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Design of Experiment

How to  collect 
useful 

information?

Design Objectives
Treatment Comparison
Screening
Model Building
Parameter Estimation
Optimization
Prediction
Confirmation
Discovery (Random Shot)
etc.

Design Methodology
Treatment Comparison
Fractional & Full Factorial Design
Orthogonal Arrays 
Combinatorics Design
Coding Theory
Response Surface Methodology
ANOVA type Design
Optimal Design
Bayesian (Optimal) Design
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Design Methodology (Continued)

Saturated (Minimal Point) Design
Taguchi Product (Robust) Design
Mixture Experiment
Computer Experiment
Supersaturated Design
Uniform Design
MicroArray Design

Design of Experiment (Lin)
Multiple Response Problems

Optimization: Kim and Lin (JRSS-C, 2000)
Design: Chang, Lo, Lin & Young (JSPI, 2001)

Computer Experiment
Beattie and Lin (1999, 2005)

Dispersion Effect
McGrath and Lin (Technometrics, 2002)

Foldover Plan
Li and Lin (Technometrics, 2003)

Supersaturated Designs
Lin (Technometrics, 1993, 1995, 2001) and others

Uniform Designs
Fang, Lin, Winker & Yang (Technometrics, 1999)

Dispersion Effect

McGrath and Lin (JQT, 2001)
McGrath and Lin (Technometrics, 2002)

Injection Molding Process
Y = % shrinkage

X1 (A) = mold temperature
X2 (B) = screw speed
X3 (C)  = holding time
X4 (D) = gate size
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Example:  Injection Molding, Montgomery (1990)

β̂ →
% Quantiles of Standard Normal
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Traditional Method of Identifying Dispersion Effects in
Unreplicated Fractional Factorials

Two Feasible Models
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Column 3 is the 
interaction column 

of 
Columns 7 and 13!

FML, Testing in Presence of Multiple Dispersion Effects

Multiple Dispersion Effects (McGrath and Lin, 2001) Summary: Dispersion Effect
Some Problems 
(see Pan (1999), McGrath and Lin (2001), Brenneman and Nair (2001))

unidentified location effects impact dispersion effect 
identification
dispersion effects impact location effect identification
multiple dispersion effects very complicated

Some Solutions 
(see also Bergman and Hynen (1997))

Minimal replication (McGrath (2002))
Joint confidence regions (McGrath and Lin (2001c))
FML (McGrath and Lin (2002))

Generalized linear models 
Nelder and Lee (1991), Engel and Huele (1996), McCullagh and Nelder
(1989)
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Uniform Designs

Fang, Lin, Winker & Yang  
(Technometrics, 1999)
Fang and Lin 
(Handbook of Statistics, Vol 22, 2003)

Uniform Design

A uniform design provides 
uniformly scatter design points in 

the experimental domain. 

http://www.math.hkbu.edu.hk/UniformDesign

Uniform Design

= Empirical Cumulative Distribution Function
= Uniform Cumulative Distribution Function

Find  
such that              is closest to          .
Discrepancy

Wang & Fang (1980)
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The centered Lp-discrepancy is invariant under 
exchanging coordinates from x to 1-x.  Especially, 
the centered L2-discrepancy, denoted by CL2, has 
the following computation formula:
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No. 1 2 3 4
1 11 8 2 10
2 9 7 12 8
3 8 2 3 2
4 10 12 6 4
5 1 10 4 7
6 2 5 11 3
7 4 6 1 5
8 7 4 3 12
9 6 9 8 1
10 3 1 7 9
11 5 11 10 11
12 12 3 9 6

No. 1 2 3 4
1 11 8 2 10
2 9 7 12 8
3 8 2 3 2
4 10 12 6 4
5 1 10 4 7
6 2 5 11 3
7 4 6 1 5
8 7 4 3 12
9 6 9 8 1
10 3 1 7 9
11 5 11 10 11
12 12 3 9 6

5.0
4.2
3.8
4.6
1.0
1.4
2.2
3.4
3.0
1.8
2.6
5.4

40
35
10
60
50
25
30
20
45
5
55
15

1.5
6.5
2.0
3.5
2.5
6.0
1.0
3.0
4.5
4.0
5.5
5.0

60
50
20
30
45
25
35
70
15
55
65
40

x1      x2       x3 x4 y
0.1836
0.1739
0.0900
0.1176
0.0795
0.0118
0.0991
0.1319
0.0717
0.0109
0.1266
0.1424

