Dimensional Analysis \& Its Applications in Statistics

Dennis Lin
Department of Statistics The Pennsylvania State University

May, 2013

Agenda

© What is Dimensional Analysis (DA)

- Illustrative Example
- Case Study: Cherry Tree (DA for Analysis)
a Data Analysis without DA
a Data Analysis with Dimensional Analysis
* Case Study: Paper Helicopter (DA for Design)
a Design without DA
a Design with Dimensional Analysis
- Lessons Learn
- Future Research Issues

Key References
Szirtes T. (1997)
"Applied Dimensional Analysis \& Modeling."
Buckingham's 1914 paper

Albrecht MC, Nachtsheim CN, Albrecht TA \& Cook RD (2011)
"Experimental Design for
Engineering Dimensional
Analysis."
Davis T. (2011) "Dimensional
Analysis in Experimental Design."

Pioneer Work by Buckingham

© Buckingham, E. (1914). "On physically similar systems; illustrations of the use of dimensional equations". Physical Review 4 (4): 345-376.

- Buckingham, E. (1915). "The principle of similitude". Nature 96 (2406): 396-397.
- Buckingham, E. (1915). "Model experiments and the forms of empirical equations". Transactions of the American Society of Mechanical Engineers 37: 263-296.

Dimensional Analysis: Definition

Dimensional Analysis-a tool to find relationships among physical quantities by using their dimensions.
a The dimension of a physical quantity has units.
a Quantities of different dimensions can not add, but they can multiply each other to form a derivative quantity.

Theoretical Base_-Physics

- A physical law must be independent of the units used to measure the physical variables
s: Any meaningful equation (and any inequality) must have the same dimensions in the left and right sides
- Bridgeman's principle of absolute significance of relative magnitude
a Formula should be the power-law form
* Buckingham's П-theorem (1914)
a Physical equations must be dimensionally homogeneous

Dimensional Analysis: Wikipedia

- Check the plausibility of derived equations and computations
* Form reasonable hypotheses about complex physical situations that can be tested by experiment or by more developed theories of the phenomena
- Categorize types of physical quantities and units based on their relations or dependence on other units, or their dimensions if any

DA: General Idea

$Q_{0}=f\left(Q_{1}, \ldots, Q_{6}\right)=\frac{Q_{1}+Q_{2}}{Q_{3}}+Q_{4}-Q_{5} \log Q_{6}$

- Q_{1} and Q_{2} must have the same dimension, ${ }^{-} \mathrm{Q}_{6}$ must be dimensionless, and
${ }^{0} \mathrm{Q}_{0}\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right) / \mathrm{Q}_{3}, \mathrm{Q}_{4}$ and Q_{5}, must have the same dimension.

DA: General Idea

$Q_{0}=f\left(Q_{1}, \ldots, Q_{p}\right) \longrightarrow \pi_{0}=h\left(\pi_{1}, \ldots, \pi_{p-k}\right)$
*A meaningful f may have lots of constraints on itself. It can not be too arbitrary.
*Reduce dimensions from p to $p-k$, p is the dimension of the quantities we concern \&
$p-k$ is the dimension of the base quantities in the problem.
These are dimensionless variables!

Illustrative Example:

Ball deformation experiment

Identify dependent and independent variables
$d=f(V, \rho, D, E, \gamma)$
d the diameter of ball imprint $\quad[d]=L$
V the velocity of the ball
ρ the density of the ball
$[\mathrm{V}]=\mathrm{LT}^{-1}$

D the diameter of the ball
E the modulus of elasticity
$[\rho]=\mathrm{ML}^{-3}$
[D] $=\mathrm{L}$
γ Poisson's ratio
$[\mathrm{E}]=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
$[\gamma]=1$

Ball deformation experiment

- Identify a complete dimensionally independent subset

$$
\begin{aligned}
& {[\mathrm{V}]=\mathrm{LT}^{-1},[\mathrm{p}]=\mathrm{ML}^{-3},[\mathrm{D}]=\mathrm{L}} \\
& {[\mathrm{~d}]=\mathrm{L},[\mathrm{E}]=\mathrm{ML}^{-1} \mathrm{~T}^{-2},[\mathrm{y}]=1}
\end{aligned}
$$

