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Where have all the Data gone?

No need for data (Theoretical Development)
Survey Sampling and Design of Experiment 
(Physical data collection)
Computer Simulation (Experiment)

Statistical Simulation 
(Random Number generation)
Engineering Simulation

Data from Internet
On-line auction
Search Engine

Statistics vs. Engineering Models

(Typical) Statistical Model

y=β0+Σβixi+Σβijxixj+ε

εθ += ),(xfy

A Typical Engineering Model (page 1 of 3,  in Liao and Wang, 1995)
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“Statistical” Simulation Research

Random Number Generators
Deng and Lin (1997, 2001)

Robustness of transformation
(Sensitivity Analysis)

From Uniform random numbers to other 
distributions

Goodness of 
Random Number Generators

Period Length
Efficiency
Portability
Theoretical Justification: 

Uniformity
Independence

Empirical Performance

LCG: Linear Congruential Generator
Classical Random Number Generators

Xt=(B Xt-1 + A)  mod  m
Length=m 
Lehmer (1951); Knuth (1981)

With proper choice of A & B
Length=m=231-1=2147483647 (=2.1x109)

Deng & Lin (2000)
The American Statistician
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MRG: Multiple Recursive Generators

Brief
We have found a system of random 
number generators breaking the 
current world record. (Recall p=231-1 is 
about 109)
Old world record:

MT19937 (1998)
– Period length 219937-1=106001.6

New record with p=231-1:
– DX-1597 [Deng, 2005]
– Period length: 1014903.1

Longest Period found so far: 

Normal Random Numbers: Examples
Central Limit Theorem

Xi~iid U(0,1)  Z=ΣXi-6

Box-Muller Transformation
Xi~ ind U(0,1),  i=1 & 2

Z1=
Z2=

Rejection Polar Method
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Other Approaches
Kinderman and Ramage (1976)
Triangular Acceptance/Rejection Method
Trapezoidal Method 

(Ahrens, 1977)

Ratio of Uniform 
(Kinderman & Monahan, 1976)

Rectangle/Wedge/Tail Method 
(Marsaglia, Maclaren & Bray, 1964)

“Engineering”
Computer Experiments

A Structured Roadmap for 
Verification and Validation--

Highlighting the Critical Role of 
Experiment Design

James J. Filliben

National Institute of Standards and Technology
Information Technology Division
Statistical Engineering Division

2004 Workshop on Verification & Validation of Computer 
Models of High-Consequence Engineering Systems

NIST Administration Building 
Lecture Room D

3:10-3:25, November 8, 2004

Computer Experiment

Expensive simulation

When Monte Carlo study is infeasible, 
how to run simulation?

Latin Hypercube
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Irrelevant Issues

Replicates
Blocking
Randomization

Question:  How can a computer experiment 
be run in an efficient manner?

Lin (1997)

Why Latin Hypercube Designs?

Replication is worthless in CEs
Factor levels are easily changed in CEs (not so in PEs)
Suppose certain terms have little influence

Factorial designs produce replication when terms dropped
Can estimate high-order terms for other factors

Provides pseudo-randomness since CEs are 
deterministic
Smaller variance than random sampling or stratified 
random sampling (McKay, Beckman, and Conover (1979)
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(n!)d-1 for d-dim

A special class 
of LHC
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Bayesian Designs

Maximin Distance Designs, Johnson, 
Moore,and Ylvisaker (1990)
Maximizes the Minimum Interpoint Distance 
(MID)
Moves design points as far apart as possible 
in design space

D* is a Maximin Distance Design if

),(min 21, 21
xxdMID

Dxx ∈
=

),(minmax),(min 21,21*, 2121
xxdxxdMID

DxxDDxx ∈∈
==

Combination Designs
Maximin Latin Hypercube Designs
Morris and Mitchell (1992)

Begin with Latin Hypercube
Iteratively permute
Stop when achieve largest MID

Orthogonal Array-Based LH’s
Owen (1992), Tang (1993)

Begin with Orthogonal Array
Construct Latin Hypercube from OA
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Rotated Factorial Designs

Computer experiments are gaining in 
popularity

One main research area of the next 10 years

Rotated factorial designs
good factorial design properties
(orthogonality and structure)
good Latin hypercube properties
(unique and equally-spaced projections)
easy to construct
comparable by Bayesian criteria
very suitable for computer experiments

Lin (1997)
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where the operator (•)* works on any matrix with an even number of rows
by multiplying the entries in the top half of the matrix by -1 and leaving
those in the bottom half unchanged.