Uniform Design Example Uniform Design

Uniformity
Model Robustness
Flexibility in experimental runs
Flexibility in the number of levels

Comparisons
among different designs and models 

• Latin hypercube design

• maximin design

• maximin Latin hypercube design

• modified maximin design

• uniform design

Prediction Errors at 400 Random Samples for Seven Design/Models
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Prediction Errors at 256 Corner Points for Seven Design/Models

• Designs on computer experiments
• Factorial designs 

• design isomorphism
Ma, Fang and Lin (2001, J. Complexity)

• consistent with minimum aberration
Fang and Mukerjee (2000, Biometrika)

• confounding
Hikernell and Liu (2000)

• orthogonality
Ma, Fang and Lin (2003, JPSI)

• Hadamard matrix equivalence
Fang and Ge (2001, accepted by MATH Computation)

• Supersaturated designs (Ma, Fang and Lin, 2000, JPSI)

More on Uniformity Criterion

Uniform Design: Summary
Uniformity
Model Robustness
Flexibility in experimental runs
Flexibility in the number of levels

References
Fang and Lin (2003)
Handbook of Statistics, Statistics in Industry (Vol.22).
Fang, Lin, Winker and Zhang 
(Technometrics, 2000)
Website
www.math.hkbu.edu.hk/UniformDesign

Optimal Foldover Plan

Li and Lin (Technometrics, 2003)
Li, Ye and Lin (Technometrics, 2003)
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Conclusion

The classical wisdom on 
full foldover is unwise!

A crimp example

Goal: determine the effect of post crimp 
stresses on the crimp resistance
Design: 5=1234, 6=124

1:crimp height, 2: pro-conditioning thermal 
shock, 3: dry heat soak, 4: fixture material, 5: 
thermal shcok life test, 6: discoloration

Original design: 16-run design 
How do we conduct the next 16-run design?

Notations

Factors: 1, 2, 3, 4
Generators: 5=12, 6=134
Defining relation: I=125=1346=23456
Word length pattern: W=(0,0,1,1,1)
Resolution: III
Foldover plan: γf=123456
WLP of the combined design: W=(0,0,0,1,0)

Resolution, Aberration and WLP

Higher resolution implies less 
confounding

Resolution III designs confound main 
effects and two-factor interactions
Resolution IV designs confound two-factor 
interactions with some two-factor 
interactions

WLP (Word Length Pattern) is used to 
further distinguish designs with same 
resolution--aberration criterion.
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Properties of foldover designs
Pros

Easy to construct
Can “separate” effects
Combined design still orthogonal

Cons
Large run size

Our objective: 
Not to compare foldover with other follow-up 
strategies, but to give the “optimal” foldover
among all possible foldover plans

Question: In the previous example, in 
which 5=12, 6=134, is there a “better”
foldover plan in terms of WLP of 
combined design?
Answer: γ∗=56  (why???)
(Trust Dennis!)
Objective: Given a fractional factorial 
design with economic run size (16 & 32), 
find its “optimal” foldover plan in terms 
of the aberration of the combined design.

Core Plan

For any 2k-p design with p generators 
(G1,…,Gp), any foldover plan is 
equivalent to a core foldover plan. 
Moreover, for every core foldover plan, 
there are 2k-p foldover plans that are 
equivalent to it.

Equivalence of foldover designs
-1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1

-1 1 -1 1 -1 1 -1 1
1 1 -1 -1 1 1 -1 -1

-1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1
1 -1 -1 1 1 -1 1 -1 1 -1 1 -1

-1 1 -1 1 -1 1 1 -1 -1 1 1 -1
1 1 -1 -1 1 1 1 1 1 1 1 1

-1 -1 1 1
1 -1 1 -1 1 1 1 -1 -1 -1 -1 1

-1 1 1 -1 -1 1 1 1 1 -1 -1 -1
1 1 1 1 1 -1 1 1 -1 1 -1 -1

-1 -1 1 -1 1 1 -1 1
1 1 -1 1 -1 -1 1 -1

-1 1 -1 -1 1 -1 1 1
1 -1 -1 -1 -1 1 1 1

-1 -1 -1 1 1 1 1 -1

D=

D

−D D4

D

γ=123 γ=4
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Core foldover plans

Core foldover plan: consists only of the 
generated factors
Example: γ = 5
Theorem:   Any foldover plan is 
equivalent to a core foldover plan.
Examples

γf = 123456 γ = 5
γ∗ = 1 γ∗ = 56

There are essentially 2p choices.