- Identify the dimensionless forms of variables not in the basis set

$$
[\mathrm{d}]=[\mathrm{D}],[\mathrm{E}]=\left[\mathrm{V}^{2} \mathrm{P}\right],[\mathrm{Y}]=\left[\mathrm{V}^{0}\right]
$$

Dimensional Analysis

- The potential effects on responses come from combinations of considered quantities.

$$
\begin{aligned}
& \pi_{0}=h\left(\pi_{1}, \pi_{2}\right) \\
& \pi_{0}=\frac{d}{D} \\
& \pi_{1}=\frac{E}{\rho V^{2}} \\
& \pi_{2}=\gamma
\end{aligned}
$$

- [d]=[D], $[E]=\left[V^{2} \rho\right],[\gamma]=\left[V{ }^{0}\right], d=f(V, \rho, D, E, \gamma)$
$d=f(V, \rho, D, E, \gamma)$
d the diameter of ball imprint $\quad[d]=L$
V the velocity of the ball
ρ the density of the ball
D the diameter of the ball
E the modulus of elasticity
Poisson's ratio
$[\mathrm{V}]=\mathrm{LT}^{-1}$
$[\rho]=\mathrm{ML}^{-3}$
[D]=L
$[\mathrm{E}]=\mathrm{ML} \mathrm{L}^{-1} \mathrm{~T}^{-2}$
$[\gamma]=1$

	d	V	ρ	D	E	γ
L	1	1	-3	1	-1	0
T	0	-1	0	0	-2	0
M	0	0	1	0	1	0

- [d]=[D], [E]=[V2 $\rho],[\gamma]=\left[V^{0}\right], d=f(V, \rho, D, E, \gamma)$
$\pi_{1}=\frac{E}{V^{2} \rho}, \pi_{2}=\gamma, \pi_{0}=\frac{d}{D}$
- Apply Buckinghan's Π-Theorem to get DA model
$\pi_{0}=h\left(Q_{1}, \ldots, Q_{p}, \pi_{1}, \ldots, \pi_{p-k}\right)=h\left(\pi_{1}, \ldots, \pi_{p-k}\right)$
$\frac{d}{D}=h\left(V, \rho, D, \frac{E}{\rho V^{2}}, \gamma\right)=h\left(\frac{E}{\rho V^{2}}, \gamma\right)$

So...find Ψ, such that

$$
\pi_{0}=\Psi\left(\pi_{1}, \pi_{2}\right)
$$

Instead of
Find f, such that $d=f(V, \rho, D, E, \gamma)$

Fundamental Dimensions -Tim Davis

- Length (m)
- Mass (kg)
- Time (s)
- Temperature (K)
© Electric charge (C)
- Amount of matter (mol)
- Luminous intensity (cd)

Minitab Cherry Tree Data

	Girth(inches)	Height(feet)	Volume(feet^3)
1	8.3	70	10.3
2	8.6	65	10.3
3	8.8	63	10.2
4	10.5	72	16.4
\ldots	\ldots	\ldots	\ldots
30	18.0	80	51.0
31	20.6	87	77.0

Scatter plot of the tree data

- Diagnostics

General fitting is good, except \#31 Transformation?

Simple linear regression
$\mathrm{V}=-58.0+56.5(3) \mathrm{D}+0.34(0.13) \mathrm{H}$
$R^{2}=94 \%$

- Studentized Residuals Plot
- \#31 is an outlier

Scatter plot of the log transformed data Better linear relationship

log transformed linear regression

$\log (\mathrm{V})=-1.705+1.98_{(.08)} \log (\mathrm{D})+1.12_{(.20)} \log (\mathrm{H})$ $\mathrm{R}^{2}=0.995$, and \#31 is no longer an outlier

