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Dimensional Analysis: Definition

Dimensional Analysis—a tool to find
relationships among physical quantities by
using their dimensions.
= The dimension of a physical quantity has
units.
= Quantities of different dimensions can not

add, but they can multiply each other to
form a derivative quantity.

Dimensional Analysis: Wikipedia

@ Check the plausibility of derived
equations and computations

@ Form reasonable hypotheses about
complex physical situations that can be
tested by experiment or by more
developed theories of the phenomena

@ Categorize types of physical quantities
and units based on their relations or
dependence on other units, or their
dimensions if any

Theoretical Base—Physics

& A physical law must be independent of the
units used to measure the physical variables
= Any meaningful equation (and any inequality) must
have the same dimensions in the left and right sides
@ Bridgeman'’s principle of absolute significance
of relative magnitude
= Formula should be the power-law form
@ Buckingham's I-theorem (1914)
z Physical equations must be
dimensionally homogeneous

° DA: General Idea

O+0,
O

0, = (0.0 = +0, —0;logQ;

¢ Q, and Q, must have the same dimension,
@ Qg must be dimensionless, and

Qo (Q;+Q,)/Q;, Q4 and Qs, must have the
same dimension.




o DA: General Idea

Qo = f(Q1 Q) — 7y = W7y, T, )

@ A meaningful £ may have lots of constraints
on itself. It can not be too arbitrary.

@ Reduce dimensions from pto p-k,

p is the dimension of the quantities we concern
&

p-k is the dimension of the base quantities in the
problem.

These are dimensionless variables!

Illustrative Example:
Ball deformation experiment

Identify dependent and independent variables

d=f(V,r ,D,E, V)

d the diameter of ball imprint [d]=L

V the velocity of the ball [V]=LT!

p the density of the ball [p]=ML"
D the diameter of the ball [D]=L

E the modulus of elasticity [E]=ML-1T-2
v Poisson’s ratio [v]=1

Ball deformation experiment

@ Identify a complete dimensionally
independent subset

[VI=LT*, [p]=ML?, [D]=L
[d]=L, [E]= ML'TZ, [y]=1

@ Identify the dimensionless forms of
variables not in the basis set

[d]=[D], [EI=[V?p], [yI=[V°]

Dimensional Analysis

# The potential effects on responses come
from combinations of considered

antities.
quantities- 7, =h(z,, z,)

o
D

= E

1 ,0\/2




d=f(v,p DE,v)
- d the diameter of ball imprint [d]=L
¢ [d]=[D], [E]=[V‘ p ]x [V ]=[V0], d=f(V' p 'D-E! v ) V the velocity of the ball [V]=LT"!
p the density of the ball [p]=ML"
7 = E . =v.7 _i D the diameter of the ball [D]=L
1 V2p T =V = D E the modulus of elasticity [E]l=ML-IT-2
v Poisson’s ratio [v]=1
. i s T]-
Apply Buckinghan’s IT-Theorem to get DA model d V o D E A
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Lf1 1 -3 1 -1 0 » [d]=[D], [El=[V2e], [v]=[V], d=f(V,p D,E,v)
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So...find ¥ such that
7[0:50(72-19 72-2)

Instead of
Find f, such that d=f( V, p, D, E, )

Fundamental Dimensions  —_rin pavis

@ Length (m)

@ Mass (kg)

> Time (s)

* Temperature (K)

* Electric charge (C)

@ Amount of matter (mol)
@ Luminous intensity (cd)

FLN FLY FLy

Minitab Cherry Tree Data

¢ 31 black cherry trees from the Allegheny
National Forest

@ Diameter @ 4.5 ft (inches) - d (X1)
@ Height (feet) - h (X2)
@ Marketable volume (cubic feet) - v (Y)

% Example for linear regression
z Cook & Weisberg, 1982; Atkinson, 1985

Minitab Cherry Tree Data

Girth(inches) Height(feet)  Volume(feet”3)

1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
30 18.0 80 51.0
31 20.6 87 77.0
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o log transformed linear regression

log(V)=-1.705+1.98.08)log(D)+1.12(.20)log(H)
R2= 0.995, and #31 is no longer an outlier
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Re-Set the coefficients

log(V) =C +2log(D) +1log(H)
V =0.3036(.004)DH
=0.3866(.005) AH
A=nr?=7D?/4

R?=99.5 %

Box-Cox transformation

1 =0.3066 ~1/3

3N =1.824(0.07)D
+0.014(0.001)H

R?=99.93%

@ Both models are highly efficient.