Foldover of resolution III designs 

Design Initial W (d ) W (D (γ f )) W (D (γ * )) Optimal foldover 
k-p of full-foldover of optimal foldover plan (γ *)

6-2.2 (1 1 1 0) (0 1 0 0 0) (0 0 1 0 0) 56
7-3.2 (2 3 2 0 0) (0 3 0 0 0) (0 1 2 0 0) 567
8-4.2 (3 7 4 0 1) (0 7 0 0 0) (0 3 4 0 0) 5678
8-4.4 (4 6 4 0 0) (0 6 0 0 0) (0 3 4 0 0) 567
9-5.1 (4 14 8 0 4) (0 14 0 0 0) (0 6 8 0 0) 5678
7-2.5 (1 1 0 0 1) (0 1 0 0 0) (0 0 0 0 1) 67
8-3.5 (1 2 3 1 0) (0 2 0 1 0) (0 0 2 1 0) 678
9-4.6 (1 5 6 2 1) (0 5 0 2 0) (0 1 4 2 0) 6789
9-4.7 (1 7 4 0 3) (0 7 0 0 0) (0 3 2 0 2) 67,…,69
9-4.8 (2 3 6 4 0) (0 3 0 4 0) (0 1 4 2 0) 6,786,789,679
10-5.5 (1 14 7 0 7) (0 14 0 0 0) (0 6 4 0 4) 678, …, 6910
11-6.6 (3 13 19 11 9) (0 13 0 11 0) (0 5 12 7 4) 678

Table 3. Word Length Pattern Comparisons on Selected Foldover Resolution III Designs

A Typical Example

Factors: 1, 2, 3, 4
Generators: 5=12, 6=134
Defining relation: I=125=1346=23456
Word length pattern: W=(0,0,1,1,1,0)III
Full Foldover plan: γf=123456  [γ=5]
WLP of the combined design: W=(0,0,0,1,0,0)IV

Optimal Foldover plan: γ∗=56
WLP of the combined design: W=(0,0,0,0,1,0)V

Foldover of resolution IV designs 

Design Initial W (d ) W (D (γ f )) W (D (γ * )) Optimal foldover 
k-p of full-foldover of optimal foldover plan (γ *)

5-1.2 (0 1 0) (0 1 0 0 0) full factorial 5
6-2.1 (0 3 0 0) (0 3 0 0 0) (0 1 0 0 0) 5,56,6
7-3.1 (0 7 0 0 0) (0 7 0 0 0) (0 3 0 0 0) 5, …, 7
8-4.1 (0 14 0 0 0) (0 14 0 0 0) (0 6 0 0 0) 56, …, 78
7-2.1 (0 1 2 0 0) (0 1 0 0 0) (0 0 1 0 0) 6, 7
8-3.1 (0 3 4 0 0) (0 3 0 0 0) (0 1 2 0 0) 6, …, 78
9-4.3 (0 9 0 6 0) (0 9 0 6 0) (0 3 0 4 0) 678, …, 789
9-4.5 (0 14 0 0 0) (0 14 0 0 0) (0 6 0 0 0) 67, …, 89
10-5.1 (0 10 16 0 0) (0 10 0 0 0) (0 4 8 0 0) 67, …, 910
11-6.2 (0 26 0 24 0) (0 26 0 24 0) (0 10 0 16 0) 7810,…, 8910 11

Table 4. Word Length Pattern Comparisons on Selected Foldover Resolution IV Designs

Li & Lin (2003)
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Major results

For most designs there exist better foldover
plans than the full foldover plan

In 52 out of 77 designs have better foldover
plans than full-foldover plans
Most (42) foldover plans are new 

Almost all minimum aberration designs have 
better foldover plans

Summary (Li & Lin, 2003)

Proposed a computer search method to construct 
optimal foldover plans that minimizes the WLP of 
the combined design.
Tabulated optimal foldover plans for commonly-
used 16-run and 32-run designs.
Investigated optimal and full foldover plans by 
focusing on core foldover plans.
Demonstrated that there exists a unique group of 
equivalent foldover plans. 

