Response Surface Methodology: 50 Years Later

Dennis K.J. Lin The Pennsylvania State University DennisLin@psu.edu

Workshop on SASA Conference 30 November, 2006

Response Surface Methodology

- RSM Strategy
- Variable Screening Process
- Analysis of Response Surface
- Dual Response Surface and Multiple response Problems
- Others?

Response Surface Methodology Box and Wilson (1951) "On the Experimental Attainment of Optimum Condition," JRSS-B, **13**, 1-45. Box and Hunter (1957) "Multi-Factor Experimental Designs for Exploring Response Surface," Annals of

Mathematical Statistics, 28, 195-241.

Ambitious Goal

- What is Response Surface Methodology?
- What type of problems they had in mind back to 1950?
- What was available in 1950?
- What type of problems today (50 years later)?
- What is available today?
- Can we do something significantly different?

What is RSM All About?

The Experimenter is like a person attempting to map the depth of the sea by making soundings at a limited number of places

 If a lot if known, you may find more detailed study is necessary, in particular, careful study of maxima.

Basic Approach

- If we are far away from the top, all we need is to find the direction for improvement...in this case, a first-order approximation may be sufficient.
- If we are close to the top, all we need is to find the exact location of the top...in this case, a more complicated model (such as a second-order model) is needed.

	variab	les in original units	variab coded	response: yield	
run*	time (min)	temperature (°C)	<i>x</i> ₁	x2	(grams) y
1	70	127.5	-1	-1	54.3
2	80	127.5	+1	-1	60.3
3	70	132.5	-1	+1	64.6
4	80	132.5	+1	+1	68.0
5	75	130.0	0	0	60.3
6	75	130.0	0	0	64.3
7	75	130.0	0	0	62.3

Fit

$$\begin{array}{l} & & \\ & y = 62.01 + 2.35 x_1 + 4.5 x_2 \\ & (\pm 0.75) + (\pm 0.75) \end{array}$$

$$b_{12} = -0.65 \qquad \text{Nonsign.}$$

$$b_{11} + b_{22} (= \overline{y}_f - \overline{y}_c) \\ & = -0.50 \qquad \text{Nonsign.}
\end{array}$$

		units	variab	les in units	response: yield	Least Square Fitting
run*	time (min)	temperature (°C)	x1	<i>x</i> ₂	(grams) y	$y = 62.01 + 2.35x_1 + 4.$
1	70	127.5	-1	-1	54.3	$b_{12} = -0.00 (\pm 0.73)$
2	80	127.5	+1	-1	60.3	$b_{11} + b_{22} = -0.50 (\pm 1)$
3	70	132.5	-1	+1	64.6	
4	80	132.5	+1	+1	68.0	
5	75	130.0	0	0	60.3	Conclusion
6	75	130.0	0	0	64.3	conclusion.
7	75	130.0	0	0	62.3	
						Action Taken:
						Steepest Ascent
						-2.35:4.50 (or 1

.50x₂+ε 15)

adequate.

ovement :1.91)

Run more experiments	
following the direction of	1:1.91 (= 2.35 : 4.50)

	conc	ded	time (min)	temperature (°C)		observed		
	x_1	<i>x</i> ₂	t	Т	run	yield		
center conditions	0	0	75	130.0	5, 6, 7	62.3 (average)		
	[1	1.91	80	134.8	8	73.3		
	2	3.83	85	139.6				
path of steepest	3	5.74	90	144.4	10	86.8		
ascent	4	7.66	95	149.1				
	15	9.57	100	153.9	9	58.2		

	variables	in original units	variab	les in	response		
run*	time (min)	temperature (°C)	x ₁	x ₂	yield (grams)		
11	80	140	-1	-1	78.8]		
12	100	140	+1	-1	84.5		
13	80	150	-1	+1	91.2		
14	100	150	+1	+1	77.4		
15	90	145	0	0	89.7		
16	90	145	0	0	86.8		

Fit

$$\begin{array}{l} & \bigwedge \\ y = 84.73 - 2.025 \\ _{(\pm 0.75)} x_1 + 1.325 \\ _{(\pm 0.75)} x_2 \\ \\ & b_{12} = -4.88 \\ (\pm 0.75) \\ \\ & b_{11} + b_{22} = -5.28 \\ (\pm 1.15) \\ \end{array}$$
Significant!

	variables in original units		varial	oles in l units	response:	
run*	time (min)	temperature (°C)	x ₁	x2	yield (grams)	
11	80	140	-1	-1	78.8	
12	100	140	+1	-1	84.5	second
13	80	150	-1	+1	91.2	first-ord
14	100	150	+1	+1	77.4	design
15	90	145	0	0	89.7	
16	90	145	0	0	86.8	
17	76	145	$-\sqrt{2}$	0	83.3	runs
18	104	145	$+\sqrt{2}$	0	81.2	added to
19	90	138	0	$-\sqrt{2}$	81.2	form a
20	90	152	0	$+\sqrt{2}$	79.5	composi
21	90	145	0	0	87.0	design
22	90	145	0	0	86.0	

. . . .

MODEL $Y = 1 \cdot \mu + X \beta + \varepsilon$ MODEL $Y_{n \times 1} : \text{ observable data}$ $X_{n \times k} : \text{ design matrix}$ $\beta_{k \times 1} : \text{ parameter vector}$ $\varepsilon_{n \times 1} : \text{ noise}$
$N = \{i_1, i_2, \dots, i_p\} $ inert factor $A = \{i_{p+1}, i_{p+2}, \dots, i_k\} $ active factor $N \cup A = \{1, 2, \dots, k\}$ Goal Test $H_j: \beta_j = 0 \text{ vs. } H_j^c: \beta_j \neq 0$ $\begin{cases} H_j \text{ is true if } j \in N \\ H_j^c \text{ is true if } j \in A \end{cases}$

Parameter Estimation

- Least Square Estimate
- Likelihood approach (with proper assumption on the distribution)
- Bayesian approach, when appropriate
- Black-Box approach, such as Artificial Neural Network

Assumption on Noise • i.i.d. N(0, σ²) Assumption • Generalized Least square • Generalized Linear model

Bayesian Approach

Analysis of Response Surface

Objectives

- Overall Surface structure
- Optimal value of y
- Corresponding setup x*
- Future exploration

Screening

Killing storks will not reduce the birth rate!

