

- Computer Experiment—LHC & UD
- Order of Addition Experiment
- Run Order Consideration
- t-covering array
- Design for On-Line Experiment
- New Type of Composite Design
- $\ensuremath{^{\diamond}}\xspace$ Fake Factors for estimate σ^2
- Meta-Analysis

	There are m! how could we	-			
1→2	1→2→3	1234	1243	1423	4123
	1→3→2	1324	1342	1432	4123
2→1	$2 \rightarrow 1 \rightarrow 3$	2134	2143	2413	4213
	2→3→1	2314	-• · ·	2431	4231
	_ / 0 / _	3124	3142	3412	
	3→1→2	3214	3241	3421	4321
	3→2→1				

For three components, there are 3!=6 possible "treatments" to be tested.
1 + 2 + 3 1 + 3 + 2 2 + 1 + 3 2 + 3 + 1 3 + 1 + 2 3 + 2 + 1
In general, there are m! treatments to be tested.
for example, 10!=3,638,800. This may not be feasible.

OofA in Gnetics Areas The construction of phylogenetic trees depends on the order of taxa Many taxa (more than 10) are involved... Often, a set of random orders are tested (Olsen et al. 1994, Stewart et al. 2001) How to choose a subset of the orders? Randomly or systematically???

OofA in Different Areas

- Food science: Fuleki and Francis(1968)
- Bio-chemistry Science: Shinohara & Ogawa (1998)
- Food science: Jourdain et al. (2009)
- Nutritional science: Karim et al. (2000)
- Pharmaceutical science: Rajaonarivony et al. (1993)

Experiments are needed to find the optimal addition order!

Research Issues

How to run (small) n, among those m! experiments, to find out the "optimal" sequence/order-of-addition (OofA)?

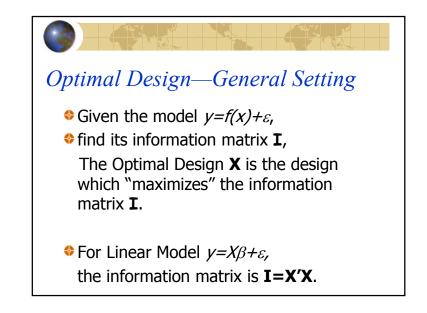
Note: 10!=3,628,800

Linking to conventional design...
What are the experimental variables (X_i's)?
What is the experimental unit?

Order-of-Addition Experiment

Outline

- Introduction (baby optimal design)
- Model Formulation (PWO)
- Optimality of the Full PWO Design
- orthogonality of a PWO Design
- Minimal-point PWO Design
- Optimal Fractional PWO Design
- Conclusion and Future Work

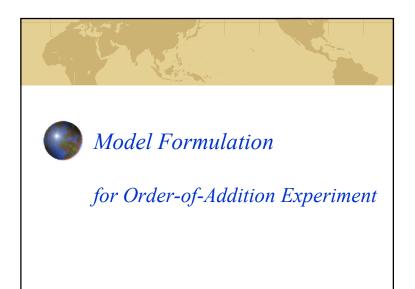


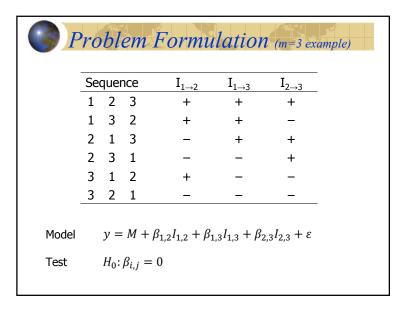

$$y_{i} = \beta_{0} + \beta_{1}x_{1i} + \beta_{2}x_{2i} + \dots + \beta_{k}x_{k} + \varepsilon_{i}$$

