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Time Series101: Univariate Time Series
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Model Building and Forecasting (short/long term)
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Time Series201: Multivariate Time Series
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Time Series301: Functional Data (Profile)
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Time Series 401: Graphic/Network
(Link Prediction, Communication Network)
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Today’s Talk is about
Monitoring Functional Data (Profile)
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In general, there are more than on X.

Process Monitoring

® Phase-I
= Understand the variation in a process over time.
= Evaluate the process stability
= Model the in-control process performance
= Evaluated by Probability of Signal (POS)
® Phase-II
= Monitoring the process, using on-line data
# Evaluated by Run-Length Distribution (ARL)




Example 1: (Full) VDP Data

® Vertical Density Profile (VDP)

# The density fiber-board which determines its
machinability

© Walker and Wright (2002)

® Y=the density of the wood board
# Measured by using a profilometer
= Uses a laser device to take measurements

® X=the depth of thickness of the board

Monitoring Functional Data (Profile)
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Example 2:

For vertical
density close
to the wood
surface
—only the
density close
to the top is
relevant

truncated VDP Data (Edge)

simulated profiles
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Truncated VDP Data
for vertical density close to the wood surface—only
the density close to the top is relevant (x<0.02)

Plot of the linear profile Plot of the fitted linear functionons

Intercept:
Surface
density in
each wood
board

Slope:

the speed of
density
increase as
depth goes
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Truncated VDP Data
Investigation on the speed of density
increase as depth goes (ie, Slope)

Naive Approach: Simple Linear Model
Model:

YimAotAXt & & ~N(0,0%)

LCL = Ay — 22 % 1

Proposed Method (zhu and Lin, QE)

Step 1 Check assumptions for each profile: (1) linearity assumption
between x and Y and (2) normality and independence
assumption for the residuals,

If any of these assumptions is violated, the corresponding
profile may be removed from the dataset. We dencte the
number of remaining profiles after step 1 as k.

Step 2 Center bath x and Y, and estimate the values of parameters:

Ty MSE

=

s i ~3
with Ay = =5— and 5° =
Step 3 Build the contral chart for monitoring the slopes, with the

centerline equals to Ay, LCL = Ay — Th(m-2).c0/2 * f"'\,-"li—g.—.' '

See = S0y — &) and ty(n_2).0/2 is the 100(1 — a/2)th
percentile of the student ¢ distribution with k{n — 2) degrees
of freedom.

Step 4 Any profile whose estimated slope falls outside the control
limits is regarded as an outlier.

@ If no outlier is detected then one concludes that the
process is stable and moves to the next step.

» If at least one outlier is detected, then one removes the
profile with the largest deviance of slope from the
centerling, i.e. remove the profile j with maximum

=i Ay| value. And repeat step 2 and step 3 on the
remaining profile dataset until no outliers are detected

and UCL = A; + Tia—2),02 * E\,-"%. where

Centered Y

Plot of fitted lines with Plot of estimated slopes with
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Figure 3: Control Chart for Slopes: Based on the Truncated VDP Data




. ARL Comparison with T2-Chart

§ - Dotted line: the proposed chart
- Solid line: the T2 chart (from right to left:
Irho| =00,02,04,06,08, and 0.9)

shift in slope (measured in standard deviations of a_1}

Monitoring the Slope of Linear Profiles

Zhu, J.J. and Lin, Dennis K.J.
Quality Engineering
forthcoming

’ Now, return to the full VDP data
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. Model Setting

Y,.'J' =&+ .u(x.f,,f} + S(x.fgl')e.fgi.-
1<j<m1<i<n
@ median(eg;;) = 0 and median(|e;j|) = 1.

o & = median(Y;;)j=1, . m. Which represents the vertical
location of the jth profile

@ u(x)is the conditional median function of Y — & given
X = x. It represents the standard shape of a normative
centered response profile. We hence call it reference
profile function.

@ s(x) is essentially the conditional Median Absolute
Deviance(MAD) of ¥ — £ given X = x. We call s(x) the
reference deviation function, which measures to what
extend a normative profile could deviate from the reference
profile at a given location x.




° Why L-1 Regression?

