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Response Surface Methodology
RSM Strategy 
Variable Screening Process
Analysis of Response Surface
Dual Response Surface and Multiple 
response Problems
Others?

Response Surface Methodology

Box and Wilson (1951)
“On the Experimental Attainment of 
Optimum Condition,” JRSS-B, 13, 1-45.

Box and Hunter (1957)
“Multi-Factor Experimental Designs for 
Exploring Response Surface,” Annals of 
Mathematical Statistics, 28, 195-241.

Ambitious Goal

What is Response Surface Methodology?
What type of problems they had in mind 
back to 1950?
What was available in 1950?
What type of problems today 
(50 years later)?
What is available today?
Can we do something significantly 
different?
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What is RSM All About?

The Experimenter is like a 
person attempting to map the 
depth of the sea by making 
soundings at a limited number 
of places

Basic Approach
If we are far away from the top, all we 
need is to find the direction for 
improvement…in this case, a first-order 
approximation may be sufficient.
If we are close to the top, all we need is 
to find the exact location of the top…in 
this case, a more complicated model 
(such as a second-order model) is 
needed.

If not much is known, you are likely to be 
in preliminary stage where first-order and 
screening designs give big benefits.
When you are a long way from the top of the 
mountain, a plane may be a good approximation and 
you can probably use 1st-order linear approximation.

If a lot if known, you may find more 
detailed study is necessary, in particular, 
careful study of maxima.

Illustrative Example (BH2)
Response (y): Yield
Input Variable (x1): time
Input Variable (x2): temperature

y=f (x1, x2)+ε
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Current Setting:
x1=75 min
x2= 130 oC

y=62.5

Δ

Fit
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Least Square Fitting:

y = 62.01+2.35x1+4.50x2 + ε
b12  = −0.65 (+0.75)
b11+b22  = −0.50 (+1.15)

Conclusion:

First-order model is adequate.

Action Taken:

Steepest Ascent
—direction for  improvement
— 2.35:4.50   (or   1:1.91)
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Least Square Fitting:
y = 62.01+2.35x1+4.50x2 + e
b12  = −0.65 (+0.75)
b11+b22  = −0.50 (+1.15)

Conclusion:
First-order model is adequate.

Action Taken:
Steepest Ascent
—direction for  improvement
— 2.35:4.50   (or   1:1.91)

Run more experiments…
…following the direction of   1:1.91  (= 2.35 : 4.50)

Conclusion:
Use Point #10 as
the new center point
and start all over again!!
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Start all over again!!
--Use Point #10 as the new center point Fit

)75.0(
2
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325.1025.273.84

^
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+−= xxy

b12 4 88= − ±.  ( 0.75)

b b11 22 28+ ±= -5  ( 1.15). Significant!

Least Square Fitting:
y = 84.73 − 2.025x1+ 1.325x2 + ε
b12  = −4.88 (+0.75)
b11+b22  = −5.28 (+1.15)

Conclusion:
First-Order Model is inadequate!

Action Taken:
Add few more points for fitting
A more complicated
(second-order) model.

Least Square Fitting:
y = 84.73 − 2.025x1+ 1.325x2 + ε
b12  = −4.88 (+0.75)
b11+b22  = −5.28 (+1.15)

Conclusion:
First-Order Model is inadequate!

Action Taken:
Add few more points for fitting
A more complicated
(second-order) model.
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Add few more points for
fitting a second-order model. Least Square Fitting:

y = 87.36 – 1.39x1+ 0.37x2 

+2.15 x1
2 –3.12 x2

2

– 4.88 x1 x2 + ε

Conclusion:
Second-Order model    
is adequate!

Action Taken:
Finding Optimal Setting!

Least Square Fitting:
y = 87.36 – 1.39x1+ 0.37x2 +2.15 x1

2 –
3.12 x2

2 – 4.88 x1 x2 + ε

Conclusion:
Second-Order model is adequate!

Action Taken:
Finding Optimal Setting!

y = 87.36 – 1.39x1+ 0.37x2 +2.15 x1
2 –3.12 x2

2 – 4.88 x1 x2 + ε
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Final Remarks
The global optimum turns out to be
x1=80 minutes
x2=150 oC
E(y)=91.2  
(as oppose to 62.5 at the beginning)

Is such an optimal setting feasible?

FIRST ORDER 
MODEL

Fit Well? Add New 
Variables?

You are still pretty far away 
from the optimal point

You are probably close to 
the optimal setting

Find the direction for 
improvement

SECOND ORDER MODEL

Fit Well?Set up a new center 
point

OPTIMIZATION

HIGHER ORDER 
MODEL?

No

Yes

Yes

No

Yes
No

Lin (JQT, 1998)

Response Surface Methodology
(Box and Draper, 1987)

WHICH (Screening)

HOW (Empirical Model Building)

WHY (Mechanistic Model Building)

RSM: General Steps
Define
Design
Modeling
Estimation
Optimization
Forecasting
Confirmation
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What are the issues?
Data Collection:

What will be a good design?  For what 
purpose?

Data Analysis:
What will be a good model?

Optimization:
Objective function? 

Confirmation

Response Surface Methodology
Theoretical Formulation

εθ += ),(xfy

Ω∈x

Objective
Find 

x=x* such that y is optimized.
Basic Assumption/Belief

Life is Good
— y is a smooth function of x

Issues to be Addressed

x: variable selection
Screening Input variables x1, x2,…, xk

f: model selection

Θ: parameter estimation

ε: error properties

Ω: Experimental Region

εθ += ),(xfy Ω∈x
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Special Case-I

x: known
Input variables x1, x2,…, xk

f: model selection
First-Order Polynomial y=β0+Σβixi+ε

Θ: parameter estimation
Least square fitting

ε: error properties
i.i.d. N(0,σ2)

Ω: Experimental Region
Correctly identified.

A (Typical) Special Case
x: known

Input variables x1, x2,…, xk

f: model selection
Second-Order Polynomial y=β0+Σβixi+Σβijxixj+ε

Θ: parameter estimation
Least square fitting

ε: error properties
i.i.d. N(0,σ2)

Ω: Experimental Region
Correctly identified.

Devil’s Advocate (Box, 1990)

One-at-a-time
Steepest ascent
Fractional factorial

Second-order fitting

Grid mapping

Large interaction
Many bumps
Large three-factor 
interaction
Exponential type 
response surface
Flat plane with 
single point sticking 
out

Design: How to use the minimal cost to accomplish 
the experimental goal of

Screening
Empirical Model Building
Linear model fitting in general
Non-Linear model fitting
Validation of f and θ
Future trace
All-In-One (copier/scanner/fax/printer/..)
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Screening

Killing storks will not 
reduce the birth rate!

Design of Screening Experiments
Two-Level Fractional Factorials
Plackett & Burman Design
(Hadamard Matrix)
Two-Level Orthogonal Arrays
Regular Simplex & T-optimal
p-efficient Designs
Supersaturated Designs Lin(2003)

Before Experiment

ε+= + ),,,,,( 11 kpp xxxxfy KK

After Experiment

),,(),,( 11 kpp xxxxfy KK ++= ε

kp <<

MODEL
Y = 1~ ⋅ + +μ β εX

~ ~
Y 1n × : observable data

: design matrix
: parameter vector
: noise

X n k×

β k × 1

ε n × 1

N = {i i i p1 2, , . . . , }
A = {i i ip p k+ +1 2, , . . . , }

N A = { 1U , , . . . , }2 k

inert factor
active factor

Goal
Test H : = 0   v s .   H : 0j j j

c
jβ β ≠

H  is  tru e  if  j N
H  is  tru e  if  j A

j

j
c

∈
∈

⎧
⎨
⎩
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How to Accomplish the Goal?

Criterion for Optimal Design?
Model/Analysis here:

First-Order Model?
ANOVA Model?

Examples
ANONA Approach:

Orthogonal Array (n=4t)

First-Order Model:
Minimal-Point Design (n=k+1)

Significant Test Approach
Good estimate of σ!

Others?