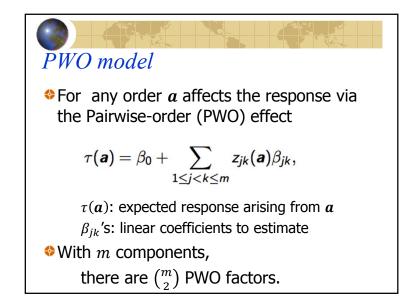
$$i = 1, 2, \dots, n$$

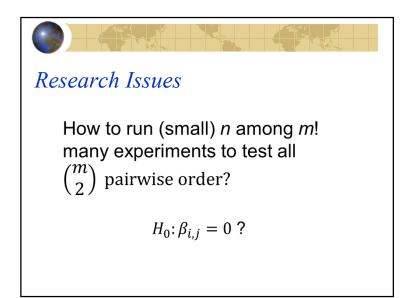
$$\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{bmatrix} \cdot \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \end{bmatrix}$$
or $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

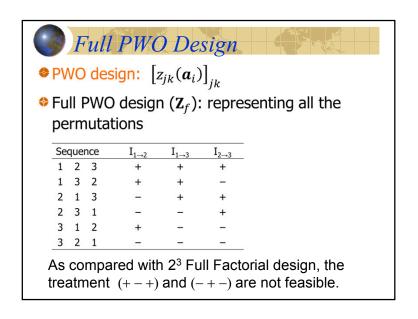
 $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ $LSE / MLE \ under \ i.i.d. \ Normal$ $Var(\hat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{X})^{-1} \cdot \boldsymbol{\sigma}^{2}$ $Assuming (say) \ \varepsilon_{i} \sim N(0, \sigma^{2}) \ i.i.d$ Design lssue: Now, suppose you have full control on the X matrix... Choose X such that $(\mathbf{X}'\mathbf{X})^{-1}$ is minimized—or X'X is maximized (in some senses).


General estimator:


$$\hat{\theta}_{\zeta} = \int y(\mathbf{x})\zeta(d\mathbf{x}),$$
where $\zeta(d\mathbf{x})$ is a signed vector-measure.

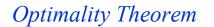

$$\hat{\theta}_{OLSE} = \int y(\mathbf{x})M^{-1}(\xi)f(\mathbf{x})\xi(d\mathbf{x}),$$
where


$$M(\xi) = \int f(\mathbf{x})f^{T}(\mathbf{x})\xi(d\mathbf{x}),$$
and $\xi(d\mathbf{x})$ is a design (probability measure for OLSE; a signed measure for SLSE). The covariance matrix of $\hat{\theta}_{OLSE}$ is


$$Var(\hat{\theta}_{OLSE}) = M(\xi)^{-1} \left[\iint \mathcal{K}(\mathbf{x}, \mathbf{z})f(\mathbf{x})f^{T}(\mathbf{z})\xi(d\mathbf{x})\xi(d\mathbf{z}) \right] M(\xi)^{-1}$$