	I	1	2	3	4	12	13	14	23	24	34	123	124	134	234	1234	conversion (%)
-	+	-	-	-	-	+	+	+	+	+	+				_	+	71
	+	+	-		~	-	-		+	+	+	÷	+	+	_		61
	+	-	+		-	-	+	+	-	~~*	+	+	+		+	-	90
-	+	+	+	-	-	+		-	-	-	+	-		+	+	+	82
-	+	-	-	+	-	+	-	+	-	+	-	+	-	÷	+	_	62
	+	+	-	+	~	-	+			+			+	-	+	+	61
	+	-	+	+	-	-		+	+	-	-	_	+	+	_	+	97
	ŧ	+	+	÷	-	+	+	-	+	-	-	÷	-	_	_		80
	+			-	+	+	+	-	+	-		_	+	+	+	-	61
	+	+	-	-	+	-	-	+	+	_		+	_		+	-	50
	+	~~~	+	-	+	-	+	-		+		-+-	-	+		7	30
	+	+	+	-	+	+		+	-	+	~	_	+		_	4	89
	+	-	-	+	+	+	-		***		+	+	+	-	_	-	6.) 50
	+	+	-	+	+		+	+	_	-	+	_		+	_	+	59
	+		+	+	+		-		+	+	+	_	_	,	-	-	51
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	85
					_	·											70

			v	ariai	ble		response	
	run	ī	2	3	4	5	(% reacted)	
	1	-	-		-	-	61	
	*2	÷	-	-	-	-	53	
	*3	-	+	-	-	~	63	
A Second Example	•5	+	+	-		-	61	
А бесопи Ехитріе	6	. +	_	+	-	_	56	
*	7		+	÷	-	-	54	
	*8	+	+	$^+$	-	-	61	
🔴 🗴 · Feed Rate	•9	-	-	-	+	-	69	
	10	+	-	~~	+	-	61	
(10 & 15 liters/min)	*12	-	+	_	+	_	94	
	13		_	+	+	_	66	
😐 🗶 Catalyst	•14	+	-	+	+	-	60	
	*15	·	+	+	÷	-	95	
(1% & 2%)	16	+	+	+	+	-	98	
(170 & 270)	-17	-	-	-	-	+	36 43	
😑 🗴 Aditation rate	19	-	+	_	-	÷	70	
	•20	÷	+	_		÷	65	
(100rpm & 120rpm)	21	-	-	÷	-	+	59	
(roorpin a rzorpin)	*22	+		+	-	÷	55	
🗧 🗶 : Temperature	*23	-	+	+	-	+	67	
	24	+	+	+	-	+	65	
(140°C & 180°C)	*26	+	_	-	÷	+	45	
(110 0 4 100 0)	*27	-	+	-	+	+	78	
🜻 🗶 🗧 Concentration	28	+	+	-	÷	+	77	
	*29	-	-	+	+	+	-49	
(3% & 6%)	30	+	-	+	+	+	42	
	*32	+	+	+	+	+	81 87	
			4			,		

	design				design											response
run	1	2	3	4	5	12	13	14	15	23	24	25	34	35	45	(%) reacted
17	-		-	_	+	+	+	+	-	+	+	_	+	_	_	56
2	+	-	-	-	_	-	-	_	-	+	+	+	+	+	+	53
3	-	+	-	-	_	-	÷	+	÷	-		-	+	+	+	63
20	+	+	_		÷	+	_	_	+	_	_	+	÷	-	-	65
5	_		+	_	_	+	_	+	+	_	÷	+		_	+	53
22	+	-	+		+	_	÷	_	+	_	+	_	-	+	_	55
23	_	+	+		+	_	_	+	_	+	_	+	~	$^{+}$	-	67
8	+	+	+	-		+	+	_	_	+	_			_	+	61
9	_	_		+	_	+	+	_	+	÷	_	+		$^{+}$	-	69
26	+	-	_	÷	+	_	_	+	+	+	_	_	_	-	+	45
27	-	+	_	÷	+		÷	_	_	_	+	+	-		+	78
12	+	+-	-	+	_	+	_	+	-	-	+	-	_	+	_	93
29	_	_	+	+	+	+		_	_	_	-	-	+	+	+	49
14	+	-	+	+	_	_	+	+	_	_	_	+	+	_	_	60
15	_	+	+	+			_	<u> </u>	+	+	+	_	÷	_	_	95
32	+		ì	÷												

Resolution, Aberration and WLP

- Higher resolution implies less confounding
 - Resolution III designs confound main effects and two-factor interactions
 - Resolution IV designs confound two-factor interactions with some two-factor interactions
- *WLP* (Word Length Pattern) is used to further distinguish designs with same resolution--aberration criterion.

Plackett &	a Burman Designs
$\mathbf{PB}_{12} =$	$\begin{bmatrix} + & + & - & + & + & + & - & - & - & + & - \\ + & - & + & + & + & - & - & - & + & - & + \\ - & + & + & + & - & - & - & + & - & + & +$

		-
q	Design	Description
2	2.1	$2^2 \times 3$ (2 ² design with 3 replicates)
3	3.1	$2^3 + \frac{1}{2}2^3$ (2 ³ design plus 2^{3-1} design)
4	4.1	Add one more runs to form a 2_{IV}^{4-1} design
		Add five more runs to form a 2^4 design
5	5.1	Add two more runs to form a 2_{III}^{5-2} design
		Add six more runs to form a 2_V^{5-1} design
	5.2	Add two more runs to form a 2_{III}^{5-2} design
		Add eight more runs to form a 2_{IV}^{5-1} design
		Add ten more runs to form a 2_V^{5-1} design

Optimal Designs

D-optimality: maximize $\parallel \mathbf{X}'\mathbf{X} \parallel = \lambda_1 \times \lambda_2 \times \cdots \times \lambda_k$.

A-optimality: minimize trace(**X'X**)⁻¹ = $\sum_{i=1}^{k} \lambda_i^{-1}$.

 $E\text{-}optimality\!:$ maximize the smallest eigenvalue of the $\mathbf{X}'\mathbf{X}$ matrix.

G-optimality: minimize the maximum prediction variance over the operation region. V-optimality: minimize the average prediction variance over the operation region.

T-optimal	Des	ign	(k=0	5)		
$\begin{pmatrix} -1.06\\ 0.61\\ -1.06\\ -0.08\\ 1.30\\ 1.30\\ -1 \end{pmatrix}$	0.61 -1.06 -0.08 1.30 1.30 -1.06 -1	-1.06 -0.08 1.30 -1.06 0.61 -1	-0.08 1.30 1.30 -1.06 0.61 -1.06 -1	1.30 1.30 -1.06 0.61 -1.06 -0.08 -1	$\begin{array}{c} 1.30 \\ -1.06 \\ 0.61 \\ -1.06 \\ -0.08 \\ 1.30 \\ -1 \end{array}$	

k	(x_1, x_2, \cdots, x_k)
1	(1.00)
2	(1.37, -0.37)
3	(-1.00, 1.00, 1.00)
4	(0.81, -1.43, 0.81, 0.81)
5	(-0.79, 0.20, -1.00, 1.29, 1.29)
6	(-1.06, 0.61, -1.06, -0.08, 1.30, 1.30)