Dimensional Analysis review

@ Procedure:
= Determine the inputs and their dimensions
= Determine the base quantities

= Transform inputs into dimensionless
quantities by using base quantities

= Re-express the estimating functions

Dimensional Analysis

Variable Units
V ft3

H ft
A~DA2  ft?

Buckingham’s IT-
theorem:
relationship only
include two
dimensionless
variables




° Procedure

Get dimensionless
variables

I, =VH”;I1, = AH".

Vv A

=gty

Estimate functions
1_Iv = f(HAlH): f(HA)
1_Iv = k(HA)a

<V =KkA’H®?
< logV =C+6logA+(3-26)logH

I, = (a|/TI, +b)?
<V =aD+bH

o Special Case-I

IT,=K(I1,)°

Set 0=1

®R2=99.5%

I1,, =0.3850(.005)IT,
V =0.3850(.005) AH
&This is the same as the log transformation

V =0.3866(.005) AH

o Special Case-Il

IT,=K(ITp)®

Set =3 and =1

My=(all, ¥2+ B)

€This is the same as the linear model

IV =1.824(0.07)D
+0.014(0.001)H

®R2=99.93%

Diagnosis
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Summary on cherry tree

& Lesson learned:
z Reduce input variables from 2 to 1
= No lose on any information
= cover traditional models
= Similar results
% Comments:
= No harms to incorporate DA before analysis
= Better interpretation

° Related Issue:

Error Structure
Modéel Fitting & Diagnosis

Error Structure

Assume model: 77, = H7Z’iﬁi <&

e, (logzy)=> B (logz)+loge
We have E(log ,) = log 7,

However, E(e'°@”0) = pE0d70)

ie, E(z,) = 7,

o Statistical Inference: DA Model

By

p €

y= ﬁoxlﬁlxzﬁ2 e X
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Statistical Inference

) B
Model: y=fx"x,” Xy
I. min |og(+)

Bx B ﬁz “Xpﬂp
IL. min %—1
" ﬂo 2...)(p [J

. ﬂo 1 X, "’Xpﬁp ‘

III. min y —1}

° Paper Helicopter:

Dimensional Analysis for
Design of Experiment

What is a paper helicopter?
Goal: maximize the landing time

Paper Helicopter

@ Literature Review
= Johnson et al (QE 2006)
= Box & Liu (JQT 1999)
o 1st experiment
¢ 2nd experiment

= Annis (AS 2005)

@ Dimensional Analysis on Paper Helicopter
= Tim Davis (2011)
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Johnson (QE 2006)

@ Input: Two levels

N o ks N

Paper type

@ Output: Flight time

Body length : 4 &8

Body width
Wing length
Paper clip
Body tape
Joint tape

Johnson (QE 2006)

Design: (Seven two-level input variables)

@Half Fractional Factorial (271 design)
@Two replicates (total of 27-1*2=128 runs)
#Resolution VII: all main, two-factor, and
three-factor interaction effects are clear.

main ~  Six-way;

two-way ~ five-way;

three-way ~ four-way.

Johnson (QE 2006)

Term

Effect

Constant

Paper
Clip

Bodytape

Width
Length
Wing

—0.14734
—0.12797
—0.05828
—0.17797
—0.16391

0.49297

Paper*Clip —0.04484
Paper*Width —0.05172
Clip* Length —0.04984
Length*Wing —0.05516

Significant factors:

Large main effect;
Moderate two-way
effect;

NO higher order effect.

Johnson(QE 2006): Conclusion

@ Case study of "Six Sigma” Black Belt
project
¢ Build best helicopters (air force)

@ Consider many variables (7 and
interactions)

& Typical routine to do design and analysis
@ Step by step reasoning to maximize
@ Limited budget

11



Box & Liu (JQT 1999)

@ Input: Two-level & Qutput: Flight time

1. Paper type

Wing length : .