				Pair	-wise or	lering fac	ctors	
	Index	Order	$I_{1\rightarrow 2}$	$I_{1\rightarrow 3}$	$I_{2\rightarrow 3}$	$I_{1\rightarrow 4}$	$I_{2\rightarrow 4}$	$I_{3\rightarrow 4}$
	1234	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$	1	1	1	1	1	1
	2134	$2 \rightarrow 1 \rightarrow 3 \rightarrow 4$	-1	1	1	1	1	1
100 - 1	1324	$1 \rightarrow 3 \rightarrow 2 \rightarrow 4$	1	1	-1	1	1	1
m=4	2314	$2 \rightarrow 3 \rightarrow 1 \rightarrow 4$	-1	-1	1	1	1	1
	3124	$3 \rightarrow 1 \rightarrow 2 \rightarrow 4$	1	-1	-1	1	1	1
	3214	$3 \rightarrow 2 \rightarrow 1 \rightarrow 4$	-1	-1	-1	1	1	1
	1243	$1 \rightarrow 2 \rightarrow 4 \rightarrow 3$	1	1	1	1	1	-1
	2143	$2 \rightarrow 1 \rightarrow 4 \rightarrow 3$	-1	1	1	1	1	-1
	1342	$1 \rightarrow 3 \rightarrow 4 \rightarrow 2$	1	1	-1	1	$^{-1}$	1
	2341	$2 \rightarrow 3 \rightarrow 4 \rightarrow 1$	$^{-1}$	-1	1	$^{-1}$	1	1
	3142	$3 \rightarrow 1 \rightarrow 4 \rightarrow 2$	1	-1	-1	1	$^{-1}$	1
	3241	$3 \rightarrow 2 \rightarrow 4 \rightarrow 1$	-1	-1	-1	-1	1	1
	1423	$1 \rightarrow 4 \rightarrow 2 \rightarrow 3$	1	1	1	1	-1	-1
	2413	$2 \rightarrow 4 \rightarrow 1 \rightarrow 3$	-1	1	1	-1	1	-1
	1432	$1 \rightarrow 4 \rightarrow 3 \rightarrow 2$	1	1	-1	1	-1	-1
	2431	$2 \rightarrow 4 \rightarrow 3 \rightarrow 1$	-1	-1	1	-1	1	-1
	3412	$3 \rightarrow 4 \rightarrow 1 \rightarrow 2$	1	-1	-1	-1	-1	1
	3421	$3 \rightarrow 4 \rightarrow 2 \rightarrow 1$	-1	-1	-1	-1	-1	1
	4123	$4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	1	1	1	-1	-1	-1
	4213	$4 \rightarrow 2 \rightarrow 1 \rightarrow 3$	-1	1	1	-1	-1	-1
	4132	$4 \rightarrow 1 \rightarrow 3 \rightarrow 2$	1	1	-1	-1	-1	-1
	4231	$4 \rightarrow 2 \rightarrow 3 \rightarrow 1$	-1	-1	1	-1	-1	-1
	4312	$4 \rightarrow 3 \rightarrow 1 \rightarrow 2$	1	-1	-1	-1	-1	-1
	4321	$4 \rightarrow 3 \rightarrow 2 \rightarrow 1$	-1	-1	-1	-1	-1	-1

Information matrix of PWO Design	1
The moment matrix (information matrix) of full PWO design: $\mathbf{M}_f = \mathbf{X}_f^T \mathbf{X}_f / N$, with $\mathbf{X}_f = [1, \mathbf{Z}_f]$ and $N = m!$	
for $m = 4$, $\mathbf{M}_f = \text{diag}(1, \widetilde{\mathbf{M}}_f)$ and	
$\widetilde{M}_{f} = \begin{bmatrix} 1 & 1/3 & 1/3 & -1/3 & -1/3 & 0 \\ 1/3 & 1 & 1/3 & 1/3 & 0 & -1/3 \\ 1/3 & 1/3 & 1 & 0 & 1/3 & 1/3 \\ -1/3 & 1/3 & 0 & 1 & 1/3 & -1/3 \\ -1/3 & 0 & 1/3 & 1/3 & 1 & 1/3 \\ 0 & -1/3 & 1/3 & -1/3 & 1/3 & 1 \end{bmatrix}$	


Main Challenge	
The moment matrix is complicated	
$\begin{bmatrix} 1 & 1/3 & 1/3 & -1/3 & -1/3 & 0 \\ 1/3 & 1 & 1/3 & 1/3 & 0 & -1/3 \\ 1/3 & 1/3 & 1 & 0 & 1/3 & 1/3 \\ -1/3 & 1/3 & 0 & 1 & 1/3 & -1/3 \\ -1/3 & 0 & 1/3 & 1/3 & 1 & 1/3 \\ 0 & -1/3 & 1/3 & -1/3 & 1/3 & 1 \end{bmatrix}$	
The PWO design region is irregular,	
due to the transitive property	
 If z_{jk} = + and z_{kl} = + then z_{jl} must be +. If elevel combination (+, +, −) is invalid for the triplet (z_{jk}, z_{kl}, z_{kl}) 	

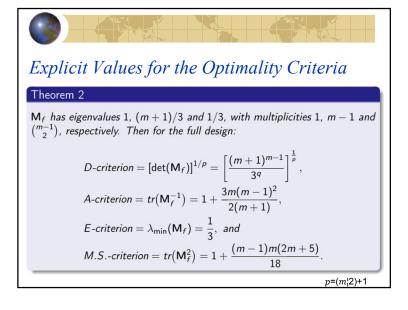
<u>Theorem 1</u>.