7	(1.00, -1.00, -1.00, 1.00, 1.00, 1.00, -1.00)
8	(-1.01, 0.40, -1.01, 0.44, -0.58, -0.43, 1.60, 1.60)
9	(-1.12, -0.07, -1.12, -0.07, 1.24, -1.12, 0.77, 1.24, 1.24)
9	(-1.12, -0.07, -1.12, -0.07, 1.24, -1.12, 0.77, 1.24, 1.24)

Section	Design	Run	Level	Remarks
2.0	Z _{III}	24	2	Orthogonal & Symmetry
2.1	P&B	4t	2	Orthogonal & Symmetry
2.2	p-eff	$\kappa + 1$	2	Nonorthogonal & Symmetry
2.3	Simplex	k + 1	many	Orthogonal & Asymmetry
2.4	Optimal	any	many	Nonorthogonal & Asymmetry
2.5	T-opt	k+1	many	Orthogonal & Symmetry
2.6	Uniform	any	any	Symmetry

Geometry Property (orthogonality & projection)

							Ha	ılf Fi	ractio	on o	f Wi	lliar	n's (1968	3) D	ata								
) 1	2	2	4	Ē	c	7	0	0	10	11	Fa	ctor	14	15	16	17	10	10	20	21	22	22	24	
	2		4	3	0	<u></u>	•	9	10		12	-15	14	15	10	1/	18	19	20	21	22	23	24	122
2 +	+	+	-	-	-	+	+	+	+	+	-	+	-	-	+	+	-	-	+	-	-	-	+	62
3 +	+	_	+	+	_	2	2	2	+	_	+	+	+	+	+	+	2	_	_	2	+	+	_	45
4 +	+	-	+	-	+	-	-	-	+	+	2	+	2	+	+	2	+	+	+	-	2	2	-	52
5 -	-	+	+	+	+	-	+	+	2	_	-	+	_	+	+	+	2	2	+	_	+	+	+	56
6 -	-	+	+	+	+	+	-	+	+	+	-	-	+	+	_	+	+	+	+	+	+	-	-	47
7 -	-	-	-	+	-	-	+	-	+	-	+	+	+	-	+	+	+	+	+	+	-	-	+	88
8 -	+	+	-	-	+	-	+	-	+	-	-	-	-	-	-	-	-	+	-	+	+	+	-	193
9 -	-	-	-	-	+	+	-	-	-	+	+	-	-	+	-	+	+	-	-	-	-	+	+	32
10 +	+	+	+	-	+	+	+	-	-	-	+	-	+	+	-	+	-	+	-	+	-	-	+	53
11 -	+	-	+	+	-	-	+	+	-	+	-	-	+	-	-	-	+	+	-	-	-	+	+	276
12 +	-	-	-	$^+$	+	+	-	$^+$	+	+	+	+	-	-	+	-	-	+	-	+	+	$^+$	+	145
13 +	+	+	+	$^+$	-	+	-	$^+$	-	-	+	-	-	-	-	-	+	-	+	+	-	$^+$	-	130
14 -	-	+	-	-	-	-	-	-	-	+	+	-	+	-	-	-	-	-	+	-	+	-	-	127

Some Basic Approaches (Design Construction)

- Orthogonal Array-Based
- Group Screening
- Non-Orthogonal Array-Based
- Combinatorial Approach
- Optimization Approach

Recent Applications in SSD(Nano-) Manufacturing Computer Experiments Numerical Analysis e-Business Marketing Survey High Dimensional Integration

	Su	-		tod		m E		Hode	mor	dM	() Atriv	ofOrd
	Su	pers	atura	(Usi	ng 1	1 as	the b	ranc	hing		unn)))
						East	4					
Kun .	- T	1			4	Fac	lors	7	0		10	(11)
No.	1	1	2	3	4	5	6	1	8	9	10	(11)
1	+	+	+	-	+	+	+	-	-	-	+	-
2	+	+	-	+	+	+	-	-	-	+	-	+
3	+	-	+	+	+	-	-	-	+	-	+	+
4	+	+	+	+	-	-	-	+	-	+	+	-
5	+	+	+	-	-	-	+	-	+	+	-	+
6	+	+	-	-	-	+	-	+	+	-	+	+
7	+	-	-	-	+	-	+	+	-	+	+	+
8	+	-	-	+	-	+	+	-	+	+	+	-
9	+	-	+	-	+	+	-	+	+	+	-	-
10	+	+	-	+	+	-	+	+	+	-	-	-
11	+	_	+	+	_	+	+	+	_	_	_	+
12	+	-	-	-	-	-	-	-	-	-	-	-

				Ha	lf F	ract	ion	of H	I ₁₂				
₹un	Row						Fac	ctors					
No.	No.	Ι	1	2	3	4	5	6	7	8	9	10	(11)
1	2	+	+	-	+	+	+	-	-	-	+	-	+
2	3	+	-	+	+	+	-	-	-	+	-	$^+$	+
3	5	+	+	+	-	-	-	+	-	+	+	-	+
4	6	+	+	-	-	-	+	-	+	+	-	+	+
5	7	$^+$	-	-	-	$^+$	-	$^+$	$^+$	-	+	$^+$	+
6	11	$^+$	-	+	+	-	$^+$	$^+$	$^+$	-	-	-	+
		n	= N	/2 =	6	k	= N	-2 =	10				

								па	ui Fi	acut	511 0	En	mai	115 (1900	5) D	ata								
Run	1	2	3	4	5	6	7	8	9	10	11	12	tor 13	14	15	16	17	18	19	20	21	22	23	24	v
1	+	+	+	-	-	-	+	+	+	+	+		+	-	-	+	+	-	-	+				+	133
2	+	-	-	-	-	-	+	+	+	2	2	-	+	+	+	+	2	+	-	-	+	+	-	-	62
3	+	+	-	+	+	-	-	-	-	+	-	+	+	+	+	+	+	-	-	-	-	+	+	-	45
4	+	+	-	+	-	+	-	-	-	+	+	-	+	-	+	+	-	+	+	+	-	-	-	-	52
5	-	-	+	+	+	+	-	+	+	-	-	-	+	-	+	+	+	-	-	+	-	+	+	+	56
6	-	-	+	+	+	+	+	-	+	+	+	-	-	+	+	-	+	+	+	+	+	+	-	-	47
7	-	-	-	-	+	-	-	+	-	+	-	+	+	+	-	+	+	+	+	+	+	-	-	+	88
8	-	+	+	-	-	+	-	+	-	+	-	-	-	-	-	-	-	-	+	-	+	+	+	-	193
9	-	-	-	-	-	+	+	-	-	-	+	+	-	-	+	-	+	+	-	-	-	-	+	+	32
10	+	$^+$	$^+$	+	-	+	+	+	-	-	-	+	-	+	+	-	+	-	+	-	+	-	-	+	53
11	-	$^+$	-	+	+	-	-	+	+	-	+	-	-	+	-	-	-	+	+	-	-	-	+	+	276
12	+	-	-	-	+	+	+	-	+	+	+	+	+	-	-	+	-	-	+	-	+	+	+	+	145
13	+	+	$^+$	+	+	-	+	-	+	-	-	+	-	-	-	-	-	+	-	+	+	-	+	-	130
14	-	-	$^+$	-	-	-	-	-	-	-	+	+	-	+	-	-	-	-	-	+	-	+	-	-	127

	Class				Group	ſ				Gro	up II	
	Factor	A	B	C	D	E	F	G	H	J	L	M
	Experi- ment No.	(9)	(10)	(12)	(13)	(5)	(1)	(2)	(3)	(5)	(1)	(2)
	1-3	1	1	1	1	1	1	1	1	3	1	1
	2-4	2	2	2	2	2	1	1	2	1	1	2
	3-15	3	3	3	3	3	1	1	3	3	2	2
	4-10	2	2	3	3	1	1	2	2	1	2	1
	5 - 7	3	3	1	1	2	1	2	3	1	1	3
	6-22	1	1	2	2	3	1	2	1	1	3	2
	7-5	3	3	2	2	1	1	3	2	2	1	2
	8-2	1	1	3	3	2	1	3	1	2	1	1
	9-19	2	2	1	1	3	1	3	3	1	3	1
	10-9	2	3	2	3	1	2	1	3	3	1	3
	11-17	3	1	3	1	2	2	1	1	2	2	3
	12-27	1	2	1	2	3	2	1	2	3	3	3
	13 - 26	3	1	1	2	1	2	2	2	2	3	3
	14 - 24	1	2	2	3	2	2	2	1	3	3	2
	15-8	2	3	3	1	3	2	2	3	2	1	3
