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Where have all the Data gone?

= No need for data (Theoretical Development)
= Survey Sampling and Design of Experiment
(Physical data collection)
= Computer Simulation (Experiment)
«=Statistical Simulation
(Random Number generation)
«=Engineering Simulation
= Data from Internet
«=0n-line auction
«=Search Engine

All Chinese Look Alike? Why?

= (US) criteria for people classification (as in
your driver license):

«Height Short
«=Weight Light
«=Hair Color ~ Black
«Eye Color ~ Black

You must simulate under the “correct”
(right subject/model).

Computer Experiment

What is Computer Simulation?
What for?
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A device that enables the operator
to reproduce under test conditions
phenomena likely to occur in actual
performance
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Computer Experiment

= Stochastic
Deterministic

= Expensive (really expensive)
Inexpensive (really cheap)

You Could

Simulate y
Simulate f
- Simulate x
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What do you mean by simulation??

= A sequence of points that follows
«=a specific desirable distribution «
= Simple «
= Complicated =«
akgeometrical properties
= Equal spacing (Uniform)
= orthogonal
= Independent?

= Conditional Independent?
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" Did you use the

correct simulation???

y:‘; (X,

You could also
Simulate y |x,
Simulate 9]x, ...
Simulate {uy, u,,..., Uy}
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or use reject-ac stra ;
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Statistics vs. Engineering
Models o
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Statistical Model, f
Y=Bo+ZPXitZPixix;te

A Typical Engineering Model (page 1 of 3, in Liao and Wang, 1995)
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In this Talk

Distribution Theory: Coin Example
Distribution Theory: R? Story

Distribution Theory: Significance
Bootstrapping

MCMC (Markov Chain Monte Carlo)

Random Number Generation

Orthogonal Latin Hypercube Design and more
= Uniform Design

= Strategy for Computer Experiments

= Special Topics

If time permits...

= Bootstrapping (Re-sampling)

«=Sampling from the “samples”
= Treat “Samples” as “Population”
= Alternatively, delete some data from the “samples”

«=Evaluate “statistic” from the current sample—
obtain one value

«=Repeat this many times
«Average these “statistics” as the estimate

= MCMC (Markov Chain Monte Carlo)
«OR-seminar by Dr. Murali Haran (Nov 2007)




Distribution Theory

Coin Example
R? Story
Slgnmcanc.em«%gress
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Statistical Hypothesis Testing

Does Not Prove anything, but
Could be powerful to

Statistical Hypothesis Testing

H,: Null Hypothesis
S
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Statistical Hypothesis Testing

1. Under the Null Hypothesis H, (typically
implies the white noise) , what will the test
statistics behave?

= whatis “typical” and what is “abnormal”?

2. Now, compare your “observed” test
statistic to the distribution in (1)
= Ifitis “typical’-> accept Null Hypothesis (H,)
= Ifitis “abnormal” > Reject H,




Throw a fair coin 200 times and the
results were recorded: One sequence is

real and the other one is fake.

(A)

11110000000000100000101100000100000101001111001100
01111110010110110101101001111001100011011101100000
10001001111110100100001011001011101101110001010010
01100111111100011100101000101001110011100010100111

(B)

01110010010010100010011110010100010011010111001110
01111011010111101101001000111001101011010101101001
00101001110110100100001110101101101001110101100110
01110011110110001110011010111001110011110010100111

Potential Indexes/Statistics

= Number of Heads (1's)
= Number of Sign Changes

= Maximal Length

Computer Simulation

= Assumption: For a fair coin (50-50)

= Do the followings
«=Toss the coin 200 times
«=From this 200 “0-1” sequence, evaluate its
statistic (say, number of 1's)

«=Now, repeat this process for 1000 times
(say), and you will have 1000 statistics.
«=Put these statistics in a histogram (this is

the distribution of such a statistic)




Number of 1's in 1000

Simulations
(97 vs 109)

Histogram of Sucess
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Regression Model: JMP Demo

Significance
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“Statistical” Simulation Research

= Random Number Generators
«Deng and Lin (1997, 2001, 2007)

= Robustness of transformation
(Sensitivity Analysis)

«From Uniform random numbers to other
distributions

Goodness of
Random Number Generators

Period Length
Efficiency

Portability

Theoretical Justification:
«=Uniformity
«Independence

= Empirical Performance
«=Small & Big Crash Tests

LCG: Linear Congruential Generator
Classical Random Number Generators

= X=(B X.; +A) mod m
Length=m
Lehmer (1951); Knuth (1981)

= With proper choice of A & B
Length=m=231-1=2147483647 (=2.1x10°)

Random Number Generation for the New Century

Lih-Yuan DENG and Dennis K. J. LIN

Use of empirical studies based on computer-generated ran-
dom numbers has become a common practice in the devel-
opment of statistical methods, particularly when the ana-
lytical study of a statistical procedure becomes intractable.
The quality of any simulation study depends heavily on the
quality of the random number generators. Classical uniform
random number generators have some major defects—such
as the (relatively) short period length and the lack of higher-
dimension uniformity. Two recent uniform pseudo-random
number generators (MRG and MCG) are reviewed. They
are compared with the classical generator LCG. It is shown
that MRG/MCG are much better random number genera-
tors than the popular LCG. Special forms of MRG/MCG
are introduced and recommended as the random number
generators for the new century. A step-by-step procedure
for constructing such random number generators is also
provided.

