

Statistics vs. Engineering Models $y = f(x, \theta) + \varepsilon$ (Typical) Statistical Model $y = \beta_0 + \Sigma \beta_i x_i + \Sigma \beta_{ij} x_i x_j + \varepsilon$

- Random Number Generators
 Deng and Lin (1997, 2001)
- Robustness of transformation
 - (Sensitivity Analysis)
 - From Uniform random numbers to other distributions

Goodness of Random Number Generators

- Period Length
- Efficiency
- Portability
- Theoretical Justification:
 - Uniformity
 - Independence
- Empirical Performance

LCG: Linear Congruential Generator Classical Random Number Generators • X_t=(B X_{t-1} + A) mod m Length=m

Lehmer (1951); Knuth (1981)

 With proper choice of A & B Length=m=2³¹-1=2147483647 (=2.1x10⁹)

Lih-Yuan DENG and Dennis K. J. LIN

Use of empirical studies based on computer-generated random numbers has become a common practice in the development of statistical methods, particularly when the analytical study of a statistical procedure becomes intractable. The quality of any simulation study depends heavily on the quality of the random number generators. Classical uniform random number generators have some major defects-such as the (relatively) short period length and the lack of higherdimension uniformity. Two recent uniform pseudo-random number generators (MRG and MCG) are reviewed. They are compared with the classical generator LCG. It is shown that MRG/MCG are much better random number generators than the popular LCG. Special forms of MRG/MCG are introduced and recommended as the random number generators for the new century. A step-by-step procedure for constructing such random number generators is also provided.

		112				
IRG		ultiple	Recu	rsive	Gener	rator
mo	• 1710	nup ie	110000	10070	00	
		Table 2. Lis	ting of B _i in (10), $p = 2^{31} - 1$		
			(a)			
k = 2	B_1	41546	32840	45670	13489	34601
	B_2	39606	35496	1853	22921	32207
Period = 4	, 611, 686,	014, 132, 420,	608			
			(b)			
k = 3	B_1	24101	28876	21199	34577	4572
	B_2	13872	44515	34942	25100	25580
	B_3	11269	794	34546	20127	32253
Period = 9	903, 520,	300, 447, 984,	150, 353, 281, ()22		
			(c)			
k = 4	B ₁	36421	18331	2995	19875	18799
	B_2	42276	32944	72	35787	24874
	B ₃	28478	24787	5121	18825	25217
		40047	45021	18677	25443	24181

Other Approaches

- Kinderman and Ramage (1976)
- Triangular Acceptance/Rejection Method
- Trapezoidal Method
 - 🛚 (Ahrens, 1977)
- Ratio of Uniform
 - Kinderman & Monahan, 1976)
- Rectangle/Wedge/Tail Method
 - Marsaglia, Maclaren & Bray, 1964)

A Structured Roadmap for Verification and Validation--Highlighting the Critical Role of Experiment Design

James J. Filliben

National Institute of Standards and Technology Information Technology Division Statistical Engineering Division

2004 Workshop on Verification & Validation of Computer Models of High-Consequence Engineering Systems NIST Administration Building Lecture Room D 3:10-3:25, November 8, 2004

For d = 2

$$V_{1} = \begin{bmatrix} v_{1} & v_{2} \end{bmatrix} = \begin{bmatrix} +1 & +p \\ +p & -1 \end{bmatrix}$$
For d = 2^c

$$V_{c} = \begin{bmatrix} V_{c-1} & -(p^{2^{c-1}}V_{c-1})^{*} \\ p^{2^{c-1}}V_{c-1} & (V_{c-1})^{*} \end{bmatrix}$$

where the operator $(\bullet)^*$ works on any matrix with an even number of rows by multiplying the entries in the top half of the matrix by -1 and leaving those in the bottom half unchanged.

For d = 3

$$\begin{array}{l} & \sum_{v_1 = \left({ \begin{array}{c} \pm 1 \\ \pm p \\ \pm p^2 \end{array} \right), v_2 = \left({ \begin{array}{c} \pm p \\ \pm p^2 \\ \pm 1 \end{array} \right), v_3 = \left({ \begin{array}{c} \pm p^2 \\ \pm 1 \\ \pm p \end{array} \right)} \\
\begin{array}{c} & \text{Conjecture 1:} \\ & \text{There does not exist a rotation matrix to rotate a} \\ & d\text{-factor, p-level full factorial design into a Latin} \\ \end{array}$$

d-factor, p-level full factorial design into a Lati. Hypercube, unless d is a power of two, .