@ Ordinary least squares (L-2) @ Median (L-1) regression: the
regression: the effect of effect of predictors on the
predictors on the mean of Y median of ¥

F=argminy (v, —x'8)2  B=argmin 7|y — x4

@ Root-n consistency
@ Asymptotically normally distributed
@ Invariant to monotone transformation of Y

@ Robust. The estimators are much less sensitive to the
outliers, comparing to the least square regression.

0 L-1 Regression (Robustness)

Comparison of Linear Regressions

Dependent Variable

G‘: 0‘: 0‘3 DIJ 0":\ 06 o7 08 C.ﬂ
Independent Variable

o Estimation of z(x)

@ Initial estimate of ;(x)

noom

fip,(X) = arg mgin 21: 21: [Yij — 8| Kop(Xij — X).
=1 =

@ abias-corrected jackknife estimator

na'bn(x) = 2|a'bnl:x) - na'\(.-'fbn{x)

to remove the bias in jip,(x);

o we show that [, is uniformly consistent, and
asymptotically normally distributed for any x.

o Estimation of s(x)

o Following the estimate of u(x), we have initial estimate

s(x)
n m
8, (¥) =argmin Y3 1Yy = ey (X)) - 6|Kn, (61 = )
i=1 j=1
@ an bias-corrected jackknife estimator of s(x), i.e.
Shy(X) = 28p,(X) — 3\/Ehn(x).

@ we also show that s, (x) is uniformly consistent, and
enjoys asymptotic normality.




° Modeling the Profile Curves

Let (x;;, O;;) be Phase | data consists of n profiles.

which represents the vertical location of the ith profile

Q Present the centered profiles, Y;; = O;; — &, with the
proposed nonparametric location-scale model,

Yij=plxig) +s(xiey, 1<j<m1<i<n (6

o 1(x) as reference profile, representing the standard shape
of a normative centered response profile

o s(x) as reference deviation, which measures to what
extend a normative profile could deviate from the reference
profile at a given location x.

Key issues to be monitored

@ First, there might be a vertical shift, i.e., the profile may be
unusually higher or lower than the normative ones.

= monitor the center of profiles, i.e. &'s
@ Second, the shape of the new profile may different from the
normative ones.

= Two deviation scores to monitor the shape of the profiles

0 Measure for Vertical Deviation

@ Standardize individual profile centers:
d; = |5 — pel/se

— p¢ as the median of &;'s, the centers of phase | profiles,
— s; as the median absolute deviation of &s

@ d's provide a ranking of the phase | profiles from inside to
the outside.

o the screening threshold: (1 — «)th upper quantile of the
reference distribution(empirical distribution of dfs)

’ Measures for Shape Deviation (1/2)

@ Centering removes the systemic distances among the
profiles. Consequently, the main differences between a
new centered profile ¥; and the reference curve i(x) are
mainly due to their different profile shapes.

@ Screening shape deviation based on standardized
residuals

%;:7; A 1=j=m, i




. Measures for Shape Deviation (2/2)

A Y} - ﬁbr.'(xj')
' Sha (%)

m
TY = max g, and TP\ =Yg A>o0.
m' = max (g W) ;jm_ >

o The first statistic 7!’ measures the maximal local shape
deviation of the new profile frem the reference profile;

@ while the second score T,Ef)(A} measures its cumulative
overall shape deviation from the reference profile.

o The two scores compensate each other, and provide a
comprehensive monitoring of shapes.

@ The VDP data
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. b. Centered (by median) VDP Profiles

0 Post-centering deviations

Choices of

L
ot = mgl.x{a : Zmax{lml._.cmmp 1[::;:;_”,,-,[0,)], 1[:§z1m-3-,[qj]} - rm'.:,}

i=1

For a specified «, we could decide the upper limits.

For example, for a=10%,
Upper Limits are 2.64, 7.02, and 0.88

for these charts
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Profiles A6, A3 & B1 were identified!
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o Underlying Model Setup

We then generate 100 individual density profiles at the chosen
locations based on the following model

Oi(t) = aj+ =() T + &(1); (10)

where

@ w(t) is 8 dimensional quadratic B-spline basis functions
with internal knots (0.06, 0.16, 0.31, 0.47, 0.56).