KEY WORDS: Linear congruential generator (LCG); Deng & Lin (2000)
Matrix congruential generator (MCG); Multiple recursive : cting
generator (MRG); Portable and efficient generator. The American Statistician
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Briefings & Update

We have found a system of random number

generators breaking the current world record.

(Recall p=231-1 is about 109)

Old world record:

= MT19937 (1998)

— Period length 219937-1=1(06001.6

New record with p=231-1:

-~ DX-1597 [Deng, 2005]

— Period length: 1014903.1

Longest Period found so far:

«= Deng and Lin (2007)—A Penn State Patent
&= Period= 1069980,

= Survived from all (Small & Big Crash) Tests

Normal Random Numbers:
Examples

* Central Limit Theorem
- X~iid U(0,1) > Z=2X-6

* Box-Muller Transformation
- X~ind U(0,1), i=1&2 >
Z,= +f -2Inx; cos@mx)

Z,= A 2l sin@xg).

* Rejection Polar Method




Other Approaches

= Kinderman and Ramage (1976)
= Triangular Acceptance/Rejection Method
= Trapezoidal Method
«=(Ahrens, 1977)
= Ratio of Uniform
«=(Kinderman & Monahan, 1976)
= Rectangle/Wedge/Tail Method
«=(Marsaglia, Maclaren & Bray, 1964)

“Engineering”
Computer Experiments

Mostly deterministic
. Many input variables
- ~Time consuming

Box-Muller Transformation
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Goals—computer Experiment

= Confirmation

= Sensitivity Analysis
Empirical Model Building
Optimization

Model Validation

High Dimension Integration
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Space Filling Design

How to (optimally) put n points in
d dimensional space?
Optimal=cover as much space as possible

— -
o g s

A Structured Roadmap for
Verification and Validation--
Highlighting the Critical Role of
Experiment Design

James J. Filliben

National Institute of Standards and Technology
Information Technology Division
Statistical Engineering Division

2004 Workshop on Verification & Validation of Computer
Models of High-Consequence Engineering Systems
NIST Administration Building
Lecture Room D
3:10-3:25, November 8, 2004

Verification Validation

/_\ mate

Computer Model: ANN)
viother Simurative Simplified
Nature Model Computer,

C\)\/ s Model
Physical (Expensive) (Inexpensive)
Experiments
Inference

Computer Experiment

= Expensive simulation

= When Monte Carlo study is infeasible,
how to run simulation?

= Latin Hypercube

11



Irrelevant Issues What is a Latin Hypercube?
. x\
= Replicates e \\ <
= Blocking \X >
= Randomization [/
X
_ , N
Question: How can a computer experiment ==
be run in an efficient manner? \X/
Lin (1997)
X X2
Why Latin Hypercube Designs? 1 Y
2 T
= Replication is worthless in CEs 3 T2
= Factor levels are easily changed in CEs (not so in 4 13
PEs) A special class !
= Suppose certain terms have little influence of LHC
= Factorial designs produce replication when terms
dropped
«=Can estimate high-order terms for other factors 16 Tis
= Provides pseudo-randomness since CEs are — T,
deterministic 7 permutation of {1, ..., 16}
= Smaller variance than random sampling or 16!
stratified random sampling (McKay, Beckman, and n! forsizen &
Conover (1979) (n1)d-1for d-dim




Some Latin Hypercube Designs

Bayesian Designs

Maximin Distance Designs, Johnson, Moore,and
Ylvisaker (1990)

Maximizes the Minimum Interpoint Distance (MID)
Moves design points as far apart as possible in
design space MID = min d(x,X,)

X, Xo€D

D* is a Maximin Distance Design if

MID = min d(X;,X,)=max min d(X;,X,)
D X,%¢eD

Xy, Xp€D*

Maximin Latin Hypercube Designs

.......

Rotated Factorial Designs

= Computer experiments are gaining in
popularity

«=0One main research area of the next 10 years

= Rotated factorial designs
«good factorial design properties
(orthogonality and structure)
«good Latin hypercube properties
(unique and equally-spaced projections)
weasy to construct
«comparable by Bayesian criteria

wvery suitable for computer experiments
Lin (1997)