About Model Building
Smoothing assumption in f.
Typically polynomial model is assumed, 
as the empirical model building.
Spline Fitting
Artificial Neural Network
Radial Basis Function
Non- (Semi-) Parametric Fitting
Optimality versus Robustness

Designs for Model Building
Central Composite Design (CCD)
Small Composite Design 
Box and Behnken Design
Three-Level Design
Uniform Design
Others

εββββ ++++= ∑∑∑ 2
0 iiijiijii xxxxy
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Parameter Estimation
Least Square Estimate
Likelihood approach (with proper 
assumption on the distribution)
Bayesian approach, when appropriate
Black-Box approach, such as Artificial 
Neural Network

Assumption on Noise
i.i.d. N(0, σ2) Assumption
Generalized Least square
Generalized Linear model

Bayesian Approach

Objectives
Overall Surface structure
Optimal value of y
Corresponding setup x*
Future exploration

Analysis of Response Surface
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How About
Goodness/Badness of fit
Optimal y outside the current domain
Confidence Region of y*
Confidence Region of x*

Second-Order Polynomial Model
Estimation:  β vs
Bias:  f vs
Prediction: ymax vs
Prediction: x* vs
Point Estimate & Confidence Region 
(Sweet Spot)
General f ?

β̂
f̂

maxŷ
*x̂

Ridge Systems

First-Order Surface Second-Order Surface

FIRST ORDER 
MODEL

Fit Well? Add New 
Variables?

You are still pretty far away 
from the optimal point

You are probably close to 
the optimal setting

Find the direction for 
improvement

SECOND ORDER MODEL

Fit Well?Set up a new center 
point

OPTIMIZATION

HIGHER ORDER 
MODEL?

No

Yes

Yes

No

Yes
No

Lin (JQT, 1998)



14

Lecture 2:
Screening Experimentation

Screening

Killing storks will not 
reduce the birth rate!

Before Experiment

ε+= + ),,,,,( 11 kpp xxxxfy KK

After Experiment

),,(),,( 11 kpp xxxxfy KK ++= ε

kp <<

MODEL
Y = 1~ ⋅ + +μ β εX

~ ~
Y 1n × : observable data

: design matrix
: parameter vector
: noise

X n k×

β k × 1

ε n × 1

LET
N = {i i i p1 2, , . . . , }
A = {i i ip p k+ +1 2, , . . . , }

N A = { 1U , , . . . , }2 k

inert factor
active factor

Goal
Test H : = 0   v s .   H : 0j j j

c
jβ β ≠

H  is  tru e  if  j N
H  is  tru e  if  j A

j

j
c

∈
∈

⎧
⎨
⎩
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Design of Screening Experiments
Two-Level Fractional Factorials
Plackett & Burman Design
(Hadamard Matrix)
Two-Level Orthogonal Arrays
Regular Simplex & T-optimal
p-efficient Designs
Supersaturated Designs Lin(2003)

Full Factorial Design
Full Factorial Design

(All possible Combinations)
Multi-Factors
Example: X1 has two possibilities (1 or 2)

X2 has two possibilities (1or 2)
X3 has two possibilities (1or 2)

A Total of 23 experimental runs

X 1 X 2 X 3

1
2
1
2
1
2
1
2

1
1
2
2
1
1
2
2

1
1
1
1
2
2
2
2

Fractional Factorial Designs

Ex: X1 is two-level (1or 2)
X2 is two-level  (1or 2)
X3 is two level (1or 2)

Full Factorial

R.A. Fisher (1920)
F. Yates

Fractional Factorial

Orthogonal

X1 X2 X3
1
2
1
2
1
2
1
2

1
1
2
2
1
1
2
2

1
1
1
1
2
2
2
2

X1 X2 X3
1
2
1
2

1
1
2
2

1
2
2
1

Issues to be Considered
Why Two-Level?
Why Full Factorial (Advantages)?
Why NOT Full Factorial (Disadvantage)?
Addendum?
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Example of Full Factorial Design

A Second Example
x1: Feed Rate 
(10 & 15 liters/min) 
x2: Catalyst 
(1% & 2%)
x3: Agitation rate 
(100rpm & 120rpm)
x4: Temperature 
(140oC & 180oC)
x5: Concentration 
(3% & 6%)

Half-Fraction

What to Gain?
What to Lose?
Will this design 
serve for your 
purpose?
Which half-fraction?
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What are the issues here?
Which fraction?
What to compare (criteria)?
Regular Orthogonal Fractions
Non-regular Orthogonal Fractions
Irregular (non-orthogonal) Fractions

Addelman (1961), Technometrics, 479-496.

Illustration 2-level  (26-2) designs

1 2 3 4 5=1234 6=124
-1 -1 -1 -1 1 -1
1 -1 -1 -1 -1 1

-1 1 -1 -1 -1 1
1 1 -1 -1 1 -1

-1 -1 1 -1 -1 -1
1 -1 1 -1 1 1

-1 1 1 -1 1 1
1 1 1 -1 -1 -1

-1 -1 -1 1 -1 1
1 -1 -1 1 1 -1

-1 1 -1 1 1 -1
1 1 -1 1 -1 1

-1 -1 1 1 1 1
1 -1 1 1 -1 -1

-1 1 1 1 -1 -1
1 1 1 1 1 1

D=

I = 12345
= 1246
= 356

Word Length Pattern
WLP=(0,0,1,1,1,0)

Notations
Factors: 1, 2, 3, 4
Generators: 5=12, 6=134
Defining relation: I=125=1346=23456
Word length pattern: W=(0,0,1,1,1)
Resolution: III
Foldover plan: γf=123456
WLP of the combined design: W=(0,0,0,1,0)

Word Length Pattern
Given a regular two-level fractional 
factorial design D
Word Length Pattern 
W(D)=(A1(D), A2(D),…, Ak(D))
where Ai(D) is the number of words in 
the defining relation whose length is i.
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Resolution
Resolution III Design

Main-Effect Design
Minimal-Point Design

Resolution IV Design
Webb, Cheng.

Resolution V Designs
Relationship among different resolution 
designs
Isomorphism 

Resolution, Aberration and WLP
Higher resolution implies less 
confounding

Resolution III designs confound main 
effects and two-factor interactions
Resolution IV designs confound two-factor 
interactions with some two-factor 
interactions

WLP (Word Length Pattern) is used to 
further distinguish designs with same 
resolution--aberration criterion.

Optimality Criteria
Estimability and Efficiency
Resolution
Aberration
Generalized Aberration
Clear Factor
Projectivity
Model Robustness
Estimation Capacity

Irregular Fractional Factorials
What does Orthogonality really for???
Three-Quarter Fraction
Addelman Design

“Irregular fractions of the 2n factorial 
experiments,” Technometrics, 3, 479-496.

Minimal-Point Design
p-efficient Design
Cyclic Design
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More about
Resolution
Aberration
Generalized Aberration

Plackett & Burman Designs

Hadamard Matrices
Given a n by n, two-symbol (+-1) 
square matrix, what is the largest 
determinant possible???

A matrix H such that H’H=nI.

n must be a multiple of four, 
except n=1 and 2.

