
24 Classical Nonparametrics

The development of nonparametrics originated from a concern about the approxi-

mate validity of parametric procedures based on a specific narrow model when the

model is questionable. Procedures which are reasonably insensitive to the exact

assumptions that one makes are called robust. Such assumptions may be about a

variety of things. They may be about an underlying common density assuming that

the data are iid; they may be about the dependence structure of the data itself; in

regression problems, they may be about the form of the regression function, etc. For

example, if we assume that our data are iid from a certain N(θ, 1) density, then we

have a specific parametric model for our data. Statistical models are always, at best,

an approximation. We do not believe that the normal model is the correct model.

So, if we were to use a procedure that had excellent performance under the normal

model, but fell apart at models similar to normal, but different from the normal in

aspects that a statistician would find hard to pin down, then the procedure would

be considered risky. For example, tails of underlying densities are usually hard to

pin down. Nonparametric procedures provide a certain amount of robustness to de-

parture from a narrow parametric model, at the cost of a suboptimal performance

at the parametric model. It is important to understand, though, that what we

commonly call nonparametric procedures do not provide robustness with regard to

all characteristics. For instance, a nonparametric test may retain the type I error

rate approximately under various kinds of models, but may not retain good power

properties under different kinds of models. The implicit robustness is limited, and

it always comes at the cost of some loss of efficiency at fixed parametric models.

There is a trade-off.

As a simple example, consider the t-test for the mean µ of a normal distribution.

If normality holds, then under the null hypothesis, H0 : µ = µ0,

Pµ0

(√
n(X − µ0)

s
> tα,n−1

)
= α,

for all n, µ0, and σ. However, if the population is not normal, neither the size nor

the power of the t-test remains the same as under the normal case. If these hange

substantially, we have a robustness problem. However, as we will later see, by mak-

ing a minimal number of assumptions (specifically, no parametric assumptions) we

can develop procedures with some sort of a safety net. Such methods would qualify

for being called nonparametric methods.
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There are a number of texts that discuss classical nonparametric estimators and

tests in various problems. We recommend Hajek and Sidak (1967), Hettmansperger

(1984), Randles and Wolfe (1979), and Lehmann and Romano (2005), in partic-

ular. A recent article in the nature of a review of asymptotic theory of common

nonparametric tests is Jurevckova(1995). Other specific references are given in the

sections.

24.1 Some Early Illustrative Examples

We start with three examples to explain the ideas of failure of narrowly focused

parametric procedures at broader nonparametric models, and of the possibility of

other procedures which have some limited validity independent of specific parametric

models.

Example 24.1. Let F be a cdf on R. For 0 < p < 1, let ξp denote the pth percentile

of the distribution F . That is,

ξp = inf{x : F (x) ≥ p}.

Let Fn be the empirical cdf given by

Fn(x) =
1

n

n∑
i=1

I{Xi≤x}.

Suppose we estimate the percentile ξp by inverting the empirical cdf. That is,

ξ̂p = F−1
n (p) = inf{x : Fn(x) ≥ p}.

Then, it can be shown that under minimal assumptions, the estimator ξ̂p , a distribution-

free estimate of the corresponding population quantile, is strongly consistent for ξp;

see Hettmansperger (1984), e.g. Thus, F−1
n (p) gives us at least consistency with-

out requiring any rigid parametric assumptions. It would qualify for being called a

nonparametric procedure.

Example 24.2. Consider the t confidence interval, X ± tα/2,n−1
s√
n
, denoted by Cn.

If X1, . . . , Xn are iid observations from N(µ, σ2) then Pµ,σ(Cn 3 µ) ≡ 1 − α for all

n, µ, σ. That is, the coverage probability is exact. But what happens if X1, . . . , Xn

are iid observations from a general distribution F? More precisely, what can be
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asserted about the coverage probability, PF (Cn 3 µ(F ))? If we can assume that

EF X2 < ∞ then it can be shown that

lim
n→∞

PF (Cn 3 µ(F )) = 1 − α.

That is, for fixed F and ε > 0, there exists a number N = N(F, α, ε) > 0 such that

n > N =⇒ |PF (Cn 3 µ(F )) − (1 − α)| < ε.

However, the asymptotic validity is not uniform in F . That is, if F denotes the set

of all cdf’s with finite second moment, then

lim
n→∞

inf
F∈F

PF (Cn 3 µ) = 0.

This is an example of the failure of a parametric procedure under completely

nonparametric models.

Example 24.3. This is a classical example of a nonparametric confidence interval

for a quantile. Let θ denote the median of a distribution F . Suppose X(1) < . . . <

X(n) are the order statistics of an iid sample from a continuous cdf F . For a fixed

k, 0 ≤ k ≤ n−1
2

, using the notation {Ui} to denote an iid U [0, 1] sample,

PF (X(k+1) ≤ θ ≤ X(n−k)) = PF (F (X(k+1) ≤ F (θ) ≤ F (X(n−k))

= P (U(k+1) ≤ 0.5 ≤ U(n−k))

= P (k + 1 ≤ Sn < n − k)

= P (k + 1 ≤ Bin(n, 0.5) < n − k)

where Sn = #{i : Ui ≤ 0.5}. We can choose k such that this probability is ≥ 1− α.

