

Agenda What is Dimensional Analysis (DA) Illustrative Example Case Study: Cherry Tree (DA for Analysis) Data Analysis without DA Data Analysis with Dimensional Analysis Case Study: Paper Helicopter (DA for Design) Design without DA Design with Dimensional Analysis Lessons Learn Future Research Issues

Pioneer Work by Buckingham

- Buckingham, E. (1914). "On physically similar systems; illustrations of the use of dimensional equations". Physical Review 4 (4): 345-376.
- Buckingham, E. (1915). "The principle of similitude". Nature 96 (2406): 396-397.
- Buckingham, E. (1915). "Model experiments and the forms of empirical equations". Transactions of the American Society of Mechanical Engineers 37: 263-296.

Dimensional Analysis: Definition

Dimensional Analysis—a tool to find relationships among physical quantities by using their dimensions.

- The dimension of a physical quantity has units.
- Quantities of different dimensions can not add, but they can multiply each other to form a derivative quantity.

Dimensional Analysis: Wikipedia

- Check the plausibility of derived equations and computations
- Form reasonable hypotheses about complex physical situations that can be tested by experiment or by more developed theories of the phenomena
- Categorize types of physical quantities and units based on their relations or dependence on other units, or their dimensions if any

Theoretical Base—Physics

- A physical law must be independent of the units used to measure the physical variables
 Any meaningful equation (and any inequality) must have the same dimensions in the left and right sides
- Bridgeman's principle of absolute significance of relative magnitude
 - Solution Formula should be the power-law form
- Buckingham's Π-theorem (1914)
 Physical equations must be

dimensionally homogeneous

DA: General Idea

$$Q_0 = f(Q_1, \dots, Q_6) = \frac{Q_1 + Q_2}{Q_3} + Q_4 - Q_5 \log Q_6$$

- Q₁ and Q₂ must have the same dimension,
 Q₆ must be dimensionless, and
- Q_0 , $(Q_1+Q_2)/Q_3$, Q_4 and Q_5 , must have the same dimension.

$$Q_0 = f(Q_1, \dots, Q_p) \longrightarrow \pi_0 = h(\pi_1, \dots, \pi_{p-k})$$

- A meaningful *f* may have lots of constraints on itself. It can not be too arbitrary.
- Reduce dimensions from p to p-k,

 $\ensuremath{\textit{p}}$ is the dimension of the quantities we concern &

p-k is the dimension of the base quantities in the problem.

These are dimensionless variables!

Illustrative Example: Ball deformation experiment

Identify dependent and independent variables

• [d]=[D], [E]=[V²
$$\rho$$
], [γ]=[V⁰], d=f(V, ρ ,D,E, γ)
 $\pi_1 = \frac{E}{V^2 \rho}, \pi_2 = \gamma, \pi_0 = \frac{d}{D}$
• Apply Buckinghan's Π -Theorem to get DA model

$$\begin{aligned} \pi_0 &= h \Big(Q_1, \dots, Q_p, \pi_1, \dots, \pi_{p-k} \Big) = h \Big(\pi_1, \dots, \pi_{p-k} \Big) \\ \frac{d}{D} &= h \bigg(V, \rho, D, \frac{E}{\rho V^2}, \gamma \bigg) = h \bigg(\frac{E}{\rho V^2}, \gamma \bigg) \end{aligned}$$

$$d=f(V, \rho, D, E, \gamma)$$
d the diameter of ball imprint [d]=L
V the velocity of the ball [V]=LT⁻¹
 ρ the density of the ball [ρ]=ML⁻³
D the diameter of the ball [D]=L
E the modulus of elasticity [E]=ML⁻¹T⁻²
 γ Poisson's ratio [γ]=1

$$\frac{d \quad V \quad \rho \quad D \quad E \quad \gamma}{L \quad 1 \quad 1 \quad -3 \quad 1 \quad -1 \quad 0}$$

$$T \quad 0 \quad -1 \quad 0 \quad 0 \quad -2 \quad 0$$

$$M \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

						Á	
	d	V	ho	D	Ε	γ	
L	1	1	-3	1	-1	0	-
Т	0	-1	0	0	-2	0	
М	0	0	1	0	1	0	
							-
	d	V	ρ	Ľ)	Ε	γ
L	1	1	-3		1 -	-1	0
Т	0	$^{-1}$	0	(0 -	-2	0
М	0	0	1	(0	1	0
π_0	1	0	0	-	1	0	0
π_1	0	-2	-1	(0	1	0
π_2	0	0	0	(0	0	1