Some Research on Hadamard Matrix

Construction (n=268?)
Non-equivalent Hadamard Matrices
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The 12-run Plackett & Burman into 
k=3 Dimensions

The 12-run Plackett & Burman into 
k=4 Dimensions

The 12-run Plackett & Burman into 
k=5 Dimensions

Projection Properties
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Regular Simplex Design

Regular Simplex Design (k=3)

Regular Simplex Design

Pros and Cons

Optimal Designs
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T-optimal Design

Optimality Criterion?

x(k+1) − x(1)

T-optimal Design (k=6)

T-optimal Design
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Summary

Research Potentials
Objective of Screening Design
Minimal Effort (experimental runs)
High Efficient (optimal criterion)
Geometry Property (orthogonality & 
projection)

Supersaturated Design

Half Fraction of William's (1968) Data
Factor

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 y
1 + + + - - - + + + + + - + - - + + - - + - - - + 133
2 + - - - - - + + + - - - + + + + - + - - + + - - 62
3 + + - + + - - - - + - + + + + + + - - - - + + - 45
4 + + - + - + - - - + + - + - + + - + + + - - - - 52
5 - - + + + + - + + - - - + - + + + - - + - + + + 56
6 - - + + + + + - + + + - - + + - + + + + + + - - 47
7 - - - - + - - + - + - + + + - + + + + + + - - + 88
8 - + + - - + - + - + - - - - - - - - + - + + + - 193
9 - - - - - + + - - - + + - - + - + + - - - - + + 32

10 + + + + - + + + - - - + - + + - + - + - + - - + 53
11 - + - + + - - + + - + - - + - - - + + - - - + + 276
12 + - - - + + + - + + + + + - - + - - + - + + + + 145
13 + + + + + - + - + - - + - - - - - + - + + - + - 130
14 - - + - - - - - - - + + - + - - - - - + - + - - 127

Lin (Technometrics, 1993)

Supersaturated Design Example
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From Saturated
to 
Supersaturated

No degree of freedom for σ
to
Negative degree of freedom for σ

Some Basic Approaches 
(Design Construction)

Orthogonal Array-Based
Group Screening
Non-Orthogonal Array-Based
Combinatorial Approach
Optimization Approach

Recent Applications in SSD
(Nano-) Manufacturing
Computer Experiments
Numerical Analysis 
e-Business
Marketing Survey
High Dimensional Integration

Current (Factor) Screening 
Procedure

Professional Knowledge
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THERE ARE ALWAYS
MORE VARIABLES THAN

WE CAN HANDLE
!!!

x x xk1 2, , ...,
experimental

variables

x xk m+1 , ... ,

how to handle
these variables?

• Ignore
• Fix
• Randomization, Blocking, ...
• Supersaturated Design

A situation for using supersaturated design:
— A Small number of run is desired
— The number of potential factors is large
— Only a few active factors

Supersaturated Design —how to study k
parameters with n(<<k) observations?
•What for ?
• How to construct ?
• How to analyze ?
• Limitations ?
• Does it really work ?

A New Class of Supersaturated Designs

Dennis K. J. Lin
Department of Statistics

The University of Tennessee
Knoxville, TN 37996

Supersaturated designs are useful in situations in which the number of active
factors is very small compared to the total number of factors being considered.
In this article, a new class of supersaturated designs is constructed using half
fractions of Hadamard matrices. When a Hadamard matrix of order N is used, 
such a design can investigate up to N - 2 factors in N/2 runs. Results are given 
for N    60. Extension to larger N is straightforward. These designs are superior
to other existing supersaturated designs and are easy to construct. An example
with real data is used to illustrate the ideas.

KEY WORDS: Hadamard matrices; Plackett and Burman designs; Random
balance designs.

≤

UTK Technical Report, 1991

Life After Screening

Follow-Up Experiment

Projection Properties
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Run Factors
No. I 1 2 3 4 5 6 7 8 9 10 (11)
1 + + + - + + + - - - + -
2 + + - + + + - - - + - +
3 + - + + + - - - + - + +
4 + + + + - - - + - + + -
5 + + + - - - + - + + - +
6 + + - - - + - + + - + +
7 + - - - + - + + - + + +
8 + - - + - + + - + + + -
9 + - + - + + - + + + - -
10 + + - + + - + + + - - -
11 + - + + - + + + - - - +
12 + - - - - - - - - - - -

Supersaturated Design From Hadamard Matrix of Order 12
(Using 11 as the branching column)

Run Row Factors
No. No. I 1 2 3 4 5 6 7 8 9 10 (11)

1 2 + + - + + + - - - + - +
2 3 + - + + + - - - + - + +
3 5 + + + - - - + - + + - +
4 6 + + - - - + - + + - + +
5 7 + - - - + - + + - + + +
6 11 + - + + - + + + - - - +

Half Fraction of H12

n = N/2 = 6 k = N-2 = 10

Half Fraction of William's (1968) Data
Factor

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 y
1 + + + - - - + + + + + - + - - + + - - + - - - + 133
2 + - - - - - + + + - - - + + + + - + - - + + - - 62
3 + + - + + - - - - + - + + + + + + - - - - + + - 45
4 + + - + - + - - - + + - + - + + - + + + - - - - 52
5 - - + + + + - + + - - - + - + + + - - + - + + + 56
6 - - + + + + + - + + + - - + + - + + + + + + - - 47
7 - - - - + - - + - + - + + + - + + + + + + - - + 88
8 - + + - - + - + - + - - - - - - - - + - + + + - 193
9 - - - - - + + - - - + + - - + - + + - - - - + + 32

10 + + + + - + + + - - - + - + + - + - + - + - - + 53
11 - + - + + - - + + - + - - + - - - + + - - - + + 276
12 + - - - + + + - + + + + + - - + - - + - + + + + 145
13 + + + + + - + - + - - + - - - - - + - + + - + - 130
14 - - + - - - - - - - + + - + - - - - - + - + - - 127

Lin (1993, Technometrics)

Supersaturated Design Example

H
H
Hn n

n n
×

×

=
−

⎡

⎣
⎢

⎤

⎦
⎥

1 1
1 1

1

2

H 1 H 2and are isormophic?
(n - 2 ) n× 2

Lin (1991)
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Random
Balance
Design

Taguchi (1986)

X = H RH

orthogonal orthogonal

not orthogonal
Thus Permute rows of RH
to minimize , say.E s( )2

Supersaturated Design including an orthogonal base.

[ ]X = H R H C

matrix for column selection
to get rid of fully aliased
columns

EXAMPLES:
(1) R = D(    ) Wu (1993)

product
(2) R = P Tang & Wu (1993)

permute
(3) R = PD(    )

(4) R = 

nonequivalent Hadamard mx

hi

hi

1
n H Ha ′

Design Criteria

What is a “good” supersaturated 
design?



28

Design Criteria 
Supersaturated Design

• Booth and Cox (1962): 

• Wu (1993): Extension of classical optimalities ( etc)

• Deng and Lin (1994): 8 criteria

• Deng, Lin and Wang (1996): B-criterion

• Deng, Lin and Wang (1994): resolution rank

•Balkin and Lin (1997):
Graphical Comparison (Harmonic mean of eigens)

•Fang, Lin and Liu (2002):

E s( )2

D Af f,

CRITERIA FOR SUPERSATURATED DESIGNS
(C1) s = max

(C2)

(C3)

(C4) D-criterion =

(C5) A-criterion =

(C6) E-criterion =

(C7) B-criterion =

(C8) resolution rank.

s i j

E s sij
k( ) / ( )2 2
2= ∑

ρ = ∑ rij
k2
2/ ( )
1 1
k
c

s sX X⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−′∑ det( )

1 1
k
c

s sX X⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−′∑ trace( )

1 1
k
c

s sc X X⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−′∑ λ( ) ( )

1
k
c

s i s i s i s iX X g
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

′ ′∑ − − − −β β( )

Deng& Lin (1994)

Recent Design Criteria
Supersaturated Design

• Uniformity

•Generalized Minimum Aberration

•Majorization

•E(fNOD)

•Projection Properties (Df, Af, Gf, etc)

•E(χ2),  as an extension of E(s2)

•Minimax sij

•Model Robustness

Recent Design Criteria
Supersaturated Design

• Minimum Moment Aberration

•E(d2)

•G2-Aberration

•Asymptotic Power Properties

•Orthogonal-Based

•Factor-Covering

•Marginally Over-saturated

•Balance matrix
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Life After Screening: 
Projection Properties

Resolution rank (r-rank)

Example: E(fNOD)

where

Lower Bound of E(fNOD) Connection with Previous Criteria
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Data Analysis Methods

How to analyze the data resulted 
from a supersaturated design?

