

n	n ^{1/2}	п	n log(n)	n ^{3/2}	n^2
tiny	10	10 ²	$2x10^{2}$	103	104
small	10^{2}	10^{4}	$4x10^{4}$	106	108
medium	10 ³	106	6x10 ⁶	10^{9}	101
large	10^{4}	10^{8}	$8x10^{8}$	10 ¹²	10 ¹
huge	105	1010	10''	1015	10 ²

Complexity Computational Feasibility on a Pentium PC 10 megaflop performance assumed								
п	n ^{1/2}	п	n log(n)	n ^{3/2}	n ²			
tiny	10 ⁶	10 ⁻⁵	2x10 ⁻⁵	.0001	.001			
	seconds	seconds	seconds	seconds	seconds			
small	10 ⁻⁵	.001	.004	. 1	10			
	seconds	seconds	seconds	seconds	seconds			
medium	.0001	.1	.6	1.67	1.16			
	seconds	seconds	seconds	minutes	days			
large	.001	10	1.3	1.16	31.7			
	seconds	seconds	minutes	days	years			
huge	.01	16.7	2.78	3.17	317,000			
	seconds	minutes	hours	years	years			

300 megaflop performance assumed								
п	n ^{1/2}	n	n log(n)	n ^{3/2}	n ²			
tiny	3.3x10 ⁸ seconds	3.3x10 ⁷ seconds	6.7x10 ⁻⁷ seconds	3.3x10 ⁶ seconds	3.3x10 seconds			
small	3.3x10 ⁷ seconds	$3.3x10^5$ seconds	1.3x10 ⁻⁴ seconds	3.3x10 ³ seconds	.33 seconds			
medium	$3.3x10^6$ seconds	3.3x10 ³ seconds	.02 seconds	3.3 seconds	55 minutes			
large	$3.3x10^5$ seconds	.33 seconds	2.7 seconds	55 minutes	1.04 years			
huge	3.3x10 ⁴ seconds	33 seconds	5.5 minutes	38.2 days	10, 464 years			

Titanio (a total o	c Data f 2208 case	s)	
Survived	Age	Gender	Class
D	С	М	3
D	С	М	3
D	С	М	3
D	С	М	3
D	С	М	3

Age By S	Survived			Gender	By Surviv	ved		Class By	Survived		
Count Col % Row %	D	S		Count Col % Row %	D	S		Count Col % Row %	D	S	
A	1438 96.51 68.51	661 92.06 31.49	2099	F	126 8.46 26.81	344 47.91 73.19	470	1	122 8.19 37.54	203 28.27 62.46	325
С	52 3.49 47.71	57 7.94 52.29	109	M	1364 91.54 78.48	374 52.09 21.52	1738	2	167 11.21 58.60	118 16.43 41.40	285
	1490	718	2208		1490	718	2208	3	528 35.44 74.79	178 24.79 25.21	706
								Crew	673 45.17 75.45	219 30.50 24.55	892
									1490	718	2208

Markov Chains
Matix A

$$a_{ij} = \frac{(1-d)}{N} + d\frac{g_{ij}}{c_j}$$
 d=0.85
Matix A max eignvalue =1
 $Ax=x$ $\sum_i x_i = 1$
Matix A eignvector = PageRank(k)
 $x_k = \sum_{j=1}^N a_{kj} x_j = \frac{(1-d)}{N} + d\sum_{g_{kj}=1} \frac{x_j}{c_j}$

$$Frample 5$$

$$H = (1-d) + d(\frac{M}{1} + \frac{SA}{1})$$

$$A = (1-d) + d(\frac{H}{1})$$

$$P = (1-d) + d(\frac{A}{1})$$

$$M = (1-d) + d(\frac{P}{2})$$

$$SA = (1-d)$$

$$SB = (1-d) + d(\frac{P}{2})$$