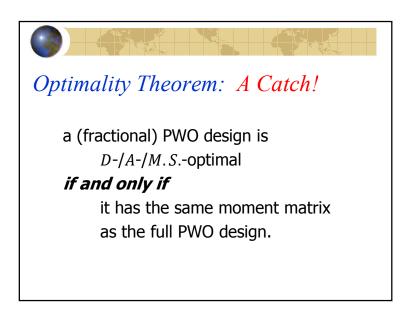
The moment matrix of PWO **full** design is ϕ -optimal among all full/**fractional** PWO design,

for any design optimality criterion ϕ which is concave and signed-permutation invariant.

the full PWO design is optimal under:

D-criterion = arg max
$$[det(\mathbf{M})]^{1/p}$$
, $p = \binom{m}{2} + 1$


A-criterion = arg min tr (\mathbf{M}^{-1})


E-criterion = arg max λ_{\min} (**M**)

M.S.-criterion = arg min tr (M²)

Explicit Values for the Optimality Criteria

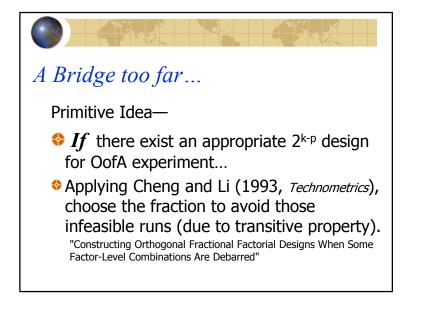
- Explict values of the D-/A-/E-/M.S.criteria are needed for comparative purpose
 - Benchmarks to assess the efficiency of any smaller design
- To derive such criteria, the eigen-structure of M_f is investigated

Constraint on the Correlation

Lemma 1

For any (not full) PWO design with m components, and any $1 \le j < k < l \le m$, it always holds that

 $\widetilde{\mathsf{M}}(jk, jl) - \widetilde{\mathsf{M}}(jk, kl) + \widetilde{\mathsf{M}}(jl, kl) = 1,$


Note: $\widetilde{\mathbf{M}}(jk, jl)$ indicates the correlation between PWO factors Z_{jk} and Z_{jl}

Optimality Criteria: Another Catch!!

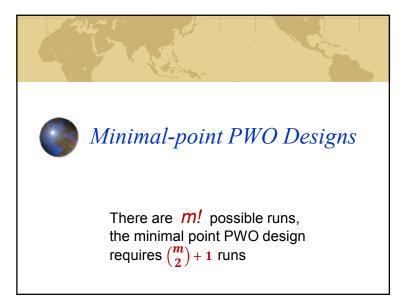
PWO design can NOT be perfectly orthogonal —

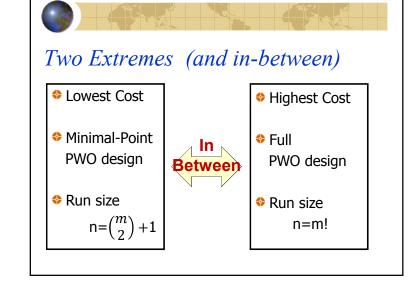
no regular fractional factorial design can be used as a PWO design.

• The maximum correlation (r_{max}) is at least 1/3.

Peng, Mukerjee and Lin (2017)

Design of Order-of-addition Experiments

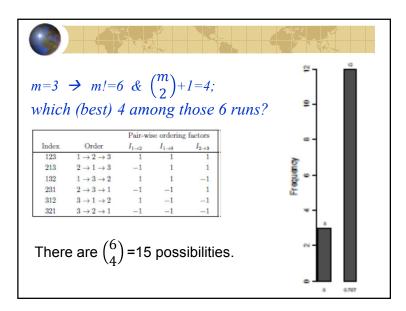

By JIAYU PENG Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. jup2500@psu.edu

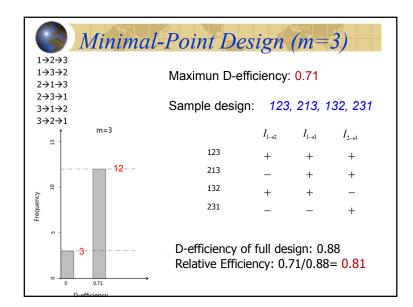

RAHUL MUKERJEE Indian Institute of Management Calcutta, Joka, Diamond Harbour Road, Kolkata 700104, India rnuk0902@gmail.com