Data Analysis Methods
Supersaturated Design

• Pick-the-Winner

• Graphical Approach

• “PARC” (Practical Accumulation Record Computation)

• Compact Two-Sample Test

• Forward Selection

• Ridge Regression

• Normal Plot

Data Analysis Methods
Supersaturated Design

• Satterthwaite (1959)

• Lin (1993): Forward Selection

• Westfall, Young and Lin (1998): Adjusted p-value

• Chen and Lin (1998): Identifiability

• Ryan and Lin (1997): Half Effect

•Contrasts-Based

•Staged Dimension Reduction

• Ye (1995): Generalized degree of freedom

Design Analysis: Advances
Supersaturated Design

• Sequential Analysis
• All Subsets Models
• Adjusted p-value 

(Westfall, Young & Lin, Statistica Sinica, 1998)

• Bayesian Approach
(Beattie, Fong & Lin, Technometrics, 2002)

• Penalized Least Squares 
(Li & Lin, 2002)
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MODEL
Y = 1~ ⋅ + +μ β εX

~ ~
Y 1n × : observable data

: design matrix
: parameter vector
: noise

X n k×

β k × 1

ε n × 1
LET

N = {i i i p1 2, , . . . , }
A = {i i ip p k+ +1 2, , . . . , }

N A = { 1U , , . . . , }2 k

inert factor
active factor

Goal
Test H : = 0   v s .   H : 0j j j

c
jβ β ≠

H  is  tru e  if  j N
H  is  tru e  if  j A

j

j
c

∈
∈

⎧
⎨
⎩

Application to F.S. in S.S. Design

Method: Perform F.S. (ordinary) to determine entry sequence:
F-values are corresponding to factors .F F1

1
2

2( ) ( ), , . . . , X Xi i1 2, , . ..

Multiple Testing Algorithm:
i. Compute resampling distribution of max         for first variable

entered under complete null. P-value for first variable entered
is P(                            ).

ii. Compute resampling distribution of max        , ,
assuming all effects null but      . (Force      into all fits.) P-value
for second variable entered is P(                                             ).

iii. Compute resampling distribution of max        ,                          ,
assuming all effects null but       ,       . (Force      and        into
all fits.) P-value for third variable entered is
P(                                                  ).

F j
* ( )1

m a x F Fj
* ( ) ( )1

1
1≥

F j
* ( )2 j k i∈ −{ , . . . , }1 1

X i 1
X i 1

m a x j { , . . . k } - i F Fj∈ ≥1 1

2
2

2* ( ) ( )

F j
* ( )3 j k i i∈ −{ ,..., } { , }1 1 2

X i 1 X i 2 X i 1 X i 2

m a x j { , . . . k } - i i F Fj∈ ≥1 1 2

3
3

3
{ , }

* ( ) ( )

NOTES ON ALGORITHM (Adjusted p-value)

• Attributable to Forsythe et al. and Miller.
• Re-sampling may be parametric (sample from normal

distribution) or nonparametric (bootstrap sampling of 
residuals).

• Parametric re-sampling: Generate Y* ~ N(0, I). At step
l, compute

Compare to original        . 
• The method is conditional on original order of entry.
• The re-sampling p-value are forced to be monotonic: 
e.g., if             , define            . Benefit: Protection of
FWE under complete null.

j k i i F
l

j
l

∈ − −{ ,... } { ,..., } .
max *( )

1 1 1

Fl
l( )

~ ~p p2 1< ~ ~p p2 1=

Penalized Least Squares  (Li and Lin, 2003)

Model

Penalized Likelihood (Fan and Li, 1999)

Becomes
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Algorithmic
Supersaturated Design

Lin (1991, 1995): Pair-wise Optimality

Nguyen (1996): Exchange Algorithm

Li and Wu (1997): Column-wise and Pair-wise Algorithm

Church (1993): Projection Properties

Jones (2000): JMP Product

Spotlight Interaction Effects in Main Effect Plans:
A Supersaturated Design Approach

Dennis K.J. Lin
Department of Statistics
University of Tennessee

Knoxville, TN 37996-0532

ABSTRACT
In a traditional screening experiment, a first-order model is commonly assumed;
i.e., all interaction effects are tentatively ignored. The construction of first-order
main-effect designs that are optimal in some sense has received a great deal of
attention in the literature. However, the conventional wisdom on such a main-
effect design can be misleading, if any interaction effect is presented. With no
additional experimental cost, this paper shows how to spotlight interaction
effects in these so-called “main-effect” designs. It is shown that the proposed
method is superior to other existing approaches. Comparisons are made with
an example for illustration. Limitations and further research directions are 
also discussed.

Key words: Effect Sparsity; Normal Plot; Plackett and Burman designs;  
Screening; Stepwise Regression.

• Hamada and Wu (1992)

• Hen and Wang (1994)

• Wu (1993)

• Westfall, Young and Lin(1995)

• Estimated Main Effects

A 0.3258
B 0.2938
C     -0.2458
D     -0.5162 8 0.4458
E 0.1498 9 0.4525
F 0.9152 10 0.0805
G 0.1832 11      -0.2422
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Main Effect Model:

( ) . .
^

( . ) ( . )
1 5 73 0 4 58

0 1616 0 1616
y F= +

( ) . . .
^

( . ) ( . ) ( . )
2 5 73 0 258 0 458

0 1470 0 1470 0 1470
y D F= − +

R

S

R a

2

2

4 4 5 %

5 5 9 6

3 9 %

=

=

=

.

.

R

S

R a

2

2

5 8 7 %

5 0 9 1

4 9 5 %

=

=

=

.

.

.

• Estimated Interaction Effects

AB    .5578 BD   -.2375 CG    .3881
AC -.5078 BE   -.0782 DE   -.0215
AD   -.1315 BF   -.0555 DF   -.0882
AE   -.9075 BG  -.2075 DG   .4838
AF   -.0515 CD  -.5152 EF   -.1735
AG   -.2575 CE    .1042 EG   -.1715
BC   -.5838 CF    .1282 FG   -.9175

Main + Interaction Effect Model:

( ) . . .
^

( . )
1 5 7 3 0 4 5 8 0 4 5 9

0 0 7 5 0
y F F G= + −

R
S

2 8 9 3 %
0 2 5 9 6

=

=

.
.

Hamada & Wu (1992)

( ) . . . .
^

( . ) ( . ) ( . ) ( . )
4 5 7 3 0 3 9 4 0 3 9 5 0 1 9 1

0 0 5 2 8 0 0 5 6 0 0 5 6 0 0 6 0
y F F G A E= + − −

[ ]

( ) . . . . .
^

( . ) ( . )
.

( . ) ( . ) ( . )
3 5 7 3 0 0 7 6 1 0 4 0 1 0 3 7 7 0 1 6 9

0 0 5 0 0 5 5
0 2 0 9

0 0 5 3 0 0 5 5 0 0 5 9
y D F F G A E

P va lu e
N S

= − + − −
− =

( ) . . . .
^

( . ) ( . ) ( . ) ( . )
2 5 7 3 0 4 5 8 0 0 9 1 6 0 4 5 9

0 0 7 2 6 0 0 7 2 6 0 2 4 3 0 0 7 2 6
y F G F G

p
N S

= + + −
=

R
S

2 9 5 3 %
0 1 8 2 8

=

=

.
.

R
S

2 9 6 3 %
0 1 7 3 2

=

=

.
.

R
S

2 9 1 %
0 2 5 1 5

=

= .
Example: William’s Data
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Half Fraction of William's (1968) Data
Factor

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 y
1 + + + - - - + + + + + - + - - + + - - + - - - + 133
2 + - - - - - + + + - - - + + + + - + - - + + - - 62
3 + + - + + - - - - + - + + + + + + - - - - + + - 45
4 + + - + - + - - - + + - + - + + - + + + - - - - 52
5 - - + + + + - + + - - - + - + + + - - + - + + + 56
6 - - + + + + + - + + + - - + + - + + + + + + - - 47
7 - - - - + - - + - + - + + + - + + + + + + - - + 88
8 - + + - - + - + - + - - - - - - - - + - + + + - 193
9 - - - - - + + - - - + + - - + - + + - - - - + + 32

10 + + + + - + + + - - - + - + + - + - + - + - - + 53
11 - + - + + - - + + - + - - + - - - + + - - - + + 276
12 + - - - + + + - + + + + + - - + - - + - + + + + 145
13 + + + + + - + - + - - + - - - - - + - + + - + - 130
14 - - + - - - - - - - + + - + - - - - - + - + - - 127

Lin (Technometrics, 1993)

Supersaturated Design Example Graphical Approach

Stepwise Regression

SSVS  &  IBF
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Penalized Least Squares

SCAD (Smoothly Clipped Absolute Deviation, Fan, 1997)

λ is to be estimated (e.g.,  via GCV of Wahba, 1977)

Results via SCAD

(λ=6.5673)

Comparisons via Simulation
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Other Construction Methods

UD OD SSD

Fang, Lin & Ma (2000)

SSD: Looking Ahead

There will be more and more factors 
& parameters in the future 
experimental investigations!!!