3.4 4 ⁺ , 5 ⁺ , 5 ⁺ , 5 ⁺ , 9 ⁺ , 11 ⁺ , 12 ⁺ , 13 ⁺ , 14 ⁺ , 15 ⁺ , 16 ⁺ , 17 ⁺ , 18 ⁺ , 19 ⁺ , 20 ⁺ , 21 ⁺ , 22 ⁺ , 23 ⁺ , 24 ⁺ , 25 ⁺ , 26 ⁺ , 27 ⁺ , 28 ⁺ , 29 ⁺ , 30 ⁺ , 31 ⁺ , 32 ⁺ , 33 ⁺ , 34 ⁺ , 34 ⁺ , 26 ⁺ , 61 ⁺ , 38 ⁺ , 45 ⁺ , 46 ⁺ , 45 ⁺ , 46 ⁺ , 48 ⁺ , 49 ⁺ , 50 ⁺ , 52 ⁺ , 55 ⁺ , 56 ⁺ , 57 ⁺ , 58 ⁺ , 59 ⁺ , 60 ⁺ , 61 ⁺ , 61 ⁺ , 62 ⁺ , 84 ⁺ , 88 ⁺ , 88 ⁺ , 89 ⁺ , 90 ⁺ , 91 ⁺ , 92 ⁺ , 93 ⁺ , 94 ⁺ , 95 ⁺ , 96 ⁺ , 97 ⁺ , 98 ⁺ , 99 ⁺ , 100 ⁺ 34 8 ⁺ , 9 ⁺ , 16 ⁺ , 20 ⁺ , 24 ⁺ , 25 ⁺ , 28 ⁺ , 29 ⁺ , 32 ⁺ , 32 ⁺ , 32 ⁺ , 32 ⁺ , 33 ⁺ , 36 ⁺ , 37 ⁺ , 38 ⁺ , 40 ⁺ , 41 ⁺ , 42 ⁺ , 46 ⁺ , 50 ⁺ , 51 ⁺ , 55 ⁺ , 56 ⁺ , 50 ⁺ , 56 ⁺ , 60 ⁺ , 63 ⁺ , 65 ⁺ , 67 ⁺ , 68 ⁺ , 73 ⁺ , 77 ⁺ , 81 ⁺ 5-8 8 ⁺ , 12 ⁰ , 16 ⁰ , 20 ⁰ , 24 ⁰ , 28 ⁰ , 32 ⁰ , 36 ⁰ , 40 ⁰ , 44 ⁺ , 48 ⁺ , 52 ⁰ , 56 ⁻ , 60 ⁰ , 64 ⁺ , 68 ⁰ , 72 ⁰ , 76 ⁰ , 80 ⁰ , 84 ⁰ , 88 ⁰ , 92 ⁰ , 96 ⁰ , 100 ⁰	Dimensions	Available Design Sizes
3-4 8°, 9°, 12°, 16 ¹ , 20°, 24°, 25°, 28°, 29°, 32°, 33°, 36°, 37°, 38°, 40 ¹ , 41°, 42°, 46°, 50°, 51°, 52°, 54°, 55°, 36°, 59°, 60°, 63°, 64°, 65°, 67 68°, 73°, 77°, 81 ¹ 5-8 8°, 12°, 16°, 20°, 24°, 28°, 32°, 36°, 40°, 44°, 48°, 52°, 56°, 60°, 64' 68°, 72°, 76°, 80°, 84°, 88°, 92°, 96°, 100°	2	$\begin{array}{c} 4^{\dagger}, 5^{\dagger}, 6^{\circ}, 7^{\bullet}, 8^{\bullet}, 9^{\dagger}, 11^{\bullet}, 12^{\bullet}, 13^{\bullet}, 14^{\bullet}, 15^{\circ}, 16^{\circ}, 17^{\bullet}, 18^{\bullet}, 19^{\bullet}, 26^{\circ}, \\ 21^{\circ}, 22^{\bullet}, 23^{\bullet}, 24^{\downarrow}, 25^{\dagger}, 26^{\circ}, 27^{\circ}, 28^{\circ}, 29^{\circ}, 30^{\circ}, 31^{\circ}, 32^{\circ}, 33^{\circ}, 53^{\circ}, 55^{\circ}, 55^$
5-8 8°, 12°, 16°, 20°, 24°, 28°, 32°, 36°, 40°, 44°, 48°, 52°, 56°, 60°, 64' 68°, 72°, 76°, 80°, 84°, 88°, 92°, 96°, 100°	3-4	$ \begin{array}{l} 8^{6}, 9^{9}, 12^{6}, 16^{1}, 20^{9}, 24^{9}, 25^{7}, 28^{8}, 29^{1}, 32^{4}, 33^{8}, 36^{6}, 37^{8}, 58^{8}, 40^{1}, \\ 41^{1}, 42^{1}, 46^{1}, 50^{0}, 51^{1}, 52^{0}, 54^{6}, 55^{1}, 56^{0}, 59^{2}, 60^{0}, 63^{2}, 64^{4}, 65^{3}, 67^{6}, 68^{2}, 73^{4}, 73^{4}, 81^{1} \end{array} $
	5-8	8°, 12°, 16 °, 20°, 24°, 28°, 32°, 36°, 40°, 44°, 48°, 52°, 56°, 60°, 64° 68°, 72°, 76°, 80°, 84°, 88°, 92°, 96°, 100°
	t - "Hali	f-fraction" of rotated p^* full factorial design
"Half-fraction" of rotated p" full factorial design Destated mixed level destanded design The second design Destated mixed level destanded destanded Destated mixed level destanded destanded Destated mixed level destanded destanded Destated mixed level destanded Destated mixed level Destated mixed level destanded Destated mixed level Destated mixed D	v Rota	ten mixen-iever racional design
 "Half-fraction" of rotated pⁿ full factorial design Rotated noixed-level factorial design Rotated noixed-level factorial design 	 "gial "gial 	(-maction (-1) of rotated mixed-level factorial design
 * "Half-fraction" of rotated p" full factorial design 0 Rotated noixed-level factorial design < "Half-fraction" (-1) of rotated mixed-level factorial design 	► - "Hali	t-traction (+1) of fotated mixed-fevel factorial design
 "Half-fraction" of rotated p" full factorial design Rotated mixed-level factorial design "Half-fraction" (-1) of rotated mixed-level factorial design "Half-fraction" (+1) of rotated mixed-level factorial design 	o - Kota	ted full factorial design