Body length
Body width
Fold
Taped body
Clip
Taped wing

® N o s WD

Box & Liu (JQT 1999)

Design: (8 two-level input variables)
u Fractional 2-level Resolution IV (a 2%,* design)
= 4 replicates (a total of 4*16=64 runs)

= Wing length (3 inches vs. 4.75 inches)
= Body length (3 inches vs. 4.75 inches)
=z Body width (1.25 inches vs. 2 inches)

Box & Liu (JQT 1999)

Significant Effects (No interactions)

Variables Mean time
Paper type +
Wing length (1) +
Body length (L)

Body width (W)

Fold +
Taped body +
Paper clip

Taped wing

Dispersion

4y

+ o+ o+ o+

Box & Liu (JQT 1999)

& Resulting Model:
§y=223+281-13L-8W
y in centiseconds

@ Further optimization:
= Linear assumption: coefficients change
according to specific /, L, W.
z Search the maximum by experiments
according to steepest ascent.

12



Box & Liu (JQT 1999)

@ Series designs for searching optimum point
& Not “one-shot” but “sequential learning”
@ Steepest Ascent

& Optimum means longest flight time with
minimum variance

@ Higher order designs and final optimum of
416 cent-sec.

Annis (AS 2005)

& Input: @ Qutput: Flight time
= Base length B
= Base height h S
=z Wing length L
= Wing width W L md
& Model: (Physics) | ey
|

E(Y)=ﬁ0+ﬁllog(f\j;+ LW]

E(Y)= E[Iog(t)]+%log(8) - Al
S=BH +(2L+1)W

Annis (AS 2005)
@ Design:
= Three-level full factorial design for L and W
( 3% design)
uz D=15.5 feet
= Response surface

@ Result:

2 Get 4.34 seconds when L=6 W=1.81.
(Theoretically based on response surface)

@ Annis (As 2005)

@ Incorporate physical derivation before
design

@ Engineers provide theory for guidance
z Parts we believe; Parts we doubt

& Statisticians provide data for validation
= Parameter estimation; Question physics

& Better than full factorial design

& Extrapolation

% Nonlinear response and drop lower order
terms

13



° Literature Review: without DA

Johnson(QE 2006) Box & Liu(JQT 1999)

Input +Paper type(-) +Paper type(-)
+Taped body(-) +Taped body(-)
+Taped wing(-) +Taped wing(-)
+Clip(-) +Clip(-)
+Interaction +Fold(-)

(+Wing area & ratio)

Design 2-level(-1,+1) 2-level Fractional (IV)
Half factorial (VII) & full factorial

Number of Runs 64*2 16*4&16

Final Model Y=2.11-0.089W- Y=223+28I-13L-8W

0.082L+0.246w Y=326+8A-17L

Optimumvalue 2.847s 8=2.44m 4.16s 8'6”=2.59m

Lessons Interactions Sequential learning

Annis(AS 2005)
Body Length(-)
Body Width(-)
Wing length(+)
+Wing Width(dip)

3-level
Full factorial

9

Y=6.147-.790g
(358/Iw+lw)-
Slog(LW+(21+1)w)

4.34515'6"=4.72m

Physical insight

Key variables Body length(-) Body width(-) Wing length(+)

o Paper Helicopter: with DA

¢Input T=FR(mg,r.csph)
@ /m Mass, g Gravity const., » Wing Length,
= G, Viscosity const., p: Density, /: Height

@ Prior reduction L _h
=0.c,
v=F,(mg,p,r)
$DA o=y - M
Tgr or
o, =F(Y,)

o Paper Helicopter: DA

¢ Model: @, =F,(¥,)
@ Design:

z 4 levels,

= 3 replicates,

= equal separation

@ Result:
hr yo,

T0850\mg  m=(309)g p=1204g/m’