New Methodology/Thinking is needed!
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Lecture 3:
Taguchi Method &
Dual Response Analysis

What is Quality?
Fashion
Reliability
Yield (Productivity)
Defective
Capacity
Optimization
Variation Deduction
Customer Satisfaction
Market Share

SONY--JapanSONY--USA

Taguchi Method

Loss Function

Robust Design 
(Inner/Outer Array Design)

S/N Ratio
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Output

Input

Quality Loss Function

Robust (Taguchi) Design

What do the customers want?

What the customers don’t want?

Variation Deduction
Example:  Sony
Example:  Ina Tile

An overview of noise variables

Controllable variables are process factors that can be controlled 
precisely. 

Noise variables are factors that cannot be controlled precisely.
They introduce non-negligible error into the process response. 
Examples of noise variables:

Experiment Control variables Noise variables
baking a cake ingredients oven temperature

tablet optimization particle size ambient humidity

poultry growth % protein, food intake
optimization % carbohydrate

In robust optimization we would like to configure the controllable 
factors such that ideally we have a process mean close to our target
with low variance.
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X1 X2 X3
1 1 1
2 1 1
1 2 1
2 2 1
1 1 2
2 1 2
1 2 2
2 2 2

Z1 Z2
Obs

1 1 Y11

2 1 Y12

1 2 Y13

2 2 Y14

• One Observation
Y1

• Several Replicates
Y11, Y12, …, Y1n

• Designing these Replicates

• Compound Orthogonal Arrays

• Uniform Design
Wang, Fang and Lin (1995)

Close
To
Target

Minimum
Variation

Inner/Outer Array:
Design, Analysis and 
Optimization
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Printer Process Example

X1 X2 X3 Y1 Y2 Y3

-1 -1 -1 34 10 28

0 -1 -1 115 116 130

1 -1 -1 192 186 263

-1 0 -1 82 88 88

0 0 -1 44 178 188

1 0 -1 322 350 350

-1 1 -1 141 110 86

0 1 -1 259 251 259

1 1 -1 290 280 245

X1 X2 X3 Y1 Y2 Y3

-1 -1 0 81 81 81

0 -1 0 90 122 93

1 -1 0 319 376 376

-1 0 0 180 180 154

0 0 0 372 372 372

1 0 0 541 568 396

-1 1 0 288 192 312

0 1 0 432 336 513

1 1 0 713 725 754

X1 X2 X3 Y1

-1 -1 1 364

0 -1 1 232

1 -1 1 408

-1 0 1 182

0 0 1 507

1 0 1 846

-1 1 1 236

0 1 1 660

1 1 1 878

Myers, R.H. and Carter, W.H. (1973)
Response Surface Techniques

for Dual Response System
Technometrics, 15, 301-317.

Primary Response
Secondary Response

location
dispersion

Printer Process Example

X1 X2 X3 Mea
n

sd

-1 -1 -1 24 12.49

0 -1 -1 120.3 8.39

1 -1 -1 213.7 42.8

-1 0 -1 86 3.46

0 0 -1 136.7 80.41

1 0 -1 340 16.17

-1 1 -1 112.3 27.57

0 1 -1 256.3 4.62

1 1 -1 271.7 23.63

X1 X2 X3 Mea
n

sd

-1 -1 0 81 0

0 -1 0 101.7 17.67

1 -1 0 357 32.91

-1 0 0 171.3 15.01

0 0 0 372 0

1 0 0 501.7 92.5

-1 1 0 264 63.5

0 1 0 427 88.61

1 1 0 730.7 21.08

X1 X2 X3 Me
an

sd

-1 -1 1 220.
7

133.8

0 -1 1 239.
7

23.46

1 -1 1 422 18.52

-1 0 1 199 29.45

0 0 1 485.
3

44.64

1 0 1 673.
7

158.2

-1 1 1 176.
7

55.51

0 1 1 501 138.9

1 1 1 1010 142.5

η β β β β εp i i
i

k

ii i ij i j p
i j

k

i

k

x x x x= + + + +
= <=

∑ ∑∑∑0
1

2

1

η γ γ γ γ εs i i
i

k

ii i ij i j s
i j

k

i

k

x x x x= + + + +
= <=

∑ ∑∑∑0
1

2

1
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ω μ

^
x x x x

x x x x
x x x x

= + + + +

− − +
+ +

327 6 177 0 109 4 1315 32 0
291 66 0

43 6

1 2 3 1
2

2
2

3
2

1 2

1 3 2 3

. . . . .
. .

. .
        22.4
        75.5

ω σ

^
x x x x

x x x x x x x x
= + + + +

− + + + +

34 9 115 15 3 29 2 4 2
16 8 7 7 51 141

1 2 3 1
2

2
2

3
2

1 2 1 3 2 3

. . . . .
. . . . .        1.3

min

subject to

ω σ

^

ω μμ

^
= 0 .

( , , ) ( . , . , . )x x x1 2 3 0 614 0 228 0 1=   

ω μ

^
= 5 0 0

ω σ

^
= 5 1 7 7.

An Illustrative Example

Step 1. Find a model fitting for      and     
(both are functions of x).

Step 2. Find x, such that

is minimized.

ω σω μ

M S E T
^ ^

= − +( )ω ωμ σ
2

2
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Method Optimal Setting MSE
Vining & Myers (0.614, 0.228, 0.1)   500 2679.70 2679.70

MSE method (1.0, 0.07, -0.25) 494.44 1974.02 2005.14

ω μ

^
ω σ

^ 2

Best Subset Model:

ω μ

^
x x x x x

x x x x x x x
= + + + +

+ + +
314 667 177 0 109 426 131463 66 028

43 583 82 792
1 2 3 1 2

1 3 2 3 1 2 3

. . . . .
. .        75.472

ω σ

^
x x x x x x= + + + +47 994 11527 15 323 29190 29 5661 2 3 1 2 3. . . . . .

( )
^

ω ωμ σ

^
− +5 0 0 2

2

Min

( , , ) ( , . )x x x1 2 3 1 0 525=  1,  -

ω μ

^
= 4 9 2 2 8.

ω σ

^
= 4 4 0 1.

Mean Squared Error (MSE) Criterion

(Lin and Tu, 1995) 

• T is the target value.
• λ is the weighting factor (0 ≤ λ ≤ 1).

Lin and Tu (1995) implicitly set λ at 0.5.

22 ))(ˆ()T)(ˆ(MSE xx σμ ω+−ω=

(bias) (variance)

22 ))(ˆ)(1()T)(ˆ(WMSE xx σμ ωλ−+−ωλ=

Determination of λ in WMSE
Data-driven approach (Ding et al., 2003)

Procedure
Generate (p, q).

Find    ’s that minimizes the WMSE 

criterion for various λ ranging from 0 to 1.

Plot the efficient curve for    ’s.

Find x* that minimizes

The corresponding λ* is obtained.

The meaning of λ*

The weight at which the mean and standard 
deviation minimizing the WMSE criterion is 
closest to the ideal point.