No.	Maximin †	$\operatorname{Maximin} \diamond$	Rotate	ed Factorial ⊲
of	Distance	Latin		Design
Pts.	Design	Hypercube	Type U	Type E
4	1.0000	.7454	.7454	.7454
5	.7071	.5590	.5270	.5590
8	.5000 - 1.0000	.4041	.3748	.4472
9	.5000	.3953	.3953	.3953
12	.33335000	.3278	.3172	.3278
13	.33335000	.3005	.2833	.3162
16	.3333	.2749	.2749	.2749
17	.25003333	.2652	.2550	.2577
20	.25003333	.2233	.2253	.2425
† Ot ◊ Ot ◊ Ot	tained via Jo tained via K otained by au	ohnson, Moc oehler and (ithors' algori	re and Y Owen (19 ithm.	7lvisaker (1991). 996).

-		-
М П	D Comparison (4-dim)	
	-	
	No. Maximin Rotated Factorial Maximin	
	of Latin Design U	
	Pts H-cube Type U Type E Design	
	8 0.9258 † 0.8692 0.7071 (3) 0.7954	
	9 0.8101 † 0.5762 1.0000 (3) 0.6960 ⊲	
	10 0.7857 † * * *	
	11 0.7416 † * * *	
	12 0.7216 † * * *	
	$16\ 0.6218\ \diamond\ 0.6146\ 0.6146\ (16)\ 0.5292$	
	24 0.5325 ◊ 0.3963 0.3963 (24) N/A	
	28 N/A 0.3951 0.4167 (7) *	
	36 N/A 0.3725 0.3725 (36) N/A	
	40 N/A 0.5192 0.5192 (40) N/A	
	$41\ 0.4507\ \diamond\ 0.5062\ 0.5062\ (41)$ *	
	54 N/A 0.3641 0.3641 (54) N/A	
	67 N/A 0.3825 0.3825 (67) *	
	68 N/A 0.3751 0.3751 (68) *	
	81 N/A 0.3579 0.3579 (81) N/A	
	* No design can be constructed as defined.	
	† Published in Morris & Mitchell (1992).	
	 Obtained via Morris & Mitchell (1992) 	
	algorithm by the author.	

	Mini	mum Interpoin	Distance		Effec	t Correlatio	on
No.	Maximin	Maximin	Rotated	Factorial	Maximin	Rotated	Factorial
Of	Distance	Latin	De	sign	Latin	Des	sign
Pts.	Design	Hypercube	Type U	Type E	Hypercube	Type U	Type E
3	1.0000-1.4142	.7071	*	*	5000	*	*
4	1.0000	.7454	.7454	.7454	0	0	0
5	.7071	.5590	.5270	.5590	0	0	0
6	.6009	.4472	*	*	0286	*	*
7	.5314	.4714	.4518	.4472	1429	.0462	.0616
8	.5000-1.0000	.4041	.3748	.4472	1429	0	0
9	.5000	.3953	.3953	.3953	0	0	0
10	.33335000	.3514	.3436	.3514	20000	.0299	.0303
11	.33335000	.3162	*	*	0091	*	*
12	.33335000	.3278	.3172	.3278	0	0	0
13	.33335000	.3005	.2833	.3162	.2143	0	0
14	.33335000	.3172	.2945	.2875	.2088	.0100	.0127
15	.33335000	.2945	.2684	.2875	.0143	.0125	.0108
16	.3333	.2749	.2749	.2749	.1265	0	0
17	.25003333	.2652	.2550	.2577	.0588	0	0
18	.25003333	.2496	*	*	.0588	0	0
19	.25003333	.2357	.2428	.2425	1263	.0079	.0083
20	.25003333	.2233	2253	2425	.0617	0	0