®, =0.859,/'¥,,

T =(5.18)s

r=(0.14)m g=9.8N/kg
h=5.3m

Paper Helicopter: DA

Paper | ‘copter Rotor ¥, Flight D,
# | (gsm) | mass (m) | radius* (r) | m/(pr®) | Time (7)** | h/(TVgr)
(1] 80 3.09g 140mm 0.937 5.18s 0.873
(2] 120 4.34g 120mm 2.087 3.87s 1.264
(3] 100 3.72g 100mm 3.088 3.48s 1.537
(4] 160 5.59g 100mm 4.642 2.98s 1.795

* Rotor width fixed ** Average of 3 flights
at52.5mm recorded twice




° Paper Helicopter: DA

D = 01014\ 046 55
v “tm
06
O, =0.859VF,, 50 .
9> 0s B~ e
= TB 45 /ﬁ
—_— 04 3 "./'
»
03 € 4
02 s ../‘ 4
01 e
25
05 olo 05 10 15 2 5 50 35 “ 45 50
o1 In¥,, dicted T hr
Predicte =
02 0.859
hr p
0.859 |mg

P

myg

Previous (Without DA)

Variables Two or three levels

Davis (With DA)

Continuous (interpolate and
extrapolate)

Design On variables On dimensionless transformations
4 or5 levels
Result Wing length(+) Wing length(+)

Body length(-) Body width(-)  Body length(-) Body width(-)
Area(+) Ratio(?) Area(+) Ratio(?)

Optimum 4.34s 4.7m v=1.09m/s 5.97s 5.3mv=0.89m/s

Opt. Point  1=15.2cm w=4.60cm I=14cm w=7cm m=3.09g
m=A4 sheet

Estimate Y=6.147-.79log h plw

function (358/Iw+lw)-.5log(LW+(21+1)w) = 0.6016 mig

Compared  Full factorial
model

Confirmation runs

Summary on paper helicopter

@ Lessons learned: from design
z Reduce input from 4 to 1, and 5 to 2
= Save costs if base designs on transformed
dimensionless variables (separate covariate
space)
= Similar results
@ Comments:
= Save costs even small reductions
u Group variables
= Scalability

o Related Issue:

There are many combination of
Qs to provide the same value of

1y

which combination is Optimal?

15



General Comments

» Engineers provide theory for guidance.
- Use physical prior knowledge

— Only test the parts with unknown physical
structure

« Statisticians provide data for validation.
— Check the validity of physical assumption
- Recommend further experiments
(Annis 2006)

Pros and Cons

@ Pros:
= Nature of relationships (Not always linear)
= Priori reduction
u Scalability
¢ Cons:
= Physical knowledge

= Possible severe problems if important related
variables were missing

° Agenda

@ What is Dimensional Analysis (DA)

@ Illustrative Example

@ Case Study: Cherry Tree (DA for Analysis)
z Data Analysis without DA
= Data Analysis with Dimensional Analysis

@ Case Study: Paper Helicopter (DA for Design)
z Design without DA
= Design with Dimensional Analysis

@ Lessons Learn

@ Future Research Issues

Join Usl!

There are whole lots more to be done!
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Send $500 to

¢ Dennis Lin
University Distinguished Professor
317 Thomas Building
Department of Statistics
Penn State University

€ +1 814 865-0377 (phone)

@ +1 814 863-7114 (fax)
@ DennisLin@psu.edu

(Customer Satisfaction or your money back!)

Error Structure

Assume model: 77, = Hﬂiﬁi &

e, (logz,) =Y, B (logz)+loge
We have E(log ,) = log 7,

However, E(elogﬂo)  @E1097))

ie., E(z,) # 7,

o Dependence: Before & After

¢Y & X are independent

= Y|D & X|D are independent
#Y & X are dependent

=> Y|D & X|D are dependent
¢Y & X are independent

= Y|D & X|D are dependent
@Y & X are dependent

=> Y|D & X|D are independent

Dependence Before/After DA

@ Before, Y and X uncorrelated
¢ After, Y/D and X/D correlated
@ Spurious correlation. Conversed Result.

Seamerplotof ¥ ana X Beamerplot of Y0 and X0
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Dimension: Variable & Constant

@ Physical constants have dimensions.