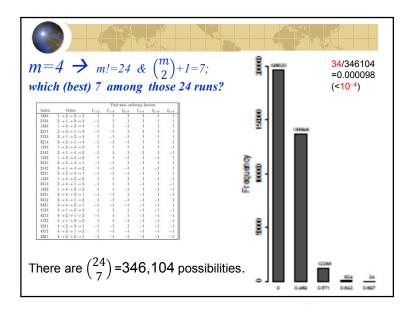
AND DENNIS K.J. LIN Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. dk15@psu.edu

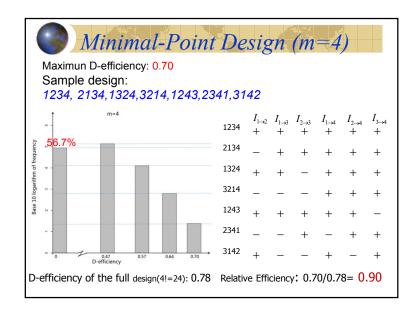
SUMMARY

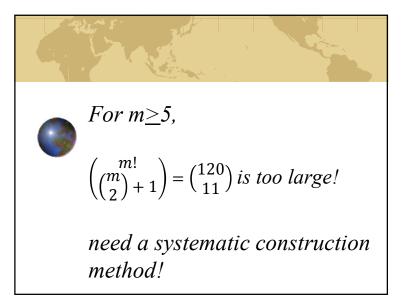
In an order-of-addition experiment, each treatment is a permutation of m components. It is often unaffordable to test all the m! treatments, and the design problem arises. We consider the model in which the response of a treatment depends on the pairwise orders of the components. The optimal design theory under this model is established, and the optimal values of the D-, A-, E-, and M.S-criteria are derived. We identify a special constraint on the correlation structure of such designs. The closed-form construction of a class of optimal designs is obtained, with examples for illustration.

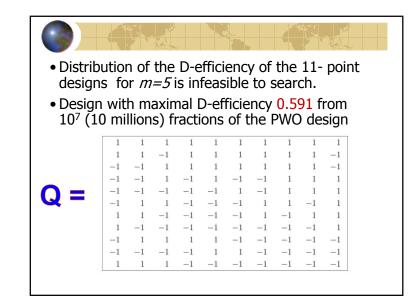


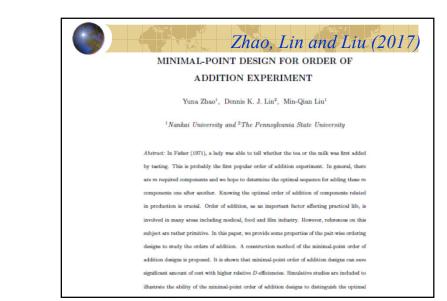


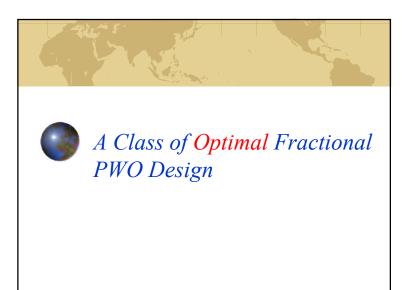

 $m=3 \rightarrow m!=6 \& \binom{m}{2}+1=4;$ which (best) 4 among those 6 runs?

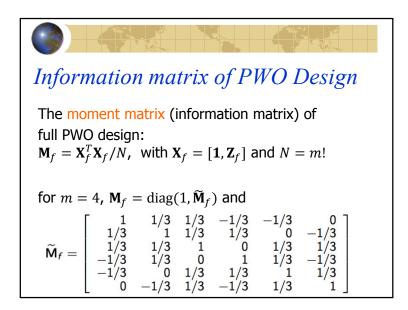

Index	Order	$I_{1\rightarrow 2}$	$I_{1\rightarrow 3}$	$I_{2\rightarrow 3}$
123	$1 \rightarrow 2 \rightarrow 3$	1	1	1
213	$2 \rightarrow 1 \rightarrow 3$	-1	1	1
132	$1 \rightarrow 3 \rightarrow 2$	1	1	-1
231	$2 \rightarrow 3 \rightarrow 1$	$^{-1}$	$^{-1}$	1
312	$3 \rightarrow 1 \rightarrow 2$	1	-1	-1
321	$3 \rightarrow 2 \rightarrow 1$	-1	-1	-1