Quantiles

Re-Set the coefficients Box-Cox transformation

$$
\begin{array}{rlrl}
\log (V) & =C+2 \log (D)+1 \log (H) & \hat{\lambda} & =0.3066 \approx 1 / 3 \\
\bar{V} & =0.3036(.004) D^{2} H & \sqrt[3]{\hat{V}} & =1.824(0.07) D \\
& =0.3866(.005) A H & & +0.014(0.001) H \\
A & =\pi r^{2}=\pi D^{2} / 4 & & \\
\mathrm{R}^{2}=99.5 \% & & \mathrm{R}^{2}=99.93 \% \\
& & \\
\text { 人 Both models are highly efficient. }
\end{array}
$$

Dimensional Analysis review

* Procedure:
a Determine the inputs and their dimensions
a Determine the base quantities
a Transform inputs into dimensionless quantities by using base quantities
a Re-express the estimating functions

Dimensional Analysis

```
Variable Units
\(\mathrm{V} \quad \mathrm{ft}^{3}\)
```

Buckingham's Π theorem:
relationship only include two dimensionless variables

Procedure

Get dimensionless variables
$\Pi_{V}=V H^{\beta} ; \Pi_{A}=A H^{\gamma}$.
$\Pi_{V}=f\left(\Pi_{A}, H\right)=f\left(\Pi_{A}\right)$
$\Pi_{V}=\frac{V}{H^{3}} ; \Pi_{A}=\frac{A}{H^{2}}$.
$\Pi_{V}=k\left(\Pi_{A}\right)^{\delta}$
$\Leftrightarrow V=k A^{\delta} H^{3-2 \delta}$
$\Leftrightarrow \log V=C+\delta \log A+(3-2 \delta) \log H$
$\Pi_{V}=\left(a \sqrt{\Pi_{A}}+b\right)^{3}$
$\Leftrightarrow \sqrt[3]{V}=a D+b H$

Special Case-I

$\Pi_{\mathrm{V}}=\boldsymbol{k}\left(\Pi_{\mathrm{A}}\right)^{\delta}$
Set $\delta=1$

$$
\begin{aligned}
\Pi_{V} & =0.3850(.005) \Pi_{A} \\
V & =0.3850(.005) A H
\end{aligned}
$$

*)This is the same as the log transformation

$$
\widehat{V}=0.3866(.005) A H
$$

* $R^{2}=99.5 \%$

Special Case-II

$$
\Pi_{\mathrm{V}}=k\left(\Pi_{\mathrm{A}}\right)^{\delta}
$$

Set $\delta=3$ and $k=1$

$$
\Pi_{V}=\left(\alpha \Pi_{A}^{1 / 2}+\beta\right)^{3}
$$

*)This is the same as the linear model

$$
\begin{aligned}
\sqrt[3]{\hat{V}} & =1.824(0.07) D \\
& +0.014(0.001) H
\end{aligned}
$$

創 $=99.93 \%$

Diagnosis

Summary on cherry tree

- Lesson learned:
s Reduce input variables from 2 to 1
a No lose on any information
a cover traditional models
s Similar results
- Comments:
a No harms to incorporate DA before analysis a Better interpretation

Related Issue:

Error Structure
Model Fitting \& Diagnosis

Error Structure

Assume model: $\pi_{0}=\Pi \pi_{i}^{\beta_{i}} \cdot \varepsilon$
i.e., $\quad\left(\log \pi_{0}\right)=\sum \beta_{i}\left(\log \pi_{i}\right)+\log \varepsilon$

We have $\quad E\left(\log \pi_{0}\right)=\log \pi_{0}$
However, $\quad E\left(e^{\log \pi_{0}}\right) \neq e^{E\left(\log \pi_{0}\right)}$
i.e., $\quad E\left(\hat{\pi}_{0}\right) \neq \pi_{0}$

$$
y=\beta_{0} x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{p}^{\beta_{p}} \varepsilon
$$

$\min _{\alpha, \beta_{1}, \beta_{2}} \sum_{i}\left(\log y_{i}-\log \alpha-\beta_{1} \log x_{1 i}-\beta_{2} \log x_{2 i}\right)^{2}$.