Random	16 - 12	1	2	3	1	1	2	3	2	3	2	1
	17 - 23	2	3	1	2	2	2	3	1	2	3	2
Balance	18-21	3	1	2	3	3	2	3	3	3	3	1
	19 - 14	3	2	3	2	1	3	1	3	2	2	2
Design	20-1	1	3	1	3	2	3	1	1	1	1	1
	21-11	2	1	2	1	3	3	1	2	2	2	1
	22 - 25	1	3	2	1	1	3	2	2	1	3	3
Taguah; (1086)	23 - 18	2	1	3	2	2	3	2	1	3	2	3
1 aguera (1980)	24-13	3	2	1	3	3	3	2	3	1	2	2
	25 - 16	2	1	1	3	1	3	3	1	1	2	3
	26 - 6	3	2	2	-1	2	3	3	2	3	1	2
	27 - 20	1	3	3	2	3	3	3	3		2	1

Example:
$$E(f_{NOD})$$

 $E(f_{NOD}) = \sum_{1 \le i < j \le m} f_{NOD}^{ij} / {m \choose 2}$
where $f_{NOD}^{ij} = \sum_{u=1}^{q_i} \sum_{v=1}^{q_j} \left(n_{uv}^{(ij)} - \frac{n}{q_i q_j} \right)^2$

Lower Bound of
$$E(f_{NOD})$$

Theorem 1. For any design $X \in \mathcal{U}(n; q_1, \dots, q_m)$,

$$E(f_{NOD}) = \frac{\sum_{k,l=1,k\neq l}^n \lambda_{kl}^2}{m(m-1)} + C(n, q_1, \dots, q_m)$$

$$\geq \frac{n(\sum_{j=1}^m n/q_j - m)^2}{m(m-1)(n-1)} + C(n, q_1, \dots, q_m),$$
where $C(n, q_1, \dots, q_m) = \frac{nm}{m-1} - \frac{1}{m(m-1)} \left(\sum_{i=1}^m \frac{n^2}{q_i} + \sum_{i,j=1, j\neq i}^m \frac{n^2}{q_i q_j} \right)$

Connection with Previous Criteria Corollary 1. For any design $X \in \mathcal{U}(n;q^m)$, $E(f_{NOD}) \ge \frac{mn}{(m-1)(n-1)} \left(\frac{n}{q}-1\right)^2 + \frac{n}{m-1} \left(m-\frac{n}{q}\right) - \left(\frac{n}{q}\right)^2$, $E(f_{NOD}) = \frac{n}{9}$ ave χ^2 , when $q_i = 3$ $E(f_{NOD}) = \frac{1}{4}E(s^2)$, when $q_i = 2$,

Data Analysis Methods Supersaturated Design

- Satterthwaite (1959)
- Lin (1993): Forward Selection
- Westfall, Young and Lin (1998): Adjusted p-value
- Chen and Lin (1998): Identifiability
- Ryan and Lin (1997): Half Effect
- •Contrasts-Based
- •Staged Dimension Reduction
- Ye (1995): Generalized degree of freedom

Design Analysis: Advances

Supersaturated Design

• Sequential Analysis

- All Subsets Models
- Adjusted p-value (Westfall, Young & Lin, Statistica Sinica, 1998)
- Bayesian Approach (Beattie, Fong & Lin, Technometrics, 2002)
- Penalized Least Squares (Li & Lin, 2002)

NOTES ON ALGORITHM (Adjusted p-value)

- Attributable to Forsythe et al. and Miller.
- Re-sampling may be parametric (sample from normal distribution) or nonparametric (bootstrap sampling of residuals).
- Parametric re-sampling: Generate $Y^* \sim N(0, I)$. At step l, compute $j \in \{1, \dots, k\}^{\max} \{i_1, \dots, i_{l-1}\}^{F_j^{*(l)}}$.

Compare to original $F_l^{(l)}$.

- The method is conditional on original order of entry.
- The re-sampling *p*-value are *forced* to be monotonic: e.g., if $\tilde{p}_2 < \tilde{p}_1$, define $\tilde{p}_2 = \tilde{p}_1$. Benefit: Protection of FWE under complete null.

Li and Wu (1997): Column-wise and Pair-wise Algorithm

Church (1993): Projection Properties

Jones (2000): JMP Product

Spotlight Interaction Effects in Main Effect Plans: A Supersaturated Design Approach

Dennis K.J. Lin Department of Statistics University of Tennessee Knoxville, TN 37996-0532

ABSTRACT

In a traditional screening experiment, a first-order model is commonly assumed; i.e., all interaction effects are tentatively ignored. The construction of first-order main-effect designs that are optimal in some sense has received a great deal of attention in the literature. However, the conventional wisdom on such a maineffect design can be misleading, if any interaction effect is presented. With no additional experimental cost, this paper shows how to spotlight interaction effects in these so-called "main-effect" designs. It is shown that the proposed method is superior to other existing approaches. Comparisons are made with an example for illustration. Limitations and further research directions are also discussed.

Key words: Effect Sparsity; Normal Plot; Plackett and Burman designs; Screening; Stepwise Regression.

• Estima	ted Main F	Effects		
А	0.3258			
В	0.2938			
С	-0.2458			
D	-0.5162	8	0.4458	
E	0.1498	9	0.4525	
F	0.9152	10	0.0805	
G	0.1832	11	-0.2422	

Main Effect Model:	
(1) $\hat{y} = 5.73 + 0.458 F_{(0.1616)} F_{(0.1616)}$	$R^{2} = 4 4.5 \%$ S = .5 5 9 6 $R^{2}_{a} = 3 9 \%$
(2) $\hat{y} = 5.73 - 0.258 D + 0.2000 D_{(0.1470)}$	$458_{(470)}F$
	$R = 36.7\%$ $S = .5091$ $R_{a}^{2} = 49.5\%$

• Esti	imated In	teraction Effec	ets
AB	.5578	BD2375	CG .3881