See also some work of Mee.
Theory on optimal foldover—Fang, Lin and Qin(2003)

Theoretical Support on 
Optimal Flodover

(via Discrepancy)

Fang, Lin and Qin (2003)
Discrepancy for Design D

Discrepancy for combined design under foldover plan γ

This can be shown to be minimum among all designs of same size.
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Future work
Optimal foldover designs of non-regular 
designs

Generalized resolution criterion (Deng and 
Tang, 1999) 
Allows “fractional” word length
Miller and Sitter (2001)
Li, Ye and Lin (2003)

Optimal semi-foldover designs built on 
Mee and Peralta (2000) and this work
Fold over high level designs
Optimal follow-up experiment, in general.

Supersaturated Designs

Lin (UTK Technical Report, 1991)
Lin (Technometrics, 1993, 1995, 2001)

Lin (Handbook of Statistics, Vol 22, 2003) 
and others

Half Fraction of William's (1968) Data
Factor

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 y
1 + + + - - - + + + + + - + - - + + - - + - - - + 133
2 + - - - - - + + + - - - + + + + - + - - + + - - 62
3 + + - + + - - - - + - + + + + + + - - - - + + - 45
4 + + - + - + - - - + + - + - + + - + + + - - - - 52
5 - - + + + + - + + - - - + - + + + - - + - + + + 56
6 - - + + + + + - + + + - - + + - + + + + + + - - 47
7 - - - - + - - + - + - + + + - + + + + + + - - + 88
8 - + + - - + - + - + - - - - - - - - + - + + + - 193
9 - - - - - + + - - - + + - - + - + + - - - - + + 32

10 + + + + - + + + - - - + - + + - + - + - + - - + 53
11 - + - + + - - + + - + - - + - - - + + - - - + + 276
12 + - - - + + + - + + + + + - - + - - + - + + + + 145
13 + + + + + - + - + - - + - - - - - + - + + - + - 130
14 - - + - - - - - - - + + - + - - - - - + - + - - 127

Lin (1993, Technometrics)

Supersaturated Design Example

How can we study k parameters
with n(<k) observations (experiments)?

SUPERSATURATED DESIGN

A situation for using supersaturated design:
• A Small number of run is desired
• The number of potential factors is large
• Only a few active factors
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Design Criteria
Supersaturated Design

• Booth and Cox (1962): 

• Wu (1993): Extension of classical optimalities ( etc)

• Deng and Lin (1994): 8 criteria

• Deng, Lin and Wang (1996): B-cirterion

• Deng, Lin and Wang (1994): resolution rank

• Balkin and Lin (1997):
Graphical Comparison (Harmonic mean of eigens)

E s( )2

D Af f,

New Age SSD Criteria

E(fNOD)
Discrete Discrepancy
Minimum Generalized Aberration (MGA)
Generalized Minimum Aberration (GMA)
Indicator Function
Relationships/Connections Among criteria
Probability of Correct Search

Design Construction
Supersaturated Design

• Half Fraction of Hadamard Matrix
• Random Combined Design (Taguchi, 1986)
• Algorithmic Approach
• Combinatorial Approach
• Optimal Supersaturated Design
• Others

Run Factors
No. I 1 2 3 4 5 6 7 8 9 10 (11)
1 + + + - + + + - - - + -
2 + + - + + + - - - + - +
3 + - + + + - - - + - + +
4 + + + + - - - + - + + -
5 + + + - - - + - + + - +
6 + + - - - + - + + - + +
7 + - - - + - + + - + + +
8 + - - + - + + - + + + -
9 + - + - + + - + + + - -
10 + + - + + - + + + - - -
11 + - + + - + + + - - - +
12 + - - - - - - - - - - -

Supersaturated Design From Hadamard Matrix of Order 12
(Using 11 as the branching column)
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Half Fraction of William's (1968) Data
Factor

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 y
1 + + + - - - + + + + + - + - - + + - - + - - - + 133
2 + - - - - - + + + - - - + + + + - + - - + + - - 62
3 + + - + + - - - - + - + + + + + + - - - - + + - 45
4 + + - + - + - - - + + - + - + + - + + + - - - - 52
5 - - + + + + - + + - - - + - + + + - - + - + + + 56
6 - - + + + + + - + + + - - + + - + + + + + + - - 47
7 - - - - + - - + - + - + + + - + + + + + + - - + 88
8 - + + - - + - + - + - - - - - - - - + - + + + - 193
9 - - - - - + + - - - + + - - + - + + - - - - + + 32