• [d]=[D], [E]=[V²
$$\rho$$
], [γ]=[V⁰], d=f(V, ρ , D, E, γ)
 $\pi_1 = \frac{E}{V^2 \rho}, \pi_2 = \gamma, \pi_0 = \frac{d}{D}$
• Apply Buckinghan's Π -Theorem to get DA model
 $\pi_0 = h(Q_1, ..., Q_p, \pi_1, ..., \pi_{p-k}) = h(\pi_1, ..., \pi_{p-k})$
 $\frac{d}{D} = h\left(V, \rho, D, \frac{E}{\rho V^2}, \gamma\right) = h\left(\frac{E}{\rho V^2}, \gamma\right)$

Instead of Find f, such that $d=f(V, \rho, D, E, \gamma)$

Minitab Cherry Tree Data

1 2	8.3	70	10.3
2			2010
	8.6	65	10.3
3	8.8	63	10.2
4	10.5	72	16.4
30	18.0	80	51.0
31	20.6	87	77.0

Summary on cherry tree

Lesson learned:
Reduce input variables from 2 to 1
No lose on any information
cover traditional models
Similar results
Comments:

No harms to incorporate DA before analysisBetter interpretation

Error StructureAssume model:
$$\pi_0 = \Pi \pi_i^{\ \beta_i} \cdot \varepsilon$$
i.e., $(\log \pi_0) = \sum \beta_i (\log \pi_i) + \log \varepsilon$ We have $E(\log \hat{\pi}_0) = \log \pi_0$ However, $E(e^{\log \pi_0}) \neq e^{E(\log \hat{\pi}_0)}$ i.e., $E(\hat{\pi}_0) \neq \pi_0$

$$Statistical Inference: DA Model$$

$$y = \beta_0 x_1^{\beta_1} x_2^{\beta_2} \cdots x_p^{\beta_p} \mathcal{E}$$

$$\min_{\alpha,\beta_1,\beta_2} \sum_i (\log y_i - \log \alpha - \beta_1 \log x_{1i} - \beta_2 \log x_{2i})^2,$$

$$\min_{\alpha,\beta_1,\beta_2} \sum_i |\log y_i - \log \alpha - \beta_1 \log x_{1i} - \beta_2 \log x_{2i}|$$

$$\min_{\alpha,\beta_1,\beta_2} \sum_i \left(\left| \frac{y_i - \alpha x_{1i}^{\beta_1} x_{2i}^{\beta_2}}{\alpha x_{1i}^{\beta_1} x_{2i}^{\beta_2}} \right| + \left| \frac{y_i - \alpha x_{1i}^{\beta_1} x_{2i}^{\beta_2}}{y_i} \right| \right)$$

$$\min_{\alpha,\beta_1,\beta_2} \sum_i \left(\left| \frac{y_i - \alpha x_{1i}^{\beta_1} x_{2i}^{\beta_2}}{\alpha x_{1i}^{\beta_1} x_{2i}^{\beta_2}} \right| \times \left| \frac{y_i - \alpha x_{1i}^{\beta_1} x_{2i}^{\beta_2}}{y_i} \right| \right)$$

Johnson (QE 2006)
Design: (Seven two-level input variables)
*Half Fractional Factorial (2⁷⁻¹ design)
*Two replicates (total of 2⁷⁻¹*2=128 runs)
*Resolution VII: all main, two-factor, and three-factor interaction effects are clear. main ~ six-way; two-way ~ five-way; three-way ~ four-way.