@ Boltz-mann constant (k), gravitational
constant (G), speed of light (c).

© No variations. To be estimated.

@ Should be included to avoid ruling out
important variables during DA.

@ Parameter: Stat vs Physics

Missing Key Variables

@ Missing key variables in DA
-->associated deletion of others

@ Critical but not fatal

@ Worst Scenario: one per basis quantity

@ If basis quantity d is only contained by
Q, cautious of missing quantities.

Scalability

2
@ Scalable because power law form: Qf
@ Rarely available in other models
@ Still need to check extrapolation:
= Basis quantities usually scale
= Some quantities (constants) do not scale
= After DA, some lie out of design space

Quantity Property

@ Power law --> 0 in the denominator ?
@ Physical quantity can be 0 or very small.

@ Continuous quantity.
But could well be for
@ Ordered quantity.

@ Categorical quantity.
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DA vs PCA

@ Dimension Reduction Technique
@ DA based on physical law
@ PCA based on data

@ Robustness in missing key variables?

How will Bayesian do here???

@ DA: Physical Prior on Coefficients
@ Bayesian: Prior needed for Coefficients

@ Treat DA from Bayesian point of view

Take physical knowledge as Bayesian
prior

Irregular Design Support

@ Two types of support for DA variables:
& Hyperbolic ; Regular
@ Log-transformation

Choices of Basis Quantities

@ Basis Quantities — Subset of Variables
% Not Unique! Different Result?
@ Optimal Choice; Optimal Criterion

€ Canonical Choice:
= Conventions
= Scale of Systems

19



Multivariate Control Chart (X;, X,)

@ Two Individual Control Charts
= for both X, and X..

© One Multivariate Chart
= Hotelling T2 Chart

¢ One DA Control Chart <
=2 Control Chart on % (eg, BMI=m*g)

2

Initial Simulation Setup

@ Individual Chart
X, ~N(s,02) and X, ~N(u,,03)

@ Multivariate Chart
el )
2 Hy ) | POy, O,

Xl -
¢DA Chart %, : Ratio of two normals

Ratio of two Normals (cediinik et al., 2004)

Theorem 2. The  probability density  for Z=X/Y, where

[X YI': Nlgty. piy. 0.0y, p#£1) is expressed as a product of two terms:

T 1-p° [ 1 AN
!’z(:)=-."+ﬂ~' cxp|——-:supR' |-ll+
T(Op=" =2p0yGyz+0y) |\ 2 )

R-D(R) | | _
oR) )

_ OOyl
Ty =2p00s+0y)

f Y ; { .|
\‘xp| ——_l,-sul.lh“;+\-"’.}r-R-ﬂ{RJ-\‘xp|l —% -['supR: —R:]J:

22

° X, and X, are dependent

(0>0 and X,<X,)
I T
X171 X~ xy-bar & x5-bar
XN x> xq-bar & x,-bar
X1 X7 T2 Chart
X1~ XN DA Chart
X1/ X2 A T? Chart
XN XN DA Chart
XN X7 DA Chart
X171 XN DA Chart

20



@ X, and X, are independent

(0=0and X;<X,)
| reemeom
X1 A x> Xxq-bar & x,-bar
XN x> x1-bar & x5-bar
xX1=> x7 x1-bar & x,-bar
X1~ XN x1-bar & x,-bar
XA XA T2 Chart
XN XN T2 Chart
XN xp A DA Chart
X1 XN DA Chart

Multivariate Control Chart
(weight, height)

@ Two Individual Control Charts
= for both weight and height.

@ One Multivariate Chart (weight & height)
= Hotelling T2 Chart

€ One DA Control Chart

ight K
= Control Chart on BMI= wegm 8

height?  m?

Performance Comparison for
Three Different Charts

weight” height—> DA Chart
weight~ height-> T2 Chart
weight=> height” T2 Chart
weight-> height~ DA Chart
weightA height/ T2 Chart
weightN height T2 Chart
weight™ height” DA Chart
weightA height~ DA Chart

Based on BMI analysis,
the conclusion is...

| am too short!
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