10 + + + + - + + + - - - + - + + - + - + - + - - + 53
11 - + - + + - - + + - + - - + - - - + + - - - + + 276
12 + - - - + + + - + + + + + - - + - - + - + + + + 145
13 + + + + + - + - + - - + - - - - - + - + + - + - 130
14 - - + - - - - - - - + + - + - - - - - + - + - - 127

Lin (1993, Technometrics)

Supersaturated Design Example Half Fraction Hadamard Matrix
(n, k) = (2t, 4t - 2)

Balanced Incomplete Block Design
υ

γ

= −
= −
= −
= −

2 1
4 2
2 2

2

t
b t

t
k t

Hedayat & Wallis
(1978)

•
proved to be       -optimal!

• Non-isormorphic class exist!
E s( )2

ave s n n( ) / ( )2 2 2 3= −

Half Fraction Hadamard Matrix
(n, k) = (2t, 4t - 2)

Coding
Binary Code

length n = 2t
weight = t
distance d

ω

• Find : maximum
number of codewords.

A n d[ , , ]ω

n
d

n

if
3

2
3

1 3

≤ ≤

≤γ

X = H RH

orthogonal orthogonal

not orthogonal
Thus Permute rows of RH
to minimize , say.E s( )2
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Algorithmic
Supersaturated Design

Lin (1991, 1995): Pairwise Optimality

Nguyen (1996): Exchange Algorithm

Li and Wu (1997): Columnwise and Pairwise Algorithm

Church (1993): Projection Properities

UD OD SSD

Fang, Lin & Ma (2000)

Data Analysis Methods
Supersaturated Design

• Pick-the-Winner

• Graphical Approach

• “PARC” (Practical Accumulation Record Computation)

• Compact Two-Sample Test

• Forward Selection

• Ridge Regression

• Normal Plot

Design Analysis
Supersaturated Design

• Classical Approaches
• Adjusted p-value 

(Westfall, Young & Lin, Statistica Sinica, 1998)

• Bayesian Approach
(Beattie, Fong & Lin, Technometrics, 2002)

• Penalized Least Squares 
(Li & Lin, 2002)
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SSD: Looking Ahead
Supersaturated Design

• SSD is much more mature than ever

• Nano-Manufacturing Applications

• Micro-Array Design and Analysis

• Computer Experiment: Model Building (using SSD)

• Higher (and Mixed) Level SSD

• Spotlight Interaction Effects  (Lin, 1998, QE)

• Combination Designs: Rotated FFD & SSD

Computer Experiment

Beattie and Lin (1999 & 2005)

Computer Experiment

Expensive simulation

When Monte Carlo study is infeasible, 
how to run simulation?

Latin Hypercube

Goals—Computer Experiment

Confirmation
Sensitivity Analysis
Empirical Model Building
Optimization
Model Validation
High Dimension Integration
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Statistics vs. Engineering Models

Statistical Model

y=β0+Σβixi+Σβijxixj+ε

εθ += ),(xfy

Irrelevant Issues
Replicates
Blocking
Randomization

Question:  How can a computer 
experiment be run in an efficient 
manner?

Current Approaches to
Experimental Design

Geometric (Frequentist) Designs
Full and Fractional Factorial Designs
Other Traditional Designs
Latin Hypercube Designs (McKay, Beckman, and Conover (1979))

Computer-Generated (Bayesian) Designs
Maximin Distance Designs (Johnson, Moore, and Ylvisaker (1990))

Combination Designs (Computer-Generated Geometric)
Maximin Latin Hypercube Designs (Morris and Mitchell (1992))
Orthogonal Array-based LHs (Tang (1993), Owen (1992))
Rotated Factorial Designs (Beattie and Lin (1999))

Rotated Factorial Designs

Computer experiments are gaining in 
popularity

main research area of the next 10 years

Rotated factorial designs
good factorial design properties
(orthogonality and structure)
good Latin hypercube properties
(unique and equally-spaced projections)
easy to construct
comparable by Bayesian criteria
very suitable for computer experiments
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factorial design rotated matrix

Beattie & Lin (1998): 
Rotating Full Factorials
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design

fractional
factorial design
(mostly two-level)

rotated matrix

Bursztyn & Steinberg (2002): 
Rotating in Groups

Now,
Put these two ideas together!

Grouping all design columns into 
groups, 

each forms a full factorial design, 
then rotate each group (in block).