@ a; are i.i.d. random coefficients that follow a normal
distribution N(0, o2).

@ g(t), independent of a;, is the error term, following a
Gaussian stochastic process with constant variance and
exponentially decay correlation structure, i.e.,

&i(t) ~ N(0,0%);  corr(ei(t), ei(s)) = exp{—8|t—s]}. (11)

Simulation Study
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° Alternative Models

Model(a):  Yi(t) = a + m(t) "o + Asin(107t) + e(1),
Model(b) :  Yi(t) = a + =(t) o + Bo(t — 0.3)/0.005 + e;(t).

where ¢(-) is the density function of a standard normal.

Model (a) represents a shape change (via magnitude A)

Model (b) represents a local spike (via magnitude B)
while keeping the same shape.

Q@ Model (a)

Yi(t) = ai + 7(t) "« + Asin{107t) + ei(t)
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@ Model (b)

Yi(t) = a + 7(t) e + Bt — 0.3)/0.005 + e )

B=0.02 B =003 Be0.04
| | 45 |
' '. | '. r
=241 ( 11 | 21| |I
- 1 | || | - | |
2 e | I g=11 f
& f ] = \ [ 2 \ [
i [ |31\ [ 31) .
: { g i / £ ‘\“ i
d ! / Y f @
ra |}
A\ / \Y . (," EE | /
- s | ¥ a4 CYPR R A i
| D i a 5 ||
P S i T WAy gatd S
— — —— . —— T
oo 03 04 05 08 60 01 02 02 04 05 06 a0 01 02 03 04 05 08
Locatson Locaton Locabon

o Rate of Correct Identifications

True model Moadel (a)
A=075 A=100 A=125
454 3600 T4% 100%
Model (b)
B=0.02 B=0.03 B=0.04
34% 82% 100%
True model Model (a) Model (b)

A=075 A=100 A=1.25 B=002 B=0.03 B=0.04
5% 26% T4% 100% 3% 2% 100%




. Model Setting

Y.f‘_,-' =&+ u(Xij) + s(xij)eij.
1<j<m1<i<n
@ median(eg;;) = 0 and median(|e;j|) = 1.

o & = median(Y;;)j=1, . m. Which represents the vertical
location of the jth profile

@ 1i(x) is the conditional median function of Y — &; given
X = x. It represents the standard shape of a normative
centered response profile. We hence call it reference
profile function.

@ s(x) is essentially the conditional Median Absolute
Deviance(MAD) of Y — £ given X = x. We call 5(x) the
reference deviation function, which measures to what
extend a normative profile could deviate from the reference
profile at a given location x.

o What is new?

¢ Existing L-1 Regression
#  Independent and identical distribution (iid)
@ A longitudinal data structure

= Time-series with restrictive dependence
error structure

O

A More General Class is needed here
e A sufficiently dense measurements (vs
longitudinal)

. Could depend on both left and right
neighboring measurements (vs time-series
structure)

° A General Class of Error Structure

leo — eo(f)lq = O(F)

eo(f) = G(z0,541,-- -, Eif'E’:l:UH)‘E;I:UJra"' )

@ The condition states that the contribution decays
exponentially fast as j, or equivalently the
distance between two measurements, increases.

® This includes m-dependent sequence, vector
autoregressive moving average (VARMA)
model, autoregressive conditional heteroscedastic
(ARCH) model, random coefficient (RC) model,
and vector nonlinear autoregressive conditional
heteroscedastic (VNARCH) model.

o Estimation of z(x)

@ Initial estimate of ;(x)

noom

fiog(X) =argminy > Yy — 0 Key(Xij = X).

=1 j=1
@ abias-corrected jackknife estimator

Fibg(X) = 201, (X) — fi g, (X)

to remove the bias in jip,(x);

o we show that [, is uniformly consistent, and
asymptotically normally distributed for any x.




° Estimation of s(x)

o Following the estimate of u(x), we have initial estimate

s(x)
n m
8, (¥) =argmin Y3 1Yy = ey (X)) - 6|Kn, (61 = )
i=1 j=1
@ an bias-corrected jackknife estimator of s(x), i.e.
Shy(X) = 28p,(X) — 3\/Ehn(x).