)(ˆ xμω

)(ˆ xσω

(p, q)

Efficient curve

• (p, q): the ideal point of ))(ˆ),(ˆ( qp xx σμ ωω

))(ˆ),(ˆ( ** xx σμ ωω

}))(ˆ{(minarg},)T)(ˆ{(minarg 2q2p xxxx
xx σμ ω=−ω=

.)q)(ˆ()p)(ˆ( 22 −ω+−ω σμ xx

x

x
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Comparisons
)(ˆ *Xμω )(ˆ *Xσω

Method Optimal setting   X* λ

VM (0.620, 0.230, 0.100) 500.000 51.900 0.99*

LT (1.000, 0.074, -0.252) 494.659 44.463 0.50

KL (dμ=-4.39, dσ=0) (1.000, 0 .086, -0.254) 496.111 44.632 0.58

CN (ρ=1, Δ=5) (0.975, 0.056, -0.214) 495.020 44.727 0.52*

Proposed method (1.000, 0.089, -0.255) 496.473 44.671 0.60

Existing Works for Optimization Criterion

Vining and Myers (1990)
• Primary response

Lin and Tu (1995)
• Mean squared error (MSE)

Kim and Lin (1998)
• Minimum membership degree

Existing Works for Optimization Criterion

Vining and Myers (1990)
• Primary response

Lin and Tu (1995)
• Mean squared error (MSE)

Kim and Lin (1998)
• Minimum membership degree

Dual Response Surface Problem

X

Input Variables Response Surfaces

)(ˆ xμω

)(ˆ xσω

(mean)

(standard deviation)

x
)}(ˆ),(ˆ{ xx σμ ωωOptimize

Other Important Issues

Combined Array vs. Product Array
Type of Noise Factors
Choice of Performance Measures
The purposes of the inner array and 
the outer array are very different !!!

Ina Tile Company (Japan, 1953)

Clay tiles fired in kiln
Problem:  Size variation in tiles

(Possibly due to temperature gradient in kiln)
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Possible Remedies:
1) Buy a new kiln with precise controllability of 

temperature and temperature gradient
2) Seek a more “robust” recipe for tile clay

Design of Experiment
Solution:  Add 5% Lime

Size variation reduced
No additional cost

Multiple 
Response 
Optimization

RSM : Example

y1= process yield (LTB)
x1= reaction time,  x2= reaction temperature
Response Surface of y1

= 80.21  at      = (x1
*,  x2

*) = (87.0, 176.5)                    *x*
1ŷ

RSM : Example (continued)

What if y2(viscosity; NTB) and y3(molecular weight; STB) 
are added?

Response Surface of y2

V
IS

C
O

S
IT

Y
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RSM : Example (continued)

Response Surface of y3

RSM : Example (continued)

Acceptable Region : y1 78.5, 62 y2     68 , y3     3400≥ ≤

Optimal *x = (      ,       ) = ?*
1x *

2x

≤ ≤

Multi-Response System (MRS)

Multiresponse variables measured for each setting of input variables

Common problem in product/process design

y1= PICO Abrasion Index
y2= 200% Modulus
y3= Elogation at Break
y4= Hardness

x1= Silica Level
x2= Silane Coupling Agent 
level
x3= Sulfur Level

Tire

(Derringer and Suich 1980) (Logothetis and Haigh 1988) (Reddy, Nishina, and Babu 1997)

y1= Outer Diameter
y2= Height
y3= Pull-out Force

x1= Mold Temperature
x2= Injection Pressure
x3= Hold on Pressure
x4= Injection Time
x5= Hold on Time
x6= Cooling Time
x7= Fill Time

Injection Molding of 
Washing Machine 

Agitator
Plasma-Etching 

Process
y1= Linewidth of Track
y2= Nonuniformity of Etch Rate
y3= Etch Rate of Al/Si Alloy Layer
y4= Photoresist Etch Rate
y5= Oxide Etch Rate

x1= Pressure of Reaction Chamber
x2= Radio-frequency Power Level
x3= Temperature
x4= Flow Rate of Boron Trichloride
x5= Flow Rate of Silicon 
Tetrachlorine
x6= Flow Rate of Chlorine

Multi-Response System (continued)

Dry Noodle Processing (Ventresca 1993)

Beef Stew Pouch (Elsayed and Chen 1993)

Hose-to-Connector Assembly (Goik, Liddy, and Taam 1994)

Gear Hardening Process (Layne 1995)

Bonding Process in Semiconductor ( Del Castillo et al. 1996)

Electrochemical Cutting Mechanism (Anjum et al. 1997)

Characterization of Colloidal Gas Aphrons (Jauregi et al. 1997)
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Examples of Multiple Response Surface 
Optimization Problems

Quite often we may have an experimental optimization situation where 
we have two or more simultaneous responses for each factor configuration.

Examples:
Process: HLPC assay optimization.
Responses: Resolution, Run time, Signal-to-noise, Tailing
Factors: pH, column temperature, etc.

Process: Pharmaceutical tablet optimization .
Responses: dissolution rate, hardness, friability, etc
Factors: various excipient levels.

Process: Chemical process optimization
Responses: Conversion, activity
Factors: time, temperature, and catalyst.

.

Process: Chemical Mechanical Polishing (semiconductor manufacturing)
Responses: Removal Rate, Non-uniformity (lack of flatness)
Factors: rotating speed, polish head down force, Back pressure.

Process: Etching process (semiconductor manufacturing)
Responses: etch thickness, etch uniformity (std. dev.)
Factors: Rotation speed, N2 (nitrogen) flow, amount of oxide etched

Process: Machining process (e.g. lathe used in metal cutting)
Responses: dimension(s) manufactured, surface finish, material removal rat
Factors: cut angle, feed rate, workpiece rotational speed

Process: Design of a force transducer
Responses: Nonlinearity and hysteresis
Factors: lozenge angle, bore diameter, 

lozenge angle deviation, bore diameter deviation

Noise variables

Examples of Multiple Response Surface
Optimization Problems

MRS : Stages

Data Collection Optimal Setting

Model Building

*x
Multiresponse Surfaces

)(ˆ),...,(ˆ 1 xx ryy

Optimization

What to optimize ?

How to optimize it ?

,(x )),...,,( 21 ryyy

Overlapping mean response surfaces

Example: Pseudolatex formulation for a controlled drug release coating

Responses:
Y1 = particle size,  Y2 = glass transition temperature

Factors:
x1 = % of Pluronic F68,  x2 = % of polyoxyethylene sorbitan 40 monostearate,

and x3 = % of polyoxyethylene sorbitan fatty acid ester NF

Goal: Choose factor levels such that they minimize Y1 and Y2 or at least 
keep                  and                .2341 ≤Y 182 ≤Y

( )32110and1321 ,,i,xxxx i =≤≤=++
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Response Surfaces for Y1 and Y2 Means

Design Expert Plots

Particle Size (nm) Glass Transition Temp. (oC)

X1=1 X1=1

X2=1 X3=1 X2=1 X3=1

X2=1 X3=1

X1=1

Overlapping Contours Plots Produce a “Sweet Spot”
Here, the predicted response surface means are such that:

and ( ) 2341 ≤x|YÊ ( ) 182 ≤x|YÊ

“Sweet Spot”
(gray area)

Design Expert Plot

Harrington (1965) or Derringer-Suich (1980)
Desirability Functions

Currently multiple response surface optimization is done by using 
the following (geometric mean) objective function

where             is constructed to reflect the optimization desires of the

experimenter for the jth response type.

( ) ( )

1/

1
,

qq
j

j
D d

=

⎡ ⎤
= ∏⎢ ⎥

⎢ ⎥⎣ ⎦
x x

( )jd x

or( )jd x
( )jd x

( )ˆ jy x ( )ˆ jy x
00

1
1

Contour Plot of the Harington Desirability Function
for the controlled drug release coating example

 0.2
 0.3
 0.37
 0.63
 0.8
 0.9
 aboveX2 X3

X1

Harrington Scale:
D > 0.8 => “Excellent”
0.60 <D < 0.8 =>”Good”
0.37 <D < 0.60 =>”Fair”
D < 0.37 => “Unacceptable”

max D = 0.92 for x = (0.75, 0, 0.25)

max D = 0.92
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Drawbacks of the “sweet spot” and desirability
function approaches.

They do not take into account the underlying covariance structure
of the multivariate response data. 

They do not take into account the uncertainty of the unknown model
parameters.

The “sweet spot” approach does not take into account how likely future
values are to satisfy the experimenter’s specifications.

The desirability approach does not take into account how likely future
values are to satisfy the required desirability level.

How certain can we be that the “sweet spot” will 
produce sweet results?

In other words, what is                                         for x-points 

within the sweet spot? 

By computing                                                    over the 

experimental region we can make such an assessment.