Johnson	(QE 2006))
Term	Effect	Significant factors:
Constant		Large main effect;
Paper	-0.14734	Moderate two-way
Clip	-0.12797	
Bodytape	-0.05828	effect;
Width	-0.17797	NO higher order effect
Length	-0.16391	No higher order eneed
Wing	0.49297	
Paper*Clip	-0.04484	
Paper*Width	-0.05172	
Clip*Length	-0.04984	
Longth*Wing	0.05516	

Box & Liu (JQT 1999)

Design: (8 two-level input variables) Fractional 2-level Resolution IV (a 2_{IV}^{8-4} design) 4 replicates (a total of 4*16=64 runs)

Wing length (3 inches vs. 4.75 inches)
Body length (3 inches vs. 4.75 inches)
Body width (1.25 inches vs. 2 inches)

Box &	<i>Liu (JQT</i> Significant I	<i>1999)</i> Effects (No i	nteractions)
	Variables	Mean time	Dispersion
	Paper type	+	+
	Wing length (I)	+	-
	Body length (L)	-	+
	Body width (W)	-	+
	Fold	+	+
	Taped body	+	+
	Paper clip	-	-

Box & Liu (JQT 1999)

- Series designs for searching optimum point
- Not "one-shot" but "sequential learning"
- Steepest Ascent
- Optimum means longest flight time with minimum variance
- Higher order designs and final optimum of 416 cent-sec.

Annis (AS 2005)

- Incorporate physical derivation before design
- Engineers provide theory for guidance
 - Parts we believe; Parts we doubt
- Statisticians provide data for validation
 Parameter estimation; Question physics
- Better than full factorial design
- Extrapolation
- Nonlinear response and drop lower order terms

Lite	erature Revi	iew: without	DA
	Johnson(QE 2006)	Box & Liu(JQT 1999)	Annis(AS 2005)
Input	+Paper type(-) +Taped body(-) +Taped wing(-) +Clip(-) +Interaction	+Paper type(-) +Taped body(-) +Taped wing(-) +Clip(-) +Fold(-) (+Wing area & ratio)	Body Length(-) Body Width(-) Wing length(+) +Wing Width(dip)
Design	2-level(-1,+1) Half factorial (VII)	2-level Fractional (IV) & full factorial	3-level Full factorial
Number of Runs	64*2	16*4&16	9
Final Model	Y=2.11-0.089W- 0.082L+0.246w	Y=223+28l-13L-8W Y=326+8A-17L	Y=6.14779log (358/lw+lw)- .5log(LW+(2l+1)w)
Optimum value	2.847s 8'=2.44m	4.16s 8'6"=2.59m	4.34s 15'6"=4.72m
Lessons	Interactions	Sequential learning	Physical insight
Key variables	Body length(-) Body	width(-) Wing length(+)

Paper Helicopter: with DA
Input
$$T = F_1(m, g, r, c_d, \rho, h)$$
m: Mass, *g*: Gravity const., *r*: Wing Length,
C_d: Viscosity const., *p*: Density, *h*: Height
Prior reduction
$$T = \frac{h}{v}, c_d$$

$$v = F_2(m, g, \rho, r)$$
DA
$$\Phi_v = \frac{h}{T\sqrt{gr}}; \Psi_m = \frac{m}{\rho r^3}$$

$$\Phi_v = F_3(\Psi_m)$$

Paper Helicopter: DA
Model:
$$\Phi_v = F_3(\Psi_m)$$
Design:
4 levels,
3 replicates,
equal separation
Result:
 $T = \frac{hr}{0.859} \sqrt{\frac{\rho}{mg}}$
 $m = (3.09)g$
 $\rho = 1204g/m^3$
 $\Phi_v = 0.859 \sqrt{\Psi_m}$
 $r = (0.14)m$
 $g = 9.8N/kg$
 $T = (5.18)s$
 $h = 5.3m$