Steinberg and Lin (Biometrika, 2006)

Multiple Response Problems

Optimization: Kim and Lin (JRSS-C, 2000)

Design: Chang, Lo, Lin & Young (JSPI, 2001)
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CGA Study

= 4.95 + 0.82x1 – 0.45x2 – 0.15x1
2 + 0.28 x2

2 - 0.11x1x2 + 0.07x1x3 (R2 = 0.91)

= 0.46 + 0.13x1 – 0.06x2 + 0.05 x3 – 0.07x1
2 - 0.04 x3

2 (R2 = 0.87)

= 28.36 – 1.48x1 + 2.33x3 – 0.15x1
2 – 1.42 x2

2 - 0.71x1x3 (R2 = 0.12)

)(ˆ
1

xyμ

)(ˆ
2

xyμ

)(ˆ
3

xyμ

Data:
Central Composite Design in x1, x2 & x3, with 
three outputs, y1, y2 & y3 and three (3) replicates.

Fitted “Location” Models

Objective:
Find x* such that all y1, y2 & y3 are 
simultaneously “optimized” .

CGA Study

= 4.95 + 0.82x1 – 0.45x2 – 0.15x1
2 + 0.28 x2

2 - 0.11x1x2 + 0.07x1x3 (R2 = 0.91)

= 0.46 + 0.13x1 – 0.06x2 + 0.05 x3 – 0.07x1
2 - 0.04 x3

2 (R2 = 0.87)

= 28.36 – 1.48x1 + 2.33x3 – 0.15x1
2 – 1.42 x2

2 - 0.71x1x3 (R2 = 0.12)

)(ˆ
1

xyμ

)(ˆ
2

xyμ

)(ˆ
3

xyμ

Objective:
Find x* such that all y1, y2 & y3 are simultaneously 
“optimized” , when both location & dispersion 
responses are under concerned!.

Fitted “Location” Models

Fitted “Dispersion” Models 
= 0.06 + 0.11x2 + 0.06x3 + 0.12x1

2 + 0.11x3
2 - 0.10x1x3 + 0.05x2x3     (R2 = 0.84)

= 0.02 - 0.01x1 + 0.01x2 - 0.01x3 + 0.02x3
2 – 0.01x1x3 + 0.02x2x3 (R2 = 0.83)

= 6.08 – 1.53x1 + 0.50x2 + 4.85x3 + 2.26 x2
2 - 0.65x1x3 - 0.67 x1x2x3           (R2 = 0.95)

)(ˆ 1 xσy

)(ˆ 2 xσy

)(ˆ 3 xσy

MRS Optimization : Approaches

Priority–based Approach

Desirability Function Approach*

Generalized Distance Approach*

Loss Function Approach*

* dimensionality reduction strategy

MRS Optimization : Priority – based 
Approach

Primary response  vs.  Secondary responses

Framework

Related Work
Hoerl (1959)                           Del Castillo and Montgomery (1993)
Myers and Carter(1973)         Copeland and Nelson (1996)
Biles (1975)                            Semple (1997)
Vining and Myers (1990)        Del Castillo, Fan, and Semple (1999)

Optimize   Primary response

s.t         Requirements for secondary responses
Ω∈x

x
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Framework of Dimensionality Reduction Strategy

X
.
.
.

1ŷ

2ŷ

rŷ

Parameter Setting Estimated Response

z
Objective

(Single Aggregate Measure)

Aggregation

• Desirability Function Approach
Harrington(1965), Derringer and Suich(1980), 
Derringer(1994), Del Castillo, Montgomery, and 
McCarville(1996), Kim and Lin(2000)

• Generalized Distance Approach
Church(1978), Khuri and Conlon(1981)

• Loss Function Approach
Pignatiello(1993), Reibeiro and Elsayed(1994), 
Ames et al.(1997), Lin and Tu(1995), Vining(1998)

MRS Optimization : Desirability Function 
Approach

Framework

Find X* to Maximize D

Related work 
Harrington (1965) Kim and Lin (1998)
Derringer and Suich (1980) Kim and Lin (2000)
Derringer (1994) Del Castillo, Montgomery, and McCarville (1996)
Goik, Liddy, and Taam (1994)

X D

1d

2d
.
.
.

1̂y
2ŷ

rŷ rd

.

.

.