AC	5078	BE0782	DE0215
AD	1315	BF0555	DF0882
AE	9075	BG2075	DG .4838
AF	0515	CD5152	EF1735
AG	2575	CE .1042	EG1715
BC	5838	CF .1282	FG9175

Main + Interaction Effect Model:
(1) $\hat{y} = 5.73 + 0.458 F - 0.459 FG$ $R^2 = 89.3\%$ S = 0.2596 Hamada & Wu (1992)
$ \begin{array}{l} (2) y = 5.73 + 0.458 F + 0.0916 G - 0.459 F G \\ R^2 = 91\% \\ S = 0.2515 \end{array} $
$ (3) y = 5.73 - \underbrace{0.0761}_{(0.05)} D + \underbrace{0.401}_{(0.053)} F - \underbrace{0.377}_{(0.055)} FG - \underbrace{0.169}_{(0.059)} AE $ $ R^{2} = 96.3\% $ $ S = 0.1732 $
$(4) y = \underbrace{5.73}_{(0.0528)} + \underbrace{0.394}_{(0.056)} F - \underbrace{0.395}_{(0.056)} F G - \underbrace{0.191}_{(0.060)} A E$ $R^{2} = 95.3 \%$ $S = 0.1828$

							Ha	ut Fi	ractio	on o	t Wi	Iliar	n's (196	s) D	ata								
				_		_					Fac	ctor							•					
Run 1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	У
1 +	+	+	-	-	-	+	+	+	+	+	-	+	-	-	+	+	-	-	+	-	-	-	+	133
2 +	-	-	-	-	-	+	+	+	-	-	-	+	+	+	+	-	+	-	-	+	+	-	-	62
3 +	+	-	+	+	-	-	-	-	+	-	+	+	+	+	+	+	-	-	-	-	+	+	-	45
4 +	+	-	+	-	+	-	-	-	+	+	-	+	-	+	+	-	+	+	+	-	-	-	-	52
5 -	-	+	+	+	+	-	+	+	-	-	-	+	-	+	+	+	-	-	+	-	+	+	+	56
6 -	-	$^+$	+	$^+$	+	+	-	+	$^+$	+	-	-	+	+	-	+	+	+	+	+	+	-	-	47
7 -	-	-	-	$^+$	-	-	+	-	$^+$	-	+	+	+	-	+	+	+	+	+	+	-	-	+	88
8 -	+	+	-	-	+	-	+	-	+	-	-	-	-	-	-	-	-	+	-	+	+	+	-	193
9 -	-	-	-	-	+	+	-	-	-	+	+	-	-	+	-	+	+	-	-	-	-	+	+	32
10 +	+	+	+	-	+	+	+	-	-	-	+	-	+	+	-	+	-	+	-	+	-	-	+	53
11 -	+	-	+	+	-	-	+	+	-	+	-	-	+	-	-	-	+	+	-	-	-	+	+	276
12 +	-	-	-	+	+	+	-	+	+	+	+	+	-	-	+	-	-	+	-	+	+	+	+	145
13 +	+	+	+	+	-	+	-	+	-	-	+	-	_	_	-	-	+	_	+	+	_	+	-	130
14 -	÷	+	2	į.	_	_	_	÷.	_	+	+	_	+	_	_	_	_	_	+	_	+	_	_	127

		E	ntering va	riables			
步驟	15	12	20	4	10	-	R^2
1	-53.2 (-4.54)					43.9	0.63
2	-56.4 (-5.42)	-22.3 (-2.14)				38.5	0.74
3	-60.5 (-7.75)	$^{-26.4}_{(-3.38)}$	-24.8 (-3.17)			28.5	0.87
4	-70.5 (-12.96)	-25.3 (-5.19)	-29.2 (-5.86)	22.1 (4.09)		17.8	0.95
5	-71.3	-26.8	-28.0	20.7	-9.4	14.5	0.97

Table 4. Comparative Results for Anal	yses of the Williams Half-Fraction
Model Selection Method	Factors Identi' ed as Important
Williams ' nal model (Williams 1968)	4, 10, 14, 19
Forward selection w/modi' ed p (Westfall et al. 1998)	14
Forward selection $w/p = .05$	14
Stepwise w/p = .05	14
Stepwise using AIC	14
SSVS $(\tau_i = \hat{\sigma}_{\beta_i}, c_i = 5)$	14
SSVS $(\tau_i = \hat{\sigma}_{\beta_i}, c_i = 10)$	14
SSVS ($\tau_i = .10\hat{\sigma}_{\beta_i}, c_i = 100$)	4, 12, 14, 19
SSVS ($\tau_i = .10\hat{\sigma}_{\beta_i}, c_i = 500$)	14
IBF using 4, 12, 14, 19 from SSVS	4, 12, 14, 19

Penalized Least Squares
$Q(oldsymbol{eta}) \equiv rac{1}{2n} \sum_{i=1}^n (Y_i - \mathbf{x}_i^T oldsymbol{eta})^2 + \sum_{j=1}^d p_\lambda(eta_j).$
SCAD (Smoothly Clipped Absolute Deviation, Fan, 1997)
$p_{\lambda}'(\beta) = \lambda \left\{ I(\beta \le \lambda) + \frac{(a\lambda - \beta)_{+}}{(a - 1)\lambda} I(\beta > \lambda) \right\}$
• λ is to be estimated (e.g., via GCV of Wahba, 1977)
$GCV(\lambda) = \frac{1}{n} \frac{\ \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}(\lambda)\ ^2}{\{1 - e(\lambda)/n\}^2}$
and $\widehat{\lambda} = \operatorname{argmin}_{\lambda} \{\operatorname{GCV}(\lambda)\}$

Resu	lts vic	a SCA	D		
Posterior M	Aodel Pro	babilities			
Model	Pro	b. R^2			
$4\ 12\ 15\ 20$	0.0	266 0.955			
$4\ 10\ 12\ 15$	20 0.0	259 0.973			
4 10 11 12	15 20 0.0	158 0.987			
4 12 15 20	21 0.1	200 0.969			
4 11 12 15	20 0.0	082 - 0.966			
The Fina	l model :	selected	by SCAD	(λ=6.	5673)
Factor	Intercept	X4	X12	X15	X20
$\hat{oldsymbol{eta}}$	102.7857	20.1084	-25.3946	-69.5738	-28.7967
$SE(\hat{\beta})$	4.5377	4.6965	4.6557	5.1075	4.6965

Comparisons via Simulation

	True Model	Smallest Effect	Avg.	Size	
Method	Identified Rate	Identified Rate	Median	Mean	
Case I: One Active Ef	fects				
SSVS(1/10,500)	40.5%	99%	2	3.1	
SSVS(1/10,500)/IBF	61%	98%	1	2.5	
SCAD	75.6%	100%	1	1.7	
Case II: Three Active	Effects				
SSVS(1/10, 500)	8.6%	30%	3	4.7	
SSVS(1/10,500)/IBF	8.0%	28%	3	4.2	
SCAD	74.7%	98.5%	3	3.3	
Case III: Five Active	Effects				
SSVS(1/10, 500)	36.4%	84%	6	8.0	
SSVS(1/10,500)/IBF	40.7%	75%	5	5.6	
SCAD	69.7%	99.4%	5	5.4	

Other Construction Methods