By taking a Bayesian approach it is possible to assess, in a 
straightforward way, the reliability of the conditional event 

in such a way as to take into account the uncertainty of the
model parameters.

( )x|Y,YPr 18234 21 ≤≤

( ) ( )xx |Y,YPrp 18234 21 ≤≤=

{ } xX =≤≤ given18234 21 Y,Y

How often will the best Harrington desirability level
be “at least good”? 

Since the desirability function is a mean it is mathematically possible
in some cases that one or more of the responses could be out of spec. 
yet we still have an “acceptable” desirability level.

Given the Harrington scale, one may want to consider

where ( )( )xY |.DPr 600≥

Harrington Scale:
D > 0.8 => “excellent”
0.60 <D < 0.8 =>”good”
0.37 <D < 0.60 =>”fair”
D < 0.37 => “very poor” to “poor”

( )′= 21 Y,YY

Why is the “sweet spot” not so sweet?
If the mean of Y at a point x is less than an upper bound, u,

then all that guarantees  is that

Suppose                                         .    If Y1 and Y2 were independent,

then all that is guaranteed is that

For k independent Yi’s  the situation becomes: 

If Y1 and Y2 are positively correlated then it may be easier to find 

x-points to make                                         large.   Likewise, if Y1 and Y2

are negatively correlated (for each x) then it may be more difficult.

Note: Corr(Y1, Y2 | x) = -0.62 for the mixture experiment.

( ) 50.|uYPr >≤ x

21 21
and uu YY ≤≤ μμ

( ) 2502211 .|uY,uYPr >≤≤ x

( ) k
kk .x|uY,....,uYPr 5011 >≤≤

( )x|uY,uYPr 2211 ≤≤
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Contour Plot of the Harington Desirability Function
for the controlled drug release coating example

 0.2
 0.3
 0.37
 0.63
 0.8
 0.9
 aboveX2 X3

X1Harrington Scale:
D > 0.8 => “excellent”
0.60 <D < 0.8 =>”good”
0.37 <D < 0.60 =>”fair”
D < 0.37 => “very poor” to “poor”

However, 
is only 0.72 !

In other words, the 
chances of a new D(Y)
response being at least
marginally “good”
is only 72% despite
the fact that the 
maximum D value based upon
the mean response surfaces is rated “excellent”.

max D = 0.96

( )( )xY |.DPr 600≥

MRS Optimization : Approaches

Priority–based Approach

Desirability Function Approach*

Generalized Distance Approach*

Loss Function Approach*

* dimensionality reduction strategy

Priority – based Approach

Primary response  vs.  Secondary responses

Framework

Related Work
Hoerl (1959)                           Del Castillo and Montgomery (1993)
Myers and Carter(1973)         Copeland and Nelson (1996)
Biles (1975)                            Semple (1997)
Vining and Myers (1990)        Del Castillo, Fan, and Semple (1999)

Optimize   Primary response

s.t Requirements for secondary responses
Ω∈x

x

Framework of 
Dimensionality Reduction Strategy

X
.
.
.

1ŷ

2ŷ

rŷ

Parameter Setting Estimated Response

z
Objective

(Single Aggregate Measure)

Aggregation

• Desirability Function Approach
Harrington(1965), Derringer and Suich(1980), 
Derringer(1994), Del Castillo, Montgomery, and 
McCarville(1996), Kim and Lin(2000)

• Generalized Distance Approach
Church(1978), Khuri and Conlon(1981)

• Loss Function Approach
Pignatiello(1993), Reibeiro and Elsayed(1994), 
Ames et al.(1997), Lin and Tu(1995), Vining(1998)
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Desirability Function Approach

Framework

Find X* to Maximize D

Related work 
Harrington (1965) Kim and Lin (1998)
Derringer and Suich (1980) Kim and Lin (2000)
Derringer (1994) Del Castillo, Montgomery, and McCarville (1996)
Goik, Liddy, and Taam (1994)

X D

1d

2d
.
.
.

1̂y
2ŷ

rŷ rd

.

.

.

Parameter Setting Estimated Response Individual Desirability Overall Desirability

Desirability Function Approach (cont’d)

Derringer and Suich (1980), Derringer (1994)

•

• D =

• Hard to Interpret the Value of D

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

≤

=

.ˆ,1

,ˆ,
ˆ

,ˆ,0

max

maxmin
minmax

min

min

jj

jjj

u

jj

jj

jj

j

yy

yyy
yy

yy

yy

d

∑ jr ww
r

ww ddd /1
21 )...( 21

Generalized Distance Approach

Framework

= Distance between           and 

Find      to Minimize       

Related work
Church (1978)
Khuri and Conlon (1981)

)),(ˆ( φρ xy*x

)),(ˆ( φρ xy )(ˆ xy φ

X

1ŷ
2ŷ )),(ˆ( φρ xy

1φ

2φ

rφrŷ

.

.

.
.
.
.

Parameter Setting Estimated Response Individual Optimum

Generalized Distance Approach (cont’d)

Khuri and Conlon (1981)  

• Distance of Estimated Responses from Estimated “Ideal” Optimum

where                         is the ideal optimum,
is the estimator of the common variance-covariance matrix of the random errors (               ),

X is the design matrix, and 
z(x) is a column vector of the input variables of the given model.

• Assume All Response Functions
- Depend on the same set of input variables.
- Are of the same form.

[ ] ,)()')(('/))(ˆ()')(ˆ(]),(ˆ[
2/111ˆ xzXXxzxyxyxy −− −−= ∑ φφφρ

Σ̂ rεεε ,...,, 21

],...,,[ 21 ′= rφφφφ
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Loss Function Approach

Framework

=                                         (Multivariate squared error loss)

Find       to minimize

Related Work

Pignatiello (1993)                        Ribeiro and Elsayed (1994) 
Ames et al. (1997)                       Lin and Tu (1995)
Vining (1998)

)),(ˆ( φxyL [ ]′−φ)(ˆ xy [ ]φ−)(ˆ xy
*x )(LE

X

1ŷ
2ŷ

1φ

2φ

rφrŷ

.

.

.
.
.
.

Parameter Setting Estimated Response Individual Target

)),(ˆ( φxyL

C

Colloidal Gas Aphrons (CGA) Study
Characterization of CGA Properties (Jauregi et al. 1997)

Responses : 
Stability (y1, LTB),
Volumetric Ratio (y2, STB),   
Temperature (y3, NTB)

Input Variables : 
Concentration of Surfactant (x1), 
Concentration of Salt (x2), 
Time of Stirring (x3)

Design : CCD with 8 Factorial Points*, 6 Axial Points*, 
and a Center Point**      
( * Replicated twice, ** Replicated 6 times)

Example : CGA Study (continued)

Fitted “Mean” Models

Linear Desirability Functions (for simplicity)

Derringer and Suich (DS) Method :
Maximize

= 4.95 + 0.82x1 – 0.45x2 – 0.15x1
2 + 0.28 x2

2 - 0.11x1x2 + 0.07x1x3 (R2 = 0.91)

= 0.46 + 0.13x1 – 0.06x2 + 0.05 x3 – 0.07x1
2 - 0.04 x3

2 (R2 = 0.87)

= 28.36 – 1.48x1 + 2.33x3 – 0.15x1
2 – 1.42 x2

2 - 0.71x1x3 (R2 = 0.12)

)(ˆ
1

xyμ

)(ˆ
2

xyμ

)(ˆ
3

xyμ

x
3

332211 )ˆ()ˆ()ˆ( μμμμμμ ydydyd

)3,2,1(11 =≤≤− ixiSuch that

))(ˆ(,))(ˆ( ** DSjjDSjj
ydyd xx σσμμ

maxmax , jj
yy σμ

Example : CGA Study (continued)

jj
TT σμ ,

)(ˆ,)(ˆ ** DSjDSj
yy xx σμ

Bounds and Target

3.00,  0.00 0.10,  0.00 15.00,  1.00

7.00,  0.10 0.60,  0.10 45.00,  2.00

7.00,  0.00 0.10,  0.00 30.00,  1.00
Optimization Results

DS Method xDS
* = (-1.00, -1.00, -1.00)    

4.66,  0.06 0.24,  0.08 25.38,  4.54
0.41,  0.41 0.72,  0.23 0.69,  0.00

Responses
y1 y3y2

)(ˆ 1 xσy

)(ˆ 2 xσy

)(ˆ 3 xσy

Fitted “Standard Deviation” Models 

† The and                  values for the standard deviation responses are computed a posteriori at the given xDS* ,  
and are written in italic.

jyσˆ )ˆ( jj yd σσ

= 0.06 + 0.11x2 + 0.06x3 + 0.12x1
2 + 0.11x3

2 - 0.10x1x3 + 0.05x2x3     (R2 = 0.84)

= 0.02 - 0.01x1 + 0.01x2 - 0.01x3 + 0.02x3
2 – 0.01x1x3 + 0.02x2x3 (R2 = 0.83)

= 6.08 – 1.53x1 + 0.50x2 + 4.85x3 + 2.26 x2
2 - 0.65x1x3 - 0.67 x1x2x3           (R2 = 0.95)

minmin , jj
yy σμ
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Proposed Approach* : Framework

Consideration of Both Location and Dispersion Effects

“Maximining” Desirability Functions

Framework

},,,,,{ 11 rr ddddMinimum σσμμ LL=D

X D.
.
.