Parameter Setting Estimated Response Individual Desirability Overall Desirability

MRS Optimization : Generalized Distance 
Approach

Framework

= Distance between           and 

Find      to Minimize       

Related work
Church (1978)
Khuri and Conlon (1981)

)),(ˆ( φρ xy*x

)),(ˆ( φρ xy )(ˆ xy φ

X

1ŷ
2ŷ )),(ˆ( φρ xy

1φ

2φ

rφrŷ

.

.

.
.
.
.

Parameter Setting Estimated Response Individual Optimum

MRS Optimization : Generalized Distance 
Approach (cont’d)

Khuri and Conlon (1981)  

• Distance of Estimated Responses from Estimated “Ideal” Optimum

where                         is the ideal optimum,
is the estimator of the common variance-covariance matrix of the random errors (               ),

X is the design matrix, and 
z(x) is a column vector of the input variables of the given model.

• Assume All Response Functions
- Depend on the same set of input variables.
- Are of the same form.

[ ] ,)()')(('/))(ˆ()')(ˆ(]),(ˆ[
2/111ˆ xzXXxzxyxyxy −− −−= ∑ φφφρ

Σ̂ rεεε ,...,, 21

],...,,[ 21 ′= rφφφφ
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MRS Optimization : Loss Function 
Approach

Framework

=                                         (Multivariate squared error loss)

Find       to minimize

Related Work

Pignatiello (1993)                        Ribeiro and Elsayed (1994) 
Ames et al. (1997)                       Lin and Tu (1995)
Vining (1998)

)),(ˆ( φxyL [ ]′−φ)(ˆ xy [ ]φ−)(ˆ xy
*x )(LE

X

1ŷ
2ŷ

1φ

2φ

rφrŷ

.

.

.
.
.
.

Parameter Setting Estimated Response Individual Target

)),(ˆ( φxyL

C

Example : Colloidal Gas Aphrons
(CGA) Study

Characterization of CGA Properties (Jauregi et al. 
1997)

Responses : Stability (y1, LTB), Volumetric Ratio (y2, 
STB), Temperature (y3, NTB)

Input Variables : Concentration of Surfactant (x1), 
Concentration of Salt (x2), Time of Stirring (x3)

Design : CCD with 8 Factorial Points*, 6 Axial Points*,  
and a Center Point**      

( * Replicated twice, ** Replicated 6 times)

Example : CGA Study (continued)
Fitted “Location” Models

Linear Desirability Functions (for simplicity)

Derringer and Suich (DS) Method :
Maximize

= 4.95 + 0.82x1 – 0.45x2 – 0.15x1
2 + 0.28 x2

2 - 0.11x1x2 + 0.07x1x3 (R2 = 0.91)

= 0.46 + 0.13x1 – 0.06x2 + 0.05 x3 – 0.07x1
2 - 0.04 x3

2 (R2 = 0.87)

= 28.36 – 1.48x1 + 2.33x3 – 0.15x1
2 – 1.42 x2

2 - 0.71x1x3 (R2 = 0.12)

)(ˆ
1

xyμ

)(ˆ
2

xyμ

)(ˆ
3

xyμ

x
3

332211 )ˆ()ˆ()ˆ( μμμμμμ ydydyd

)3,2,1(11 =≤≤− ixis.t

))(ˆ(,))(ˆ( ** DSjjDSjj
ydyd xx σσμμ

maxmax , jj
yy σμ

Example : CGA Study (continued)

jj
TT σμ ,

)(ˆ,)(ˆ ** DSjDSj
yy xx σμ

Bounds and Target

3.00,  0.00 0.10,  0.00 15.00,  1.00

7.00,  0.10 0.60,  0.10 45.00,  2.00

7.00,  0.00 0.10,  0.00 30.00,  1.00
Optimization Results

DS Method xDS
* = (-1.00, -1.00, -1.00)    

4.66,  0.06 0.24,  0.08 25.38,  4.54
0.41,  0.41 0.72,  0.23 0.69,  0.00

Responses
y1 y3y2

)(ˆ 1 xσy

)(ˆ 2 xσy

)(ˆ 3 xσy

Fitted “Dispersion” Models 

† The and                  values for the standard deviation responses are computed a posteriori at the given xDS* ,  
and are written in italic.

jyσˆ )ˆ( jj yd σσ

= 0.06 + 0.11x2 + 0.06x3 + 0.12x1
2 + 0.11x3

2 - 0.10x1x3 + 0.05x2x3     (R2 = 0.84)

= 0.02 - 0.01x1 + 0.01x2 - 0.01x3 + 0.02x3
2 – 0.01x1x3 + 0.02x2x3 (R2 = 0.83)

= 6.08 – 1.53x1 + 0.50x2 + 4.85x3 + 2.26 x2
2 - 0.65x1x3 - 0.67 x1x2x3           (R2 = 0.95)

minmin , jj
yy σμ
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Proposed Approach* : Framework

Consideration of Both Location and Dispersion Effects

“Maximining” Desirability Functions

Framework

},,,,,{ 11 rr ddddMinimum σσμμ LL=D

X D.
.
.