Fable 1. Supersaturated designs derived from $L_{16}(4^{\circ})$ (using 1 as the branching column)												
$S(12; 3^{1}4^{4})$	$S(8;2^14^4)$	Row	1	2	3	4	5					
1		1	1	1	1	1	1					
2		2	1	2	2	2	2					
3		3	1	3	3	3	3					
4		4	1	4	4	4	4					
5	1	5	2	1	2	3	4					
6	2	6	2	2	1	4	3					
7	3	7	2	3	4	1	2					
8	4	8	2	4	3	2	1					
	5	9	3	1	3	4	2					
	6	10	3	2	4	3	1					
	7	11	3	3	1	2	4					
	8	12	3	4	2	1	3					
9		13	4	1	4	2	3					
10		14	4	2	3	1	4					
11		15	4	3	2	4	1					
12		16	4	4	1	3	2					

	UD	OD		SSD
$U \oplus L =$	1 1 2 7 3 3 4 9 5 5 6 6 7 2 8 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= <i>X</i> =	$\begin{bmatrix} 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & & 2 & 0 & 2 & 1 \\ 0 & 2 & 2 & 2 & & 0 & 2 & 2 & 2 \\ 1 & 0 & 1 & 2 & & 2 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 & & 1 & 1 & 2 & 0 \\ 1 & 2 & 0 & 1 & & 1 & 2 & 0 & 1 \\ 2 & 0 & 2 & 1 & & 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 & & 2 & 1 & 0 & 2 \\ 2 & 2 & 0 & 0 & & 1 & 0 & 1 & 2 \\ \end{bmatrix}$
	1241	12210		Fang, Lin & Ma (2000)

Robust (Taguchi) Design • What do the customers want? • What the customers don't want? Variation Deduction ■ Example: Sony Example: Ina Tile

• In robust optimization we would like to configure the controllable factors such that ideally we have a process mean close to our target with low variance.

optimization

			P	rin	iter	·P	ro	ce.	SS J	Exe	am	ple			
X ₁	X ₂	X ₃	Y ₁	Y ₂	Y ₃	X ₁	X2	X ₃	Y ₁	Y ₂	Y ₃	X ₁	X2	X ₃	Y ₁
-1	-1	-1	34	10	28	-1	-1	0	81	81	81	-1	-1	1	364
0	-1	-1	115	116	130	0	-1	0	90	122	93	0	-1	1	232
1	-1	-1	192	186	263	1	-1	0	319	376	376	1	-1	1	408
-1	0	-1	82	88	88	-1	0	0	180	180	154	-1	0	1	182
0	0	-1	44	178	188	0	0	0	372	372	372	0	0	1	507
1	0	-1	322	350	350	1	0	0	541	568	396	1	0	1	846
-1	1	-1	141	110	86	-1	1	0	288	192	312	-1	1	1	236
0	1	-1	259	251	259	0	1	0	432	336	513	0	1	1	660
1	1	-1	290	280	245	1	1	0	713	725	754	1	1	1	878

Myers, R.H. and Carter, W.H. (1973) Response Surface Techniques for Dual Response System *Technometrics*, **15**, 301-317.

> Primary Response Secondary Response dispersion

10	cat	lon

			Pri	nte	r I	r_{c}	oce	SS	Ex	am	pl	e		
X ₁	X ₂	X ₃	Mea	sd	X ₁	X ₂	X ₃	Mea	sd	X ₁	X2	X ₃	Me	sd
-1	-1	-1	24	12.49	-1	-1	0	81	0	-1	-1	1	220.	133.8
0	-1	-1	120.3	8.39	0	-1	0	101.7	17.67	0	-1	1	239. 7	23.46
1	-1	-1	213.7	42.8	1	-1	0	357	32.91	1	-1	1	422	18.52
-1	0	-1	86	3.46	-1	0	0	171.3	15.01	-1	0	1	199	29.45
0	0	-1	136.7	80.41	0	0	0	372	0	0	0	1	485.	44.64
1	0	-1	340	16.17	1	0	0	501.7	92.5	1	0	1	673. 7	158.2
-1	1	-1	112.3	27.57	-1	1	0	264	63.5	-1	1	1	176.	55.51
0	1	-1	256.3	4.62	0	1	0	427	88.61	0	1	1	501	138.9
1	1	-1	271.7	23.63	1	1	0	730.7	21.08	1	1	1	1010	142.5
							1	1					1	

$$\eta_p = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i
$$\eta_s = \gamma_0 + \sum_{i=1}^k \gamma_i x_i + \sum_{i=1}^k \gamma_{ii} x_i^2 + \sum_{i$$$$

Method	Optimal Setting	^ <i>Ю</i> µ	\sim^{2} ω σ	MSE
Vining & Myers	(0.614, 0.228, 0.1)	500	2679.70	2679.70
MSE method	(1.0, 0.07, -0.25)	494.44	1974.02	2005.14

Best Subset Model:

$$\hat{\omega}_{\mu} = 314.667 + 177.0x_{1} + 109.426x_{2} + 131.463x_{3} + 66.028x_{1}x_{2} + 75.472x_{1}x_{3} + 43.583x_{2}x_{3} + 82.792x_{1}x_{2}x_{3}$$

$$\hat{\omega}_{\sigma} = 47.994 + 11.527x_{1} + 15.323x_{2} + 29.190x_{3} + 29.566x_{1}x_{2}x_{3}.$$

$$Min (\hat{\omega}_{\mu} - 500)^{2} + \hat{\omega}_{\sigma}^{2} (x_{1}, x_{2}, x_{3}) = (1, 1, -0.525)$$

$$\hat{\omega}_{\mu} = 492.28$$

$$\hat{\omega}_{\sigma} = 44.01$$

Method	Optimal setting X*	$\hat{\omega}_{\mu}(X^{*})$	$\hat{\omega}_{\sigma}(X^*)$	λ
VM	(0.620, 0.230, 0.100)	500.000	51.900	0.99*
LT	(1.000, 0.074, -0.252)	494.659	44.463	0.50
$KL (d_{\mu} = -4.39, d_{\sigma} = 0)$	(1.000, 0.086, -0.254)	496.111	44.632	0.58
CN (p =1, Δ =5)	(0.975, 0.056, -0.214)	495.020	44.727	0.52*
Proposed method	(1.000, 0.089, -0.255)	496.473	44.671	0.60

Examples of Multiple Response Surface Optimization Problems

• Quite often we may have an experimental optimization situation where we have two or more simultaneous responses for each factor configuration.

Examples:

→ Process: HLPC assay optimization. Responses: Resolution, Run time, Signal-to-noise, Tailing Factors: pH, column temperature, etc.