Statistical Inference: DA Model

$\min _{\alpha, \beta_{1}, \beta_{2}} \sum_{i}\left|\log y_{i}-\log \alpha-\beta_{1} \log x_{1 i}-\beta_{2} \log x_{2 i}\right|$
$\min _{\alpha, \beta_{1}, \beta_{2}} \sum_{i}\left(\left|\frac{y_{i}-\alpha x_{1 i}^{\beta_{1}} x_{2 i}^{\beta_{2}}}{\alpha x_{1 i}^{\beta_{1}} x_{2 i}^{\beta_{2}}}\right|+\left|\frac{y_{i}-\alpha x_{1 i}^{\beta_{1}} x_{2 i}^{\beta_{2}}}{y_{i}}\right|\right)$
$\min _{\alpha, \beta_{1}, \beta_{2}} \sum_{i}\left(\left|\frac{y_{i}-\alpha x_{1 i}^{\beta_{1}} x_{2 i}^{\beta_{2}}}{\alpha x_{1 i}^{\beta_{1}} x_{2 i}^{\beta_{2}}}\right| \times\left|\frac{y_{i}-\alpha x_{1 i}^{\beta_{1}} x_{2 i}^{\beta_{2}}}{y_{i}}\right|\right)$

What is a paper helicopter?
Goal: maximize the landing time

- Paper Helicopter:

Dimensional Analysis for Design of Experiment

Paper Helicopter

* Literature Review
a Johnson et al (QE 2006)
a Box \& Liu (JQT 1999)
- $1^{\text {st }}$ experiment
- $2^{\text {nd }}$ experiment
: Annis (AS 2005)
* Dimensional Analysis on Paper Helicopter ${ }_{5}^{2}$ Tim Davis (2011)

Johnson (QE 2006)

* Input: Two levels
* Output: Flight time

1. Paper type
2. Body length
3. Body width
4. Wing length
5. Paper clip
6. Body tape
7. Joint tape

Johnson (QE 2006)

Design: (Seven two-level input variables)

3 Half Fractional Factorial (2^{7-1} design)
Two replicates (total of $2^{7-1 * 2}=128$ runs)
*Resolution VII: all main, two-factor, and three-factor interaction effects are clear.
main \sim six-way;
two-way ~ five-way;
three-way ~ four-way.

Johnson (QE 2006)

Term	Effect	Significant factors:
Constant		Large main effect;
Paper	-0.14734	Moderate two-way
Clip	-0.12797	effect;
Bodytape Width	$\begin{aligned} & -0.05828 \\ & -0.17797 \end{aligned}$	NO higher order effect
Length	-0.16391	NO higher order effect.
Wing	0.49297	
Paper*Clip	-0.04484	
Paper*Width	-0.05172	
Clip* Length	-0.04984	
Length*Wing	-0.05516	

Johnson(QE 2006): Conclusion

- Case study of "Six Sigma" Black Belt project
- Build best helicopters (air force)
- Consider many variables (7 and interactions)
क Typical routine to do design and analysis
* Step by step reasoning to maximize
- Limited budget

Box \& Liu (JQT 1999)

© Input: Two-level © Output: Flight time

1. Paper type
2. Wing length
3. Body length
4. Body width
5. Fold
6. Taped body
7. Clip
8. Taped wing

Box \& Liu (JQT 1999)

Design: (8 two-level input variables)
a Fractional 2-level Resolution IV (a $2_{I V}^{8-4}$ design)
\& 4 replicates (a total of $4 * 16=64$ runs)
a Wing length (3 inches vs. 4.75 inches)
sa Body length (3 inches vs. 4.75 inches)
a Body width (1.25 inches vs. 2 inches)

Box \& Liu (JQT 1999)
Significant Effects (No interactions)
Box \& Liu (JQT 1999)

- Resulting Model:

Variables	Mean time	Dispersion
Paper type	+	+
Wing length (I)	+	-
Body length (L)	-	+
Body width (W)	-	+
Fold	+	+
Taped body	+	+
Paper clip	-	-
Taped wing	-	+

$$
\hat{y}=223+28 l-13 L-8 W
$$

y in centiseconds

- Further optimization:
as Linear assumption: coefficients change according to specific I, L, W.
s Search the maximum by experiments according to steepest ascent.