1ˆμy

.

.

.

Parameter Setting Estimated Response Individual Desirability  Overall Desirability

1σ̂y 1σd, ,
,

,

1μd

2μd 2σd

rdμ rdσ

2ˆμy 2σ̂y,

ryμˆ , ryσ̂

* Co-work with Kwang-Jae Kim

Find X* to Maximize D.

Proposed Approach : Formulation

subject to

λ
x

Maximize

,21,))(ˆ( r...,,,jyd
jj

=≥ λμμ x

,...,,2,1,))(ˆ( rjyd jj =≥ λσσ x

Ω∈x .

Example : CGA Study - Revisited

† The and                  values for the standard deviation responses are computed a posteriori at the given  xDS* ,  
and are written in italic.

jyσˆ )ˆ( jj yd σσ

0.50,  0.36 0.45,  0.50

minmin , jj
yy σμ

))(ˆ(,))(ˆ( ** PjjPjj
ydyd xx σσμμ

Proposed Method xp
* = (-0.21, -0.40, -1.00)    

5.00,  0.06 0.37,  0.05 25.96,  1.64

0.73,   0.36

))(ˆ(,))(ˆ( ** DSjjDSjj
ydyd xx σσμμ

maxmax , jj yy σμ

jTσjTμ ,

)(ˆ,)(ˆ ** DSjDSj
yy xx σμ

Bounds and Target

3.00,  0.00 0.10,  0.00 15.00,  1.00

7.00,  0.10 0.60,  0.10 45.00,  2.00

7.00,  0.00 0.10,  0.00 30.00,  1.00

Optimization Results

DS Method xDS
* = (-1.00, -1.00, -1.00)    

4.66,  0.06 0.24,  0.08 25.38,  4.54

Responses

y1 y3y2

0.41,  0.41 0.72,  0.23 0.69,  0.00

)(ˆ,)(ˆ ** PjPj
yy xx σμ

Proposed Approach : General 
Properties

Advantages

Good Balance among Responses on Both Location and Dispersion 
Effects

Robust to Potential Dependencies among Responses

Physical Interpretation of

Disadvantages
Unreasonable Solutions Possible

e.g.   Let  

Costs for Required Replication

λ

),,,( 2121 σσμμ dddd=d

)49.0,99.0,99.0,99.0(=d2)5.0,5.0,5.0,5.0(=d1

)50.0,99.0,99.0,99.0(=d3)5.0,5.0,5.0,5.0(=d1 vs.

vs.
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Micro-Array Design   (SS Young)

How do you pick the sequences that you are going to use. 
They have to be unique vs other sub-sequences and they have to 
work at common temperature/chemical fluid concentrations.

Placement of sub sequences on the chip and the number of 
rep spots.
A no-no is possible reuse of chips. How to wash would be a 
good DOE problem.

Technically I think the chips can be reused, but  contract requires 
only one use. 

There is very large variation in response among the sub-
sequences within a gene.  Does this relate to the sequence 
in some way? 

If so, it would be of interest to try to figure out the factors influencing 
the among sub-sequence variation. So the question would be DOE 
on the selection of the subsequence and then DOE on the assay 
conditions. 

Where have all the Data gone?

No need for data (Theoretical Development)
Survey Sampling and Design of Experiment 
(Physical data collection)
Computer Simulation (Experiment)

Statistical Simulation 
(Random Number generation)
Engineering Simulation

Data from Internet
On-line auction
Search Engine

STILL  
QUESTION?

Send $500   to
Dennis Lin
University Distinguished Professor 

483 Business Building
Department of Supply 
Chain & Information 
Systems
Penn State University

+1 814 865-0377 (phone)

+1 814 863-7076 (fax)

DKL5@psu.edu

(Customer Satisfaction or your money back!)