- → Process: Pharmaceutical tablet optimization . Responses: dissolution rate, hardness, friability, etc Factors: various excipient levels.
- → Process: Chemical process optimization Responses: Conversion, activity Factors: time, temperature, and catalyst.

Examples of Multiple Response Surface Optimization Problems

Process: Chemical Mechanical Polishing (semiconductor manufacturing) Responses: Removal Rate, Non-uniformity (lack of flatness) Factors: rotating speed, polish head down force, Back pressure.

Process: Etching process (semiconductor manufacturing) **Responses:** etch thickness, etch uniformity (std. dev.) **Factors:** Rotation speed, N₂ (nitrogen) flow, amount of oxide etched

Process: Machining process (e.g. lathe used in metal cutting) Responses: dimension(s) manufactured, surface finish, material removal ra Factors: cut angle, feed rate, workpiece rotational speed

Process: Design of a force transducer Responses: Nonlinearity and hysteresis Factors: lozenge angle, bore diameter, lozenge angle deviation, bore diameter deviation Noise variables

Overlapping mean response surfaces

Responses:

 Y_1 = particle size, Y_2 = glass transition temperature

Factors:

 $x_1 = \%$ of Pluronic F68, $x_2 = \%$ of polyoxyethylene sorbitan 40 monostearate,

and $x_3 = \%$ of polyoxyethylene sorbitan fatty acid ester NF $(x_1 + x_2 + x_3 = 1 \text{ and } 0 \le x_i \le 1, i = 1, 2, 3)$

Goal: Choose factor levels such that they minimize Y_1 and Y_2 or at least keep $Y_1 \le 234$ and $Y_2 \le 18$.

Example: Pseudolatex formulation for a controlled drug release coating

- The "sweet spot" approach does not take into account how likely future
- values are to satisfy the experimenter's specifications.
- The desirability approach does not take into account how likely future values are to satisfy the required desirability level.

How certain can we be that the "sweet spot" will produce sweet results?

In other words, what is $Pr(Y_1 \le 234, Y_2 \le 18/x)$ for *x*-points within the sweet spot?

By computing $p(x) = Pr(Y_1 \le 234, Y_2 \le 18/x)$ over the experimental region we can make such an assessment.

By taking a Bayesian approach it is possible to assess, in a straightforward way, the reliability of the conditional event

 $\{Y_1 \le 234, Y_2 \le 18\}$ given X = xin such a way as to take into account the uncertainty of the model parameters.

How often will the best Harrington desirability level be "at least good"?

• Since the desirability function is a mean it is mathematically possible in some cases that one or more of the responses could be out of spec. yet we still have an "acceptable" desirability level.

• Given the Harrington scale, one may want to consider

$$Pr(D(Y) \ge 0.60 / x)$$
 where $Y = (Y_1, Y_2)'$

Harrington Scale: $D > 0.8 \Rightarrow$ "excellent" $0.60 < D < 0.8 \Rightarrow$ "good" $0.37 < D < 0.60 \Rightarrow$ "fair" $D < 0.37 \Rightarrow$ "very poor" to "poor"

Why is the "sweet spot" not so sweet?

• If the mean of Y at a point x is less than an upper bound, u, then all that guarantees is that $Pr(Y \le u / x) > 0.5$

• Suppose $\mu_{Y_1} \le u_1$ and $\mu_{Y_2} \le u_2$. If Y_1 and Y_2 were independent, then all that is guaranteed is that $Pr(Y_1 \le u_1, Y_2 \le u_2 / x) > 0.25$ For *k* independent Y_i 's the situation becomes:

$Pr(Y_1 \le u_1, ..., Y_k \le u_k / x) > 0.5^k$

• If Y_1 and Y_2 are positively correlated then it may be easier to find *x*-points to make $Pr(Y_1 \le u_1, Y_2 \le u_2 / x)$ large. Likewise, if Y_1 and Y_2 are negatively correlated (for each *x*) then it may be more difficult. Note: Corr $(Y_1, Y_2 | x) = -0.62$ for the mixture experiment.

		Responses	
	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
Bounds and Target			
$y_{\mu j}^{\min}$, $y_{\sigma j}^{\min}$	3.00, 0.00	0.10, 0.00	15.00, 1.00
$y_{\mu_j}^{\max}$, $y_{\sigma_j}^{\max}$	7.00, 0.10	0.60, 0.10	45.00, 2.00
T_{μ_j} , T_{σ_j}	7.00, 0.00	0.10, 0.00	30.00, 1.00
Optimization Results			
DS Method	$x_{DS}^{*} = (-1.00)$	0, -1.00, -1.00)	
$\hat{y}_{\mu_{i}}(\mathbf{x}_{DS})$, $\hat{y}_{\sigma_{i}}(\mathbf{x}_{DS})$	4.66, 0.06	0.24, 0.08	25.38, 4.54