Box \& Liu (JQT 1999)

* Series designs for searching optimum point * Not "one-shot" but "sequential learning" * Steepest Ascent

6 Optimum means longest flight time with minimum variance

- Higher order designs and final optimum of 416 cent-sec.

Annis (AS 2005)

3) Input:

- Output: Flight time
a Base length B
a Base height h
a Wing length L
a Wing width W
- Model: (Physics) $E(Y)=\beta_{0}+\beta_{1} \log \left(\frac{\beta_{2}{ }^{2}}{L W}+L W\right)$
$E(Y)=E[\log (t)]+\frac{1}{2} \log (S)$

$S=B H+(2 L+1) W$

Annis (AS 2005)

* Incorporate physical derivation before design
* Engineers provide theory for guidance a Parts we believe; Parts we doubt
*Statisticians provide data for validation a Parameter estimation; Question physics
* Better than full factorial design
* Extrapolation
- Nonlinear response and drop lower order terms

Literature Review: without DA

Paper Helicopter: with DA

	Johnson(QE 2006)	Box \& Liu(JQT 1999)	Annis(AS 2005)
Input	+Paper type(-) +Taped body(-) +Taped wing(-) +Clip(-) +Interaction	+Paper type(-) +Taped body(-) +Taped wing(-) +Clip(-) +Fold(-) (+Wing area \& ratio)	Body Length(-) Body Width(-) Wing length(+) +Wing Width(dip)
Design	$\begin{aligned} & \text { 2-level(}-1,+1 \text {) } \\ & \text { Half factorial (VII) } \end{aligned}$	2-level Fractional (IV) \& full factorial	3-level Full factorial
Number of Runs	64*2	16*4\&16	9
Final Model	$\begin{aligned} & \mathrm{Y}=2.11-0.089 \mathrm{~W}- \\ & 0.082 \mathrm{~L}+0.246 \mathrm{w} \end{aligned}$	$\begin{aligned} & Y=223+28 I-13 L-8 W \\ & Y=326+8 A-17 L \end{aligned}$	$\begin{aligned} & Y=6.147-.79 \log \\ & (358 / / \mathrm{lw}+\mathrm{lw})- \\ & .5 \log (\mathrm{LW}+(2 \mid+1) \mathrm{w}) \end{aligned}$
Optimum value	$2.847 \mathrm{~s} 8^{\prime}=2.44 \mathrm{~m}$	$4.16 \mathrm{~s} 8^{\prime} 6^{\prime \prime}=2.59 \mathrm{~m}$	$4.34 \mathrm{~s} 15^{\prime} 6^{\prime \prime}=4.72 \mathrm{~m}$
Lessons	Interactions	Sequential learning	Physical insight
Key variables	Body length(-) Body width(-) Wing length(+)	Body width(-) Wing length(+)	

- Input $T=F_{1}\left(m, g, r, c_{d}, \rho, h\right)$
a m : Mass, g : Gravity const., r. Wing Length,
a C_{d} : Viscosity const., p : Density, h : Height
*Prior reduction $T=\frac{h}{v}, c_{d}$

$$
v=F_{2}(m, g, \rho, r)
$$

- DA $\Phi_{v}=\frac{h}{T \sqrt{g r}} ; \Psi_{m}=\frac{m}{\rho r^{3}}$
$\Phi_{v}=F_{3}\left(\Psi_{m}\right)$

Paper Helicopter: DA

4odel: $\Phi_{v}=F_{3}\left(\Psi_{m}\right)$
Paper Helicopter: DA

- Design:
s 4 levels,
s 3 replicates,
sequal separation
* Result:

$$
\begin{array}{lll}
\text { ult: } \\
\begin{array}{lll}
T=\frac{h r}{0.859} \sqrt{\frac{\rho}{m g}} & & \\
& m=(3.09) g & \rho=1204 \mathrm{~g} / \mathrm{m}^{3} \\
\Phi_{v}=0.859 \sqrt{\Psi_{m}} & r=(0.14) \mathrm{m} & g=9.8 \mathrm{~N} / \mathrm{kg} \\
& T=(5.18) \mathrm{s} & h=5.3 \mathrm{~m}
\end{array}
\end{array}
$$