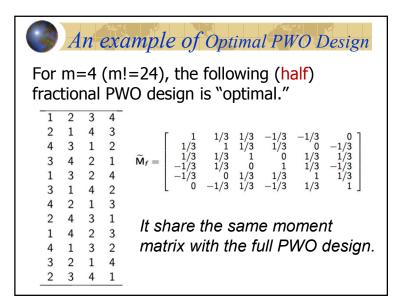

				Pair	-wise or	lering fac	tors	
	Index	Order	$I_{1\rightarrow 2}$	$I_{1\rightarrow 3}$	$I_{2\rightarrow 3}$	$I_{1\rightarrow 4}$	$I_{2\rightarrow 4}$	$I_{3\rightarrow 4}$
	1234	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$	1	1	1	1	1	1
	2134	$2 \rightarrow 1 \rightarrow 3 \rightarrow 4$	$^{-1}$	1	1	1	1	1
	1324	$1 \rightarrow 3 \rightarrow 2 \rightarrow 4$	1	1	-1	1	1	1
	2314	$2 \rightarrow 3 \rightarrow 1 \rightarrow 4$	-1	-1	1	1	1	1
m=4	3124	$3 \rightarrow 1 \rightarrow 2 \rightarrow 4$	1	-1	$^{-1}$	1	1	1
m-4	3214	$3 \rightarrow 2 \rightarrow 1 \rightarrow 4$	-1	-1	-1	1	1	1
$\rightarrow m!=24$	1243	$1 \rightarrow 2 \rightarrow 4 \rightarrow 3$	1	1	1	1	1	-1
	2143	$2 \rightarrow 1 \rightarrow 4 \rightarrow 3$	$^{-1}$	1	1	1	1	-1
& $\binom{m}{2} + l = 7;$	1342	$1 \rightarrow 3 \rightarrow 4 \rightarrow 2$	1	1	-1	1	$^{-1}$	1
(2)	2341	$2 \rightarrow 3 \rightarrow 4 \rightarrow 1$	-1	-1	1	$^{-1}$	1	1
	3142	$3 \rightarrow 1 \rightarrow 4 \rightarrow 2$	1	$^{-1}$	-1	1	-1	1
which	3241	$3 \rightarrow 2 \rightarrow 4 \rightarrow 1$	-1	$^{-1}$	-1	-1	1	1
	1423	$1 \rightarrow 4 \rightarrow 2 \rightarrow 3$	1	1	1	1	-1	-1
(best) 7	2413	$2 \rightarrow 4 \rightarrow 1 \rightarrow 3$	-1	1	1	$^{-1}$	1	-1
among	1432	$1 \rightarrow 4 \rightarrow 3 \rightarrow 2$	1	1	-1	1	-1	-1
0	2431	$2 \rightarrow 4 \rightarrow 3 \rightarrow 1$	$^{-1}$	$^{-1}$	1	$^{-1}$	1	-1
those 24 runs?	3412	$3 \rightarrow 4 \rightarrow 1 \rightarrow 2$	1	-1	-1	-1	-1	1
	3421	$3 \rightarrow 4 \rightarrow 2 \rightarrow 1$	-1	-1	-1	$^{-1}$	-1	1
	4123	$4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	1	1	1	$^{-1}$	-1	-1
	4213	$4 \rightarrow 2 \rightarrow 1 \rightarrow 3$	-1	1	1	-1	-1	-1
	4132	$4 \rightarrow 1 \rightarrow 3 \rightarrow 2$	1	1	-1	-1	-1	-1
	4231	$4 \rightarrow 2 \rightarrow 3 \rightarrow 1$	-1	-1	1	-1	$^{-1}$	-1
	4312	$4 \to 3 \to 1 \to 2$	1	-1	-1	-1	-1	-1
	4321	$4 \to 3 \to 2 \to 1$	-1	-1	-1	-1	-1	-1