Impossibility Theorem

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

±
±
±

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

±
±
±

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

±
±
±

=
p

p
vp

p
v

p
pv 1,

1
,

1 2

3
2

2
2

1

For d = 3

Conjecture 1:
There does not exist a rotation matrix to rotate a 
d-factor, p-level full factorial design into a Latin
Hypercube, unless d is a power of two, .

Rotated Factorial with other 
n (   pk) Points≠
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Available Design Sizes of 100 Points or Fewer for Rotated Factorial Designs MID Comparisons (2-dim)
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MID Comparison (4-dim) Further Design Comparisons
 

 Minimum Interpoint Distance Effect Correlation 
No. Maximin Maximin Rotated Factorial Maximin Rotated Factorial 
Of Distance Latin Design Latin Design 
Pts. Design Hypercube Type U Type E Hypercube Type U Type E 
3 1.0000-1.4142 .7071 * * -.5000 * * 
4 1.0000 .7454 .7454 .7454 0 0 0 
5 .7071 .5590 .5270 .5590 0 0 0 
6 .6009 .4472 * * -.0286 * * 
7 .5314 .4714 .4518 .4472 -.1429 .0462 .0616 
8 .5000-1.0000 .4041 .3748 .4472 -.1429 0 0 
9 .5000 .3953 .3953 .3953 0 0 0 

10 .3333-.5000 .3514 .3436 .3514 -.20000 .0299 .0303 
11 .3333-.5000 .3162 * * -.0091 * * 
12 .3333-.5000 .3278 .3172 .3278 0 0 0 
13 .3333-.5000 .3005 .2833 .3162 .2143 0 0 
14 .3333-.5000 .3172 .2945 .2875 .2088 .0100 .0127 
15 .3333-.5000 .2945 .2684 .2875 .0143 .0125 .0108 
16 .3333 .2749 .2749 .2749 .1265 0 0 
17 .2500-.3333 .2652 .2550 .2577 .0588 0 0 
18 .2500-.3333 .2496 * * .0588 0 0 
19 .2500-.3333 .2357 .2428 .2425 -.1263 .0079 .0083 
20 .2500-.3333 .2233 .2253 .2425 .0617 0 0 

 
*  No rotated factorial design can be constructed

Rotation Theorem for Mixed Level Design
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Beattie & Lin (2004)

Beam Example
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Some Comments
Computer experiments are gaining in popularity

main research area of the next 10 years

Rotated factorial designs
good factorial design properties
(orthogonality and structure)
good Latin hypercube properties
(unique and equally-spaced projections)
easy to construct
comparable by Bayesian criteria
very suitable for computer experiments

Extensions
Type U and Type E designs

• extension to sizes other than p2

higher dimensional extension promising
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Uniform Designs

Fang, Lin, Winker & Yang  
(Technometrics, 1999)
Fang and Lin 
(Handbook of Statistics, Vol 22, 2003)

Uniform Design

A uniform design provides uniformly 
scatter design points in the 

experimental domain. 

http://www.math.hkbu.edu.hk/UniformDesign

Uniform Design

= Empirical Cumulative Distribution Function
= Uniform Cumulative Distribution Function

Find  
such that              is closest to          .
Discrepancy

Wang & Fang (1980)
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Sampling Strategies for 
Computer Experiments: 
Design and Analysis

Simpson, T.W., Lin, D.K.J., and Chen, 
W. (2001) ht

d

(1)

(2)

(3)
LL

z

P

x y

U1

U2 U3

n2

n3n1

2.5 in. ≤ d ≤ 10 in.
2.5 in. ≤ h ≤ 10 in.
0.1 in. ≤ t ≤ 1.0 in.