$\#$	Paper $(g s m)$	'copter mass (m)	Rotor radius* (r)	Ψ_{m} $m /\left(\rho r^{3}\right)$	Flight Time $(T) * *$	Φ_{v} $h /(T \sqrt{ } g r)$
(1	80	3.09 g	140 mm	0.937	5.18 s	0.873
(2	120	4.34 g	120 mm	$\mathbf{2 . 0 8 7}$	3.87 s	1.264
(3	100	3.72 g	100 mm	3.088	3.48 s	1.537
4.	160	5.59 g	100 mm	4.642	2.98 s	1.795
*Rotor width fixed at 52.5 mm						** Avage of 3 flights recorded twice

Paper Helicopter: DA

Summary on paper helicopter

- Lessons learned: from design
a Reduce input from 4 to 1 , and 5 to 2
a Save costs if base designs on transformed dimensionless variables (separate covariate space)
as Similar results
- Comments:
a Save costs even small reductions
a Group variables
as Scalability

Related Issue:

There are many combination of Q_{i} 's to provide the same value of Π_{j}
which combination is Optimal?

General Comments

- Engineers provide theory for guidance.

Pros and Cons

- Pros:
- Use physical prior knowledge
a Nature of relationships (Not always linear)
- Only test the parts with unknown physical
s Priori reduction
a Scalability
- Statisticians provide data for validation.
* Cons:
- Check the validity of physical assumption
a Physical knowledge
- Recommend further experiments
s Possible severe problems if important related (Annis 2006)

Agenda

*) What is Dimensional Analysis (DA)

- Illustrative Example
* Case Study: Cherry Tree (DA for Analysis)
as Data Analysis without DA
a Data Analysis with Dimensional Analysis
* Case Study: Paper Helicopter (DA for Design) s Design without DA
a Design with Dimensional Analysis
Join Us!

Lessons Learn

* Future Research Issues

Send \$500 to

* Dennis Lin

University Distinguished Professor 317 Thomas Building
Department of Statistics Penn State University

6 +1 814 865-0377 (phone)
. $+1814863-7114$ (fax)

- DennisLin@psu.edu

Error Structure

$$
\begin{array}{ll}
\text { Assume model: } & \pi_{0}=\Pi \pi_{i}^{\beta_{i}} \cdot \varepsilon \\
\text { i.e., } & \left(\log \pi_{0}\right)=\sum \beta_{i}\left(\log \pi_{i}\right)+\log \varepsilon \\
\text { We have } & E\left(\log \pi_{0}\right)=\log \pi_{0} \\
\text { However, } & E\left(e^{\log \pi_{0}}\right) \neq e^{E\left(\log \pi_{0}\right)} \\
\text { i.e., } & E\left(\hat{\pi}_{0}\right) \neq \pi_{0}
\end{array}
$$

Dependence: Before \& After

- $Y \& X$ are independent
$\rightarrow Y|\mathrm{D} \& \mathrm{X}| \mathrm{D}$ are independent
- $Y \& X$ are dependent
$\rightarrow Y|D \& X| D$ are dependent

Dimension: Variable \& Constant

* Physical constants have dimensions. * Boltz-mann constant (k), gravitational constant (G), speed of light (c).
- No variations. To be estimated.
- Should be included to avoid ruling out important variables during DA.
*) Parameter: Stat vs Physics

Scalability
*Scalable because power law form: $\frac{Q_{1}^{2}}{Q_{2}}$
*) Rarely available in other models

- Still need to check extrapolation:
sas Basis quantities usually scale
a Some quantities (constants) do not scale
ss After DA, some lie out of design space

Missing Key Variables

- Missing key variables in DA
-->associated deletion of others
- Critical but not fatal
*) Worst Scenario: one per basis quantity
* If basis quantity d is only contained by Q, cautious of missing quantities.