	Previous (Without DA)	Davis (With DA)
Variables	Two or three levels	Continuous (interpolate and extrapolate)
Design	On variables	On dimensionless transformations 4 or 5 levels
Result	Wing length(+) Body length(-) Body width(-) Area(+) Ratio(?)	Wing length(+) Body length(-) Body width(-) Area(+) Ratio(?)
Optimum	4.34s 4.7m v=1.09m/s	5.97s 5.3m v=0.89m/s
Opt. Point	l=15.2cm w=4.60cm m=A4 sheet	l=14cm w=7cm m=3.09g
Estimate function	Y=6.14779log (358/lw+lw)5log(LW+(2l+1)w)	$Y = \frac{h}{0.6016} \sqrt{\frac{\rho l w}{mg}}$
Compared model	Full factorial	Confirmation runs

Summary on paper helicopter

- Lessons learned: from design
 - Reduce input from 4 to 1, and 5 to 2
 - Save costs if base designs on transformed dimensionless variables (separate covariate space)
 - Similar results

Comments:

- Save costs even small reductions
- Group variables
- Scalability

General Comments

- Engineers provide theory for guidance.
 - Use physical prior knowledge
 - Only test the parts with unknown physical structure
- Statisticians provide data for validation.
 - Check the validity of physical assumption
 - Recommend further experiments

(Annis 2006)

Pros and Cons

Pros:

- Nature of relationships (Not always linear)
- Priori reduction
- Scalability
- Cons:
 - Physical knowledge
 - Possible severe problems if important related variables were missing

Agenda What is Dimensional Analysis (DA) Illustrative Example Case Study: Cherry Tree (DA for Analysis) Data Analysis without DA Data Analysis with Dimensional Analysis Case Study: Paper Helicopter (DA for Design) Design without DA Design with Dimensional Analysis Lessons Learn Future Research Issues

$\begin{aligned} \hline & \textbf{Error Structure} \\ & \text{Assume model: } \pi_0 = \Pi \pi_i^{\beta_i} \cdot \varepsilon \\ & \text{i.e.,} \qquad (\log \pi_0) = \sum \beta_i (\log \pi_i) + \log \varepsilon \\ & \text{We have} \qquad E(\log \hat{\pi}_0) = \log \pi_0 \\ & \text{However,} \qquad E(e^{\log \hat{\pi}_0}) \neq e^{E(\log \hat{\pi}_0)} \\ & \text{i.e.,} \qquad E(\hat{\pi}_0) \neq \pi_0 \end{aligned}$

Dimension: Variable & Constant

- Physical constants have dimensions.
- Boltz-mann constant (k), gravitational constant (G), speed of light (c).
- No variations. To be estimated.
- Should be included to avoid ruling out important variables during DA.

Parameter: Stat vs Physics

Missing Key Variables

- Missing key variables in DA
 - -->associated deletion of others
- Critical but not fatal
- Worst Scenario: one per basis quantity
- If basis quantity d is only contained by Q, cautious of missing quantities.

Scalability

- Scalable because power law form: $\frac{Q_1^2}{Q_2}$
- Rarely available in other models
- Still need to check extrapolation:
 - Basis quantities usually scale
 - Some quantities (constants) do not scale
 - After DA, some lie out of design space

Quantity Property

- Power law --> 0 in the denominator ?
 Physical quantity can be 0 or very small.
- Continuous quantity.
- But could well be for
- Ordered quantity.
- Categorical quantity.

How will Bayesian do here???