13



16 point factorial design
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Rotation by arctan(1/4) radians

x1

» Rotation Theorem

» Orthogonality Theorem

desirable factorial design rotated matrix

design o171
g 11 v Uy
24 V2 Vs g

Ford=2

+1 +p

V, = =
1 [Vl Vz] ip -1

Ford = 2¢

c-1
V. = Vc—l ‘= ( pz Vc—l) =

c 2c—1

Vc—l (Vc—l) i

where the operator (e)* works on any matrix with an even number of rows

by multiplying the entries in the top half of the matrix by -1 and leaving
those in the bottom half unchanged.
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. Rotation Theorem for Mixed Level Design
4
] ‘."?;‘“ rd e L > L il e i R=|: 1 m:|
otated Factorial with other n -Vm 1
K - ges
. ( pY Points ) = Joas o
N1+ pay1+pars i+ pay1+q®r2 1+ payLl+pars [T+ pgyi+gr?
~/pg 1 —/pars/pq ar
B N1+ pay1+pars i+ pay1+q®r2 1+ payl+ pars [T+ pgy1+qlr?
- —/pars —qr+/rs il rs
VI+rs\1+pars  Tarsyi+q?r?  V1+rsyl+pars  \itrsy1+q2r?
Jparsrs —qr —rs 1
| Vi+rsl+pars  iersyl+qir?  JL+rsyl+pars  JIrrsy1+gr? |
d=8
d=2¢ Beattie & Lin (2004)
.
Beam Example PZL
VEM
BEAM
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Some Comments
= Computer experiments are gaining in popularity
= main research area of the next 10 years
= Rotated factorial designs
o= good factorial design properties
= (orthogonality and structure)
= good Latin hypercube properties
= (unique and equally-spaced projections)
= easy to construct
= comparable by Bayesian criteria
= very suitable for computer experiments
= Extensions
= Type U and Type E designs
= extension to sizes other than p?
= higher dimensional extension promising

Basic ldea-1

D=X.V

desirable factorial design rotated matrix
design o1 2
,2,1 [Uz “ded
‘1
12
2 2
.p .2
10
2 p Beattie & Lin (1998):
:p: Rotating Full Factorials
L p?xd

Basic ldea-2

D=X.V

desirable Two-level rotated matrix
design fractional
factorial design S,
SZ

Bursztyn & Steinberg (2002):

Rotating in Groups

Now,
Put these two ideas together!

= Grouping all design columns into
_ groups, i
= each forms a full Tactoﬁl deS|g
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Steinberg and Lin (2006)

Biometrika (0061, 93,2, pp. 279258
£ 2006 Bicmetrika Trust
Printed in Great Brisin

A construction method for orthogonal Latin hypercube designs

By DAVID M. STEINBERG

Department of Statistics and Operations Research, Tel-Aviv Unfversity,
Tel-Aviv 69978, Israel
dmsipost tanac.il

AND DENNIS K. J. LIN

Department of Supply Chain & Information Systems, The Pennsylvania State Unfversity,
University Park, Pennsyloania 16802, TS5 A.

dkl5@Epsuedu
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A Const

Uniform Designs

Fang, Lin, Winker & Yang
(Technometrics, 1999)
o e
(Handbook of Statistics, Va

ruction Method for

Orthogonal Latin Hypercube
Designs (with p-level)

Uniform Design

A uniform design provides uniformly
scatter design points in the
experimental domain.

http://www.math.hkbu.edu.hk/UniformDesign
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Uniform Design

F.(x) = Empirical Cumulative Distribution Function
F(X) = Uniform Cumulative Distribution Function
Find X= (X, X5, X)
such that F,(x) isclosestto F(x) .
Discrepancy

W

dx}

D{ -
Q

= Wang & Fang (1980)

Sampling Strategies for
Computer Experiments:

Design and Analysis

Simpson, T.W., Lin, D.K.J., and
Chen, W. (2001)

otk

The centered Lp-discrepancy is invariant under
exchanging coordinates from x to 1-x. Especially,
the centered L,-discrepancy, denoted by CL,, has
the following computation formula:

(CLy(P))?
13)° s 1
[ j ZH(H % = 51= 3 1% ‘5'2)
Ny —1i-1
3 S22 S x-S0 S
+ | Xk — +* Xii — === Xki — Xijil |-
"oz k=1j=1i=1 2 Lntd ¢ :

Recent Research on

= Obtaining information which are not possible,

without modern technology
«=Censor

=RFID

«=Simulation

= How to (optimally) design these devices?
= How to analyze the outcomes (data)?
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eans “not real” |

Good for “description,”
But
Not necessary good for a solid proof!

STILL
QUESTION?

This talk is based on

= Deng and Lin (2007) Patent on Random
Number Generation.

= Steinberg and Lin (2006) “A Construction
Method for Orthogonal Latin Hypercube
Designs,” Biometrika, 93, 279-288.

= Fang and Lin (2007) “Uniform Design in
Computer and Physical Experiments,” The
Grammar of Technology Development, ed.
Shu Yamada, pp.99-119.

<http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/>

Send $500 to

= Dennis Lin
University Distinguished Professor
483 Business Building

Department of Supply
Chain & Information
Systems

Penn State University

= +1 814 865-0377 (phone)
= +1 814 863-7076 (fax)
= DKL5@psu.edu

(Customer Satisfaction or your money back!)
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