Quantity Property

- Power law --> 0 in the denominator ?
- Physical quantity can be 0 or very small.
- Continuous quantity.

But could well be for

- Ordered quantity.
- Categorical quantity.

How will Bayesian do here???

- DA: Physical Prior on Coefficients
- Bayesian: Prior needed for Coefficients
- Treat DA from Bayesian point of view
- Take physical knowledge as Bayesian prior

Multivariate Control Chart (X_{1}, X_{2})

- Two Individual Control Charts a for both \mathbf{X}_{1} and \mathbf{X}_{2}.
© One Multivariate Chart
a Hotelling \mathbf{T}^{2} Chart
- One DA Control Chart sa Control Chart on $\frac{X_{1}}{X_{2}^{\alpha}}\left(\right.$ eg, $\mathrm{BMI}=\frac{K g}{\mathrm{~m}^{2}}$)

Initial Simulation Setup

- Individual Chart

$$
X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right) \text { and } X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

- Multivariate Chart
$\binom{X_{1}}{X_{2}} \sim N\binom{\mu_{1}}{\mu_{1}} \cdot\left[\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \\ \rho \sigma_{12} & \sigma_{2}^{2}\end{array}\right]$
- DA Chart $\frac{X_{1}}{X_{2}}$: Ratio of two normals

X_{1} and X_{2} are dependent	
$\left(\rho>0\right.$ and $\left.X_{1}<X_{2}\right)$	
$x_{1} \nearrow x_{2} \rightarrow$	x_{1}-bar \& x_{2}-bar
$x_{1} \searrow x_{2} \rightarrow$	x_{1}-bar \& x_{2}-bar
$x_{1} \rightarrow x_{2} \nearrow$	T^{2} Chart
$x_{1} \rightarrow x_{2} \searrow$	DA Chart
$x_{1} \nearrow x_{2} \nearrow$	Th Chart
$x_{1} \searrow x_{2} \searrow$	DA Chart
$x_{1} \searrow x_{2} \nearrow$	DA Chart
$x_{1} \nearrow x_{2} \searrow$	DA Chart

X_{1} and X_{2} are independent	
$\left(\rho=0\right.$ and $\left.X_{1}<X_{2}\right)$	
$x_{1} \nearrow x_{2} \rightarrow$	Preferable chart
$x_{1} \searrow x_{2} \rightarrow$	x_{1}-bar \& x_{2}-bar
$x_{1} \rightarrow x_{2} \nearrow$	x_{1}-bar \& x_{2}-bar
$x_{1} \rightarrow x_{2} \searrow$	x_{1}-bar \& x_{2}-bar
$x_{1} \nearrow x_{2} \nearrow$	x_{1}-bar \& x_{2}-bar
$x_{1} \searrow x_{2} \searrow$	T^{2} Chart
$x_{1} \searrow x_{2} \nearrow$	T^{2} Chart
$x_{1} \nearrow x_{2} \searrow$	DA Chart
	DA Chart

[^0]Performance Comparison for Three Different Charts

	Preferable Chart
weight \nearrow height \rightarrow	DA Chart
weight \searrow height \rightarrow	T^{2} Chart
weight \rightarrow height \nearrow	T^{2} Chart
weight \rightarrow height \searrow	DA Chart
weight \nearrow height \nearrow	T^{2} Chart
weight \searrow height \searrow	T^{2} Chart
weight \searrow height $\boldsymbol{\text { weig }}$	DA Chart
weight \nearrow height \searrow	DA Chart

[^0]: Multivariate Control Chart (weight, height)
 *) Two Individual Control Charts as for both weight and height.

 * One Multivariate Chart (weight \& height) s Hotelling \mathbf{T}^{2} Chart
 *) One DA Control Chart s Control Chart on $\mathrm{BMI}=\frac{\text { weight }}{\text { height }^{2}}=\frac{\mathrm{Kg}}{\mathrm{m}^{2}}$