- DA: Physical Prior on Coefficients
- Bayesian: Prior needed for Coefficients
- Treat DA from Bayesian point of view
- Take physical knowledge as Bayesian prior

- Canonical Choice:
 - Conventions
 - Scale of Systems

Ratio of two Normals (Cedilnik et al., 2004)
Theorem 2. The probability density for $Z = X/Y$, where $[X \ Y]^{T} : N(\mu_X, \mu_Y, \sigma_X, \sigma_Y, \rho \neq \pm 1)$ is expressed as a product of two terms:
$p_{Z}(z) = \frac{\sigma_{X}\sigma_{Y}\sqrt{1-\rho^{2}}}{\pi(\sigma_{Y}^{2}z^{2}-2\rho\sigma_{X}\sigma_{Y}z+\sigma_{X}^{2})} \cdot \left[\exp\left(-\frac{1}{2}\cdot \sup R^{2}\right) \cdot \left(1+\frac{R\cdot\Phi(R)}{\varphi(R)}\right)\right] =$
$=\frac{\sigma_{\chi}\sigma_{\gamma}\sqrt{1-\rho^{2}}}{\pi(\sigma_{\gamma}^{2}z^{2}-2\rho\sigma_{\chi}\sigma_{\gamma}z+\sigma_{\chi}^{2})}\cdot\left[\exp\left(-\frac{1}{2}\cdot\sup R^{2}\right)+\sqrt{2\pi}\cdot R\cdot\Phi(R)\cdot\exp\left(-\frac{1}{2}\cdot\left[\sup R^{2}-R^{2}\right]\right)\right]$ (2.2)

X_1 and X_2 are dependent			
(<i>p>0 anc</i>	$I \Lambda_1 \leq \Lambda_2$	Due ferre la la Cheant	
		Preferable Chart	
$x_1 \nearrow$	$x_2 \rightarrow$	x_1 -bar & x_2 -bar	
$x_1 $	$x_2 \rightarrow$	x_1 -bar & x_2 -bar	
$x_1 \rightarrow$	$x_2 \nearrow$	T^2 Chart	
$x_1 \rightarrow$	x_2	DA Chart	
$x_1 \nearrow$	$x_2 \nearrow$	T^2 Chart	
x_1	x_2	DA Chart	
$x_1 $	x ₂ 7	DA Chart	
$x_1 \nearrow$	<i>x</i> ₂ \	DA Chart	

$ \sum_{\substack{X_1 \text{ and } X_2 \text{ are in} \\ (\rho=0 \text{ and } X_1 \le X_2)} $	dependent
	Preferable Chart
$x_1 \nearrow x_2 \rightarrow$	x_1 -bar & x_2 -bar
$x_1 $ $x_2 $	x_1 -bar & x_2 -bar
$x_1 \rightarrow x_2 \nearrow$	x_1 -bar & x_2 -bar
$x_1 \rightarrow x_2 \bowtie$	x_1 -bar & x_2 -bar
$x_1 \nearrow x_2 \nearrow$	T^2 Chart
$x_1 $ x_2	T^2 Chart
$x_1 $ $x_2 $	DA Chart
$x_1 \nearrow x_2 \bowtie$	DA Chart

Preferable Chartweight \nearrow height \rightarrow DA Chartweight \lor height \rightarrow T^2 Chartweight \rightarrow height \nearrow DA Chartweight \rightarrow height \checkmark DA Chartweight \neg height \nearrow T^2 Chart	<i>Performance Comparison for Three Different Charts</i>			
weight \nearrow height \rightarrow DA Chartweight \lor height \rightarrow T^2 Chartweight \rightarrow height \nearrow DA Chartweight \rightarrow height \checkmark DA Chartweight \nearrow height \nearrow T^2 Chart				
weight \searrow height \rightarrow T^2 Chartweight \rightarrow height \nearrow T^2 Chartweight \rightarrow height \searrow DA Chartweight \nearrow height 7 T^2 Chart				
weight \rightarrow height \nearrow T^2 Chartweight \rightarrow height \searrow DA Chartweight \nearrow height \nearrow T^2 Chart				
weight \rightarrow height \bowtie DA Chartweight \nearrow height \nearrow T ² Chart				
weight \nearrow height \nearrow T^2 Chart				
weight \lor height \lor T^2 Chart				
weight → height ↗ DA Chart				
weight⊅ height∖ DA Chart				