@ we also show that s, (x) is uniformly consistent, and
enjoys asymptotic normality.

Key issues to be monitored

@ First, there might be a vertical shift, i.e., the profile may be
unusually higher or lower than the normative ones.

= monitor the center of profiles, i.e. &'s

@ Second, the shape of the new profile may different from the
normative ones.

= Two deviation scores to monitor the shape of the profiles

0 Measure for Vertical Deviation

@ Standardize individual profile centers:
d; = |5 — pel/se

— p¢ as the median of &;'s, the centers of phase | profiles,
— s; as the median absolute deviation of &s

@ d's provide a ranking of the phase | profiles from inside to
the outside.

o the screening threshold: (1 — «)th upper quantile of the
reference distribution(empirical distribution of dfs)

’ Measures for Shape Deviation (1/2)

@ Centering removes the systemic distances among the
profiles. Consequently, the main differences between a
new centered profile ¥; and the reference curve i(x) are
mainly due to their different profile shapes.

@ Screening shape deviation based on standardized
residuals
. ¥i — fip, (% .
& = M. 1<j<m, {
S, ()




. Measures for Shape Deviation (2/2)

A Y} - ﬁbr.'(xj')
' Sha (%)

m
TY = max g, and TP\ =Yg A>o0.
m' = max (g W) ;jm_ >

o The first statistic 7!’ measures the maximal local shape
deviation of the new profile frem the reference profile;

@ while the second score T,Ef)(A} measures its cumulative
overall shape deviation from the reference profile.

o The two scores compensate each other, and provide a
comprehensive monitoring of shapes.

OTheoreticaI Properties

To determine the screening thresholds, we first need to
understand the distributions of Tr(,:) and Tr[f].

@ We show that, if the new profile are in the same family of
the Phase | data, then

o T have an asymptotic extreme value distribution;
0 Tfnz) have an asymptotic normal distribution

@ Both of T,(,;) and T,(,f') will converge to certain stable limiting
distributions as the number of Phase | profiles goes to
infinity.

’ Theoretical Properties

@ Obtaining the thresholds directly from the limiting
distribution is not easy.

@ One can simply generate the reference distribution of T(1)
and T® using the Phase | profiles.

@ we calculate 71" and T for individual Phase | profiles
with respect to the estimated /i, and 5;, and denote them
as !‘J.m and r}e),

o Screening thresholds: the (1 — a)-th quantiles of the the

empirical distributions of q.(g) and lj.(a)’s.

Choices of

L
ot = mgl.x{a : Zmax{lml._.cmmp 1[::;:;_”,,-,[0,)], 1[:§z1m-3-,[qj]} - rm'.:,}

i=1

For a specified «, we could decide the upper limits.
For example, for a=10%,

Upper Limits are 2.64, 7.02, and 0.88

for these charts




. Summary of the Proposed Method

Suppose (x;, Y;) is a new profile thatis under screening,

@ we center the profile by its median ¢ = median(Y}), and
calculate its relative vertical deviation by d = |¢ — ¢ |/s; ;

@ we then calculate the cumulative and maximal shape
deviation of the centered profile, Y; — ¢ with respect to
fip,(x) and 55, (x).We denote the resulting shape deviation
scores as ") and t(2).,

Q ifany of d, 1) and ?) exceeds its corresponding
screening thresholds, ¢{%(a*), ¢!"(a*) and ¢@)(a*), then
the profile (x;, ¥;) will be singled out.

The proposed method is
theoretically validated and
computationally easy!

The search of optimal bandwidth is
computational expensive, but the proposed
method is rather insensitive to the choice of
bandwidth.

° Conclusions

€ Functional data is getting more and
more popular.

€ Treating functional data as multivariate
analysis is ill-advised.

©L-1 regression is known to be robust.

€ A robust control chart for monitoring
functional data is proposed...it is
computationally easy with solid
theoretical support.

® Add to your software tools? We’'re on sale!
Call 1-800-spc-help

A general class of
nonparametric L-1 regression
with its application to profile
control chart

Ying Wei, Zhibiao Zhao and Dennis Lin
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