$d_{\mu_j}(\hat{y}_{\mu_j}(\mathbf{x}_{DS} \cdot)), d_{\sigma_j}(\hat{y}_{\sigma_j}(\mathbf{x}_{DS} \cdot))$	0.41, 0.41	0.72, <i>0.23</i>	0.69, <u>0.00</u>
Proposed Method	$x_p^* = (-0.21)$, -0.40, -1.00)	
$\hat{y}_{\mu_{j}}(\mathbf{x}_{P}^{*})$, $\hat{y}_{\sigma_{j}}(\mathbf{x}_{P}^{*})$	5.00, 0.06	0.37, 0.05	25.96, 1.64
$d_{\mu_i}(\hat{y}_{\mu_i}(\mathbf{x}_{p^*})), d_{\sigma_i}(\hat{y}_{\sigma_i}(\mathbf{x}_{p^*}))$	0.50 0.36	0.45 0.50	0.73 0.30

	and the set		1-21-5 20	
9	Proposed Appr	oach : V	ariations	

V1 : Consideration of Alternative Responses

• Responses were alternatives rather than all being essential.

		Proposed Model	V1
$\begin{array}{l} \text{Maximize} \{ \max \left\{ \lambda_{1}, \lambda_{2}, \ldots, \right. \\ x & \lambda_{r} \right\} \\ \text{subject to} \end{array}$	x*	$\begin{pmatrix} -0.21 \\ -0.40 \\ -1.00 \end{pmatrix}$	$\begin{pmatrix} -0.03 \\ -0.04 \\ -1.00 \end{pmatrix}$
$d_{u_i}(\hat{y}_{u_i}(\mathbf{x})) \ge \lambda_i, j = 1, 2,, r,$	$\hat{y}_{\mu 1}(d_{\mu 1})$	5.00 (0.50)	4.94 (0.48)
$d_{\sigma_j}(\hat{y}_{\sigma_j}(\mathbf{x})) \ge \lambda_j, j = 1, 2,, r,$	$\hat{y}_{\mu 2}(d_{\mu 2}) \\ \hat{y}_{\mu 3}(d_{\mu 3})$	0.37 (0.45) 25.96 (0.73)	0.38 (0.44) 26.06 (0.74)
$x \in \Omega$.	$\hat{y}_{\sigma 1}(d_{\sigma 1})$	0.06 (0.36)	0.10 (0.00)
	$\hat{y}_{\sigma 2}(d_{\sigma 2})$	0.05 (0.50)	0.04 (0.57)
	$\hat{y}_{\sigma 3}(d_{\sigma 3})$	1.64 (0.36)	1.26 (0.74)

Proposed Approach : Variations

V2 : Assignment of Different Weights on Mean and Standard Deviation

		Proposed		V2	
$\underset{x}{\text{Maximize}} \alpha \lambda_{\mu} + (1 - \alpha) \lambda_{\sigma}$		Model	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 0.9$
subject to	*	$\begin{pmatrix} -0.21 \\ 0.40 \end{pmatrix}$	$\begin{pmatrix} -0.22 \\ 0.20 \end{pmatrix}$	$\begin{pmatrix} -0.27 \\ 0.24 \end{pmatrix}$	$\begin{pmatrix} -0.27 \\ 0.25 \end{pmatrix}$
$d_{\mu_{j}}(\hat{y}_{\mu_{j}}(x)) \geq \lambda_{\mu} \ , \ j = 1, 2,, \ r,$	л	$\begin{pmatrix} -0.40 \\ -1.00 \end{pmatrix}$	$\begin{pmatrix} -0.39 \\ -1.00 \end{pmatrix}$	-0.99	$\begin{pmatrix} -0.53 \\ -1.00 \end{pmatrix}$
$d_{\sigma_j}(\hat{y}_{\sigma_j}(x)) \ge \lambda_{\sigma}, j = 1, 2,, r,$	$\hat{y}_{\mu 1}(d_{\mu 1})$	5.00 (0.50) 0.37	4.98 (0,49) 0.37	4.91 (0.48) 0.36	4.91 (0.48) 0.36
$x \in \Omega$,	$\hat{y}_{\mu 2}(d_{\mu 2})$ $\hat{y}_{\mu 3}(d_{\mu 3})$	(0.45) 25.96 (0.73)	(0.46) 25.98 (0.73)	(0.48) 26.08 (0.74)	(0.48) 26.06 (0.74)
where $0 \le \alpha \le 1$.	$\hat{y}_{\sigma_1}(d_{\sigma_1}) \\ \hat{y}_{\sigma_2}(d_{\sigma_2})$	0.06 (0.36) 0.05 (0.50)	0.06 (0.36) 0.05 (0.50)	(0.35) 0.05(0.50)	0.06 (0.36) 0.05 (0.50)
	$\hat{y}_{\sigma3}(d_{\sigma3})$	(0.36)	(0.36)	1.65 (0.35)	(0.36)

Proposed Ap	proa	ch:	Vari	ation	s
V3 : Compensation of the "Maxin	nin" Crite	<u>rion</u>			
Maximize $[\lambda + \beta \sum_{i=1}^{r} (g_{\mu_j} + g_{\sigma_j})]$		Proposed		V3	
subject to		Model	$\beta = 0.4$	$\beta = 0.7$	$\beta = 1.0$
$\begin{aligned} d_{\mu_j}(\hat{y}_{\mu_j}(\mathbf{x})) &\geq \lambda, \qquad j = 1, 2,, r, \\ d_{\sigma_j}(\hat{y}_{\sigma_j}(\mathbf{x})) &\geq \lambda, \qquad j = 1, 2,, r, \end{aligned}$	x*	$\begin{pmatrix} -0.21 \\ -0.40 \\ -1.00 \end{pmatrix}$	$\begin{pmatrix} -0.21 \\ -0.40 \\ -1.00 \end{pmatrix}$	$\begin{pmatrix} -0.20 \\ -0.36 \\ -1.00 \end{pmatrix}$	$\begin{pmatrix} -0.09 \\ -0.23 \\ -1.00 \end{pmatrix}$
$d_{\mu_j}(\hat{y}_{\mu_j}(\mathbf{x})) - g_{\mu_j} = \lambda, j = 1, 2,, r,$	$\hat{y}_{\mu_1}(q_{\mu_1})$ $\hat{y}_{\mu_2}(d_{\mu_2})$	5.00 (0.50) 0.37 (0.45)	5.00 (0.50)	4.98 (0.50) 0.37 (0.45)	5.13 (0.53) 0.41 (0.30)
$\begin{split} d_{\sigma_j} \left(\tilde{y}_{\sigma_j} \left(\mathbf{x} \right) \right) - g_{\sigma_j} &= \lambda, j = 1, 2,, r, \\ \mathbf{x} \in \Omega \ , \end{split}$	$ \hat{y}_{\mu3}(d_{\mu3}) \\ \hat{y}_{\sigma1}(d_{\sigma1}) $	25.96 (0.73) 0.06 (0.36)	(0.73) (0.36) (0.36)	25.99 (0.73) 0.07 (0.33)	25.88 (0.73) 0.01 (0.00)
where $g_{\mu j}$ and $g_{\sigma j}$ are positive slacks; β is a positive scaling constant.	$\hat{y}_{\sigma 2}(d_{\sigma 2})$ $\hat{y}_{\sigma 3}(d_{\sigma 3})$	(0.50) 1.64 (0.36)	(0.50) 1.64 (0.36)	0.05(0.51) 1.57 (0.43)	(0.56) 1.15 (0.85)