	ACL	effects identified	via stepwis	e regress	ion
		Sequent	ial	Par	rtial
Source	df	MS	p-value	t	p-value
PZL thickness	1	2.516819×10^{-7}	0.00000000	-3.0592	0.0031
k2 stiffness (linear)	1	1.388989×10^{-7}	0.00000139	-5.3621	0.0000
VEM thickness	1	1.529360×10^{-8}	0.08520369	-3.8873	0.0002
k2 stiffness (quadratic)	1	1.111523×10^{-7}	0.00001177	4.2680	0.0001
VEM thickness / PZL thickness	1	5.576510×10^{-8}	0.00135561	3.3987	0.0011
k2 stiffness (L) / PZL thickness	1	1.867760×10^{-8}	0.05770075	3.5085	0.0008
k2 stiffness (Q) / PZL thickness	1	4.963070×10^{-8}	0.00241421	-3.1434	0.0024
Residuals	73	5.022800×10^{-9}			

Uniform Design

A uniform design provides uniformly scatter design points in the experimental domain.

http://www.math.hkbu.edu.hk/UniformDesign

The centered L_p -discrepancy is invariant under exchanging coordinates from x to 1-x. Especially, the centered L_2 -discrepancy, denoted by CL_2 , has the following computation formula:

 $(CL_2(\mathbf{P}))^2$

$$= \left(\frac{13}{12}\right)^{s} - \frac{2}{n} \sum_{k=1}^{n} \prod_{i=1}^{s} \left(1 + \frac{1}{2} |x_{ki} - \frac{1}{2}| - \frac{1}{2} |x_{ki} - \frac{1}{2}|^{2}\right) + \frac{1}{n^{2}} \sum_{k=1}^{n} \sum_{j=1}^{n} \prod_{i=1}^{s} \left[1 + \frac{1}{2} |x_{ki} - \frac{1}{2}| + \frac{1}{2} |x_{ji} - \frac{1}{2}| - \frac{1}{2} |x_{ki} - x_{ji}|\right].$$

C •	T7 8. 11	D	
	variables and	Kang	es of l
(=14)			
Design Variable	Description	Lower Bound	Upper Bound
HHI	Height of Hitch above ground	51.2 in	76.8 in
KHX1	Hitch roll torsional stiffness	8e5 in-lb/deg	1.2e6 in-lb/deg
LTS11	Distance between springs on Axle 1	30.4 in	45.6 in
LTS123	Distance between springs on Axles 2 & 3	30.4 in	45.6 in
LTS2123	Distance between springs on Axles 4,5 & 6	30.4 in	45.6 in
M11	Laden load for Axle 1	11540 lbm	17310 lbm
M2123	Laden load for Axles 4, 5 and 6	16274.4 lbm	24411.6 lbm
KT2123	Axles 4, 5 & 6 tire stiffness	4139.20 lb/in	6208.80 lb/in
SCFS11	Axle 1 spring stiffness scale factor	0.8	1.2
Noise Variables	Description	Lower Bound	Upper Bound
brake_start	Time at which braking is applied	1.02 sec	1.38 sec
brake_level	Level of braking that is applied	70 psi	100 psi
brake_end	Time after which braking is no longer applied	1.53 sec	2.07sec
steer_level	Level of steering that is applied	60 deg	100 deg
steer_end	Time after which steering is no longer applied	2.16 sec	3.24 sec

Some Observations

- uniform designs and Hammersley sampling sequences tend to yield more accurate approximations
- uniform designs tend to perform well at low sample sizes while the Hammersley sampling sequences tend to fair better when large sample sizes
- both offer improvements over standard Latin hypercube designs and random sets of points

More Observations

- kriging (krg) and radial basis function (rbf) tend to offer more accurate approximations.
- the multivariate adaptive regression splines (mar) is the least stable.
- second-order response surfaces yield average results and also perform well, particularly well when approximating the low-order nonlinearity.
- Iarger sizes generally improve the accuracy