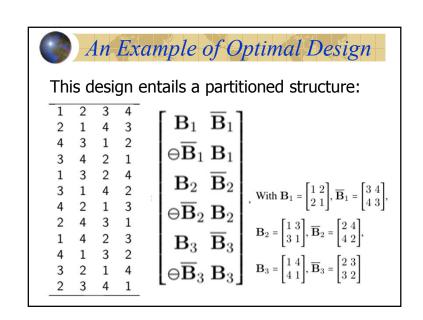


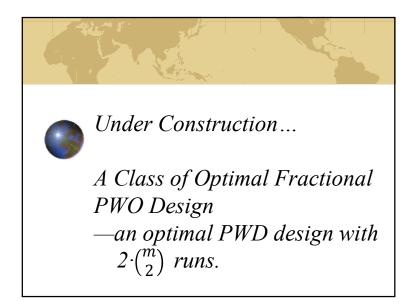

Theorem 2. For
$$m \ge 6$$
, let $H_1 = (Q : 1_{11})$ and


$$H = \begin{pmatrix} H_1 & H_2 \\ H_3 & H_4 \end{pmatrix}_{\binom{m}{2}+1)\times\binom{m}{2}},$$
where H_3 is a matrix of all elements -1 , H_2 is a matrix of all elements 1 and $H_4 = (h_{4j})$
is an $\binom{m}{2} - 10 \times \binom{m}{2} - 11$ matrix satisfying h_{4j} equals 1 when $i \le j$, and -1
otherwise, then H is a minimal-point order of addition design with a D -efficiency


$$D_c(H) = \left(4^{\binom{m}{2}-10}|H_1^TH_1|\right)^{1/\binom{m}{2}+1} / \binom{m}{2} + 1\right).$$
(3.1)


D of	ficienci	as of			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·	0			
the fi	ıll PWO	designs at	nd the mir	nimal-poin	t desigi
		-		-	-
m	m!	$\binom{m}{2} + 1$	$D_e(H)$	$D_e(F_m)$	$D_r(H)$
m 3	m! 6	$\frac{\binom{m}{2}+1}{4}$	$\frac{D_e(H)}{0.707}$	$\frac{D_e(F_m)}{0.877}$	$\frac{D_r(H)}{0.810}$
		$\frac{\binom{m}{2}+1}{4}$ 7	- ()	- (,	/
3	6	$\binom{m}{2} + 1$ 4 7 11	0.707	0.877	0.810
3 4	6 24	4 7	0.707 0.697	0.877 0.777	0.810 0.897


of H and F_m , and the relative *D*-efficiency of H, respectively.



Extension to larger m Such a construction method can be extended to any larger, even m. Theorem 3. For any m ≥ 4 and any 2 ≤ r ≤ m/2, there exist optimal PWO designs with m components and m!/r! runs.

Conclusion

- The optimality theory for PWO designs
- The explicit values of optimality criteria
- Description on the orthogonality of any PWO design
- Systematic construction of efficient minimalpoint PWO designs
- Systematic construction of optimal fractional PWO designs

Order-of-Addition Experiments

- Data Analysis Strategies
- Beyond PWO system
 - Triple-wise order (TWO) system?
 - Travel Salesman Problem (TSP)
 - 🛯 etc
- Run order consideration

Some (Very Selective) References

- Voelkel, J. (2017) "Design and Analysis of Order-of-Addition Experiments."
- Peng,Y.J., Mukerjeee, R. and Lin, Dennis K.J. (2017)," Design of Order-of-addition Experiments."
- Zhao, Y.N., Lin, Dennis K.J. and Liu, M.Q. (2017), "Minimal-Point Design for Order of Addition Experiment."
- Peng, J.Y. and Lin, Dennis K.J. (2017), "Constructions of Efficient Small-run Order-of-Addition Designs."

Send \$1000 to • Dennis Lin

Dennis Lin University Distinguished Professor 317 Thomas Building Department of Statistics Penn State University

- +1 814 865-0377 (phone)
- +1 814 863-7114 (fax)
- DennisLin@psu.edu

(Customer Satisfaction or your money back!)