Two-Member Frame Example

DOE 5 experimental design type 
(i.e., hss, lhd, rnd, oay, rnd, uni)
APPROX 4 approximation model type 
(i.e., krg, mar, rbf, rs2)
SAMP 6 number of sample points in an 
experimental design (9,16,25,32,49,64)
FCN 3 response functions

A total of 5x4x6x3=360 cases

MAX maximum absolute error
RMSE root mean square error

MAX = max {| y i − ˆ y i|}

(y i − ˆ y i )
2

i=1

n error∑
nerror

RMSE=



14

Response-1

hss lhd oay rnd uni hss lhd oay rnd uni
DOE

krg
mar

rbf
rs2

krg
mar

rbf
rs2

krg
mar

rbf
rs2

A
P

P
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O
X

09 16

25 32

49 64

hss lhd oay rnd uni hss lhd oay rnd uni
DOE

krg
mar
rbf
rs2

krg
mar
rbf
rs2

krg
mar
rbf
rs2
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R
O

X
09 16
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49 64

RMSE MAX

Effects of DOE, APPROX, and SAMP

Response-1
RMSE MAX
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Individual Factor Contributions

Response-1
RMSE MAX
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Response-1
RMSE MAX

Interaction of SAMP and APPROX

SAMP

m
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n 
of
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09 16 25 32 49 64

   APPROX

rbf
mar
krg
rs2

3.24 sec2.16 secTime after which steering is no longer appliedsteer_end

100 deg60 degLevel of steering that is appliedsteer_level

2.07sec1.53 secTime after which braking is no longer appliedbrake_end

100 psi70 psiLevel of braking that is appliedbrake_level

1.38 sec1.02 secTime at which braking is appliedbrake_start

Upper BoundLower BoundDescriptionNoise Variables

1.20.8Axle 1 spring stiffness scale factorSCFS11

6208.80 lb/in4139.20 lb/inAxles 4, 5 & 6 tire stiffnessKT2123

24411.6 lbm16274.4 lbmLaden load for Axles 4, 5 and 6M2123

17310 lbm11540 lbmLaden load for Axle 1M11

45.6 in30.4 inDistance between springs on Axles 4,5 & 6LTS2123

45.6 in30.4 inDistance between springs on Axles 2 & 3LTS123

45.6 in30.4 inDistance between springs on Axle 1LTS11

1.2e6 in-lb/deg8e5 in-lb/degHitch roll torsional stiffnessKHX1

76.8 in51.2 inHeight of Hitch above groundHH1

Upper BoundLower BoundDescriptionDesign Variable

ArcSim Variables and Ranges of Interest
(k=14)

 

80 
100

120

60 
80 

100 0 
20 
40 
60 
80 

Brake  
Level (psi) Steer  

level (degree)

Rollover  
Metric 
(degree) 
 

Experimental Design (DOE): 5 types
Hammersley sequence (hss), Latin hypercube 

design (lhd), orthogonal array (oay), random 
set of points (rnd), uniform design (uni)
Sample size (SAMP): 4 sizes – 128, 169, 256, 
361
Approximation Model (APPROX): 4 types
kriging model (krg), radial basis function (rbf), 
second-order response surface (rs2), 
multivariate adaptive regression splines (mar)
Function (FCN): 1 type – roll-over metric
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Some Observations
uniform designs and Hammersley sampling 
sequences tend to yield more accurate 
approximations 
uniform designs tend to perform well at low 
sample sizes while the Hammersley sampling 
sequences tend to fair better when large 
sample sizes 
both offer improvements over standard Latin 
hypercube designs and random sets of points 

More Observations
kriging (krg) and radial basis function (rbf) 
tend to offer more accurate approximations.
the multivariate adaptive regression splines
(mar) is the least stable.
second-order response surfaces yield average 
results and also perform well, particularly well 
when approximating the low-order non-
linearity.
larger sizes generally improve the accuracy 

Orthogonal Latin Hypercube 
Designs
Steinberg and Lin (Biometrika, 2006)

If time permits!!!

Send $500   to
Dennis Lin
University Distinguished Professor 

483 Business Building
Department of Supply 
Chain & Information 
Systems
Penn State University

+1 814 865-0377 (phone)

+1 814 863-7076 (fax)

DKL5@psu.edu

(Customer Satisfaction or your money back!)