1ˆμy

.

.

.

Parameter Setting Estimated Response Individual Desirability  Overall Desirability

1σ̂y 1σd, ,
,

,

1μd

2μd 2σd

rdμ rdσ

2ˆμy 2σ̂y,

ryμˆ , ryσ̂

* Co-work with Kwang-Jae Kim

Find X* to Maximize D.

Proposed Approach : Formulation

subject to

λ
x

Maximize

,21,))(ˆ( r...,,,jyd
jj

=≥ λμμ x

,...,,2,1,))(ˆ( rjyd jj =≥ λσσ x

Ω∈x .

Example : CGA Study - Revisited

† The and                  values for the standard deviation responses are computed a posteriori at the given  xDS* ,  
and are written in italic.

jyσˆ )ˆ( jj yd σσ

0.50,  0.36 0.45,  0.50

minmin , jj
yy σμ

))(ˆ(,))(ˆ( ** PjjPjj
ydyd xx σσμμ

Proposed Method xp
* = (-0.21, -0.40, -1.00)    

5.00,  0.06 0.37,  0.05 25.96,  1.64

0.73,   0.36

))(ˆ(,))(ˆ( ** DSjjDSjj
ydyd xx σσμμ

maxmax , jj yy σμ

jTσjTμ ,

)(ˆ,)(ˆ ** DSjDSj
yy xx σμ

Bounds and Target

3.00,  0.00 0.10,  0.00 15.00,  1.00

7.00,  0.10 0.60,  0.10 45.00,  2.00

7.00,  0.00 0.10,  0.00 30.00,  1.00

Optimization Results

DS Method xDS
* = (-1.00, -1.00, -1.00)    

4.66,  0.06 0.24,  0.08 25.38,  4.54

Responses

y1 y3y2

0.41,  0.41 0.72,  0.23 0.69,  0.00

)(ˆ,)(ˆ ** PjPj
yy xx σμ

Proposed Approach : General Properties

Advantages

Good Balance among Responses on Both Location and Dispersion Effects

Robust to Potential Dependencies among Responses

Physical Interpretation of

Disadvantages

Unreasonable Solutions Possible

e.g.   Let  

Costs for Required Replication

λ

),,,( 2121 σσμμ dddd=d
)49.0,99.0,99.0,99.0(=d2)5.0,5.0,5.0,5.0(=d1

)50.0,99.0,99.0,99.0(=d3)5.0,5.0,5.0,5.0(=d1 vs.

vs.
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x
Maximize

Proposed Approach : Variations

Responses were alternatives rather than all being essential.

V1 : Consideration of Alternative Responses

{ maximum (λ1, λ2, …, 
λr)}

,21,))(ˆ( r...,,,jyd jjj
=≥ λμμ x

,...,,2,1,))(ˆ( rjyd jjj =≥ λσσ x

Ω∈x

subject to
*x

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
40.0
21.0

)(ˆ 11 μμ dy

)(ˆ 22 μμ dy

)(ˆ 33 μμ dy
)(ˆ 11 σσ dy
)(ˆ 22 σσ dy
)(ˆ 33 σσ dy

5.00 (0.50) 4.94 (0.48)

0.37 (0.45) 0.38 (0.44)
25.96 
(0.73)

26.06 
(0.74)

0.06 (0.36) 0.10 (0.00)

0.05 (0.50) 0.04 (0.57)

1.64 (0.36) 1.26 (0.74)

Proposed
Model V1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
04.0
03.0

.

Proposed Approach : Variations

*x
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
40.0
21.0

)(ˆ 11 μμ dy

)(ˆ 22 μμ dy

)(ˆ 33 μμ dy
)(ˆ 11 σσ dy
)(ˆ 22 σσ dy
)(ˆ 33 σσ dy

5.00 
(0.50)

4.98 
(0.49)

0.37 
(0.45)

0.37 
(0.46)

25.96 
(0.73)

25.98 
(0.73)

0.06 
(0.36)

0.06 
(0.36)

0.05 
(0.50)

0.05 
(0.50)

1.64 
(0.36)

1.64 
(0.36)

Proposed
Model

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
39.0
22.0

4.91 
(0.48)

0.36 
(0.48)26.08 
(0.74)

0.06 
(0.35)

0.05(0.50)
1.65 

(0.35)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

99.0
34.0
27.0

4.91 
(0.48)

0.36 
(0.48)
26.06 
(0.74)

0.06 
(0.36)

0.05 
(0.50)

1.64 
(0.36)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
35.0
27.0

V2

1.0=α 5.0=α 9.0=α

10 ≤≤ α

σμ λααλ )1(Maximize −+
x

subject to

,21,))(ˆ( r...,,,jxyd
jj

=≥ μμμ λ

where

V2 : Assignment of Different Weights on Mean and Standard Deviation

Ω∈x

,21,))(ˆ( r...,,,jxyd jj =≥ σσσ λ

,

.

Proposed Approach : Variations

*x
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
40.0
21.0

)(ˆ 11 μμ dy

)(ˆ 22 μμ dy
)(ˆ 33 μμ dy
)(ˆ 11 σσ dy
)(ˆ 22 σσ dy
)(ˆ 33 σσ dy

5.00 
(0.50)

5.00 
(0.50)

0.37 
(0.45) 0.38(0.45)
25.96 
(0.73)

25.95 
(0.73)

0.06 
(0.36)

0.06 
(0.36)

0.05 
(0.50)

0.05 
(0.50)

1.64 
(0.36)

1.64 
(0.36)

Proposed
Model

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
40.0
21.0

4.98 
(0.50)

0.37 
(0.45)25.99 
(0.73)

0.07 
(0.33)

0.05(0.51)
1.57 

(0.43)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
36.0
20.0

5.13 
(0.53)

0.41 
(0.39)
25.88 
(0.73)

0.01 
(0.00)

0.04 
(0.56)

1.15 
(0.85)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

00.1
23.0
09.0

V3

4.0=β 7.0=β 0.1=β

jgμ

subject to

where        and        are positive slacks;
is a positive scaling constant.

V3 : Compensation of the “Maximin” Criterion

)]([Maximize
1

j

r

j
jx

gg σμβλ ∑
=

++

,))(ˆ( λμμ ≥x
jj

yd

,))(ˆ( λσσ ≥x
jj yd

,))(ˆ( λμμμ =−
jjj

gyd x

,21,))(ˆ( r...,,,jgyd jjj ==− λσσσ x

Ω∈x

jgσ

β

,

,21 r...,,,j =

,21 r...,,,j =

,21 r...,,,j =

MRS Optimization : Interactive Approach

Choose a objective(s) to be 
tightened or relaxed.

There is no 
solution

is the best 
compromise solution.

nx

no

yes yes

Are all objectives 
satisfactory?

no

END

Calculation 
Phase

Decision-Making Phase

Reset the bounds
of the objective(s).

START

Set the bounds 
of each objective.

Solve the 
optimization 

problem
Are all objectives 

unsatisfactory?