This translates to a nonparametric confidence interval for θ. Notice that the only

assumption we have used here is that F is continuous (this assumption is needed to

perform the quantile transformation).

But, the nonparametric interval would not perform as well as a t-interval if F is

a normal cdf.

24.2 Sign Test

This is perhaps the earliest example of a nonparametric testing procedure. In fact,

the test was apparently discussed by Laplace in the 1700’s. The Sign test is a test for

the median of any continuous distribution, without requiring any other assumptions.
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Let X1, . . . , Xn be iid samples from an (absolutely) continuous distribution F .

Let θ = θ(F ) be the median of the distribution. Consider testing H0 : θ = θ0 versus

the one-sided alternative H1 : θ > θ0. Define the statistic

Sn =
n∑

i=1

I{Xi>θ0} (24.1)

Then large values of Sn would indicate that H1 is true, and so the Sign test rejects

the null when Sn > k = k(n, α), where this k is chosen so that PH0(Sn > k) ≤ α.

Under H0, Sn has a Bin(n,1/2) distribution and so k = k(n, α) is just a quantile

from the appropriate Binomial distribution. Thus, the Sign test is a size-α test for

the median θ for any sample size n and any continuous cdf.

The next question is how does the Sign test perform relative to a competitor;

e.g. the t-test. Of course, to make a comparison with the t test, we must have F

such that the mean exists and equals the median. A good ground for comparison is

when F = N(θ, σ2).

Suppose that X1, . . . , Xn are iid observations from N(θ, σ2) for some unknown

θ and σ. We wish to test H0 : θ = θ0 against a one- or two-sided alternative. Each

of the tests reject H0 if Tn ≥ cn, where Tn is the appropriate test statistic. The two

power functions for the case of one sided alternatives are, respectively,

Pθ,σ

(√
n(X − θ0)

s
> t

)
and Pθ,σ (Sn > k(n, α, θ0)) .

The former probability is a non-central t probability and the latter is a Binomial

probability. We wish to compare the two power functions.

The point is that, at a fixed alternative θ, if α remains fixed, then for large n,

the power of both tests is approximately 1 and there would be no way to practically

compare the two tests. Perhaps we can see how the powers compare for θ ≈ θ0.

The idea is to take θ = θn → θ0 at such a rate that the limiting power of the tests

is strictly between α and 1. If the two powers converge to different values then we

can take the ratio of the limits as a measure of efficiency. We have discussed this

concept of efficiency, namely the Pitman efficiency, in detail in Chapter 22.

Example 24.4. Let X1, . . . , Xn be iid observation from N(θ, σ2). Suppose we wish

to test H0 : θ = θ0. Let T denote the t-test and S denote the Sign test. Then

eP (S, T ) = 2
π
≈ 0.637 < 1. That is, the precision that the t-test achieves with 637

observations is achieved by the Sign test with 1000 observations. This reinforces

our earlier comment that while nonparametric procedures enjoy a certain amount of
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validity at broad models, they cannot compete with parametric optimal procedures

at specified parametric models.

The Sign test, however, cannot get arbitrarily bad with respect to the t test,

under some restrictions on the cdf F , as is shown by the following result, although

the t test can be arbitrarily bad with respect to the Sign test.

Theorem 24.1. (Hodges-Lehmann, 1956) Let X1, . . . , Xn be iid observations from

any distribution with density f(x − θ) where f(0) > 0, f is continuous at 0 and∫
z2f(z) dz < ∞. Then eP (S, T ) ≥ 1

3
and eP (S, T ) = 1

3
when f is any symmetric

uniform density.

Remark: We learn from this result that the Sign test has an asymptotic effi-

ciency with respect to the t test that is bounded away from zero for a fairly large

class of location parameter cdfs, but that the minimum efficiency is only 1
3
, which is

not very good. We will later discuss alternative nonparametric tests for the location

parameter problem, which have much better asymptotic efficiencies.

24.3 Consistency of the Sign Test

Definition 24.1. Let {ϕn} be a sequence of tests for H0 : F ∈ Ω0 versus H1 : F ∈
Ω1. Then {ϕn} is consistent against the alternatives Ω1 if

(i) EF (ϕn) → α ∈ (0, 1) ∀ F ∈ Ω0,

(ii) EF (ϕn) → 1 ∀ F ∈ Ω1.

As in estimation, consistency is a rather weak property of a sequence of tests.

However, something must be fundamentally wrong with the test for it not to be

consistent. If a test is inconsistent against a large class of alternatives, then it is

considered an undesirable test.

Example 24.5. For a parametric example, let X1, . . . , Xn be an iid sample from

the Cauchy distribution, C(θ, 1). For all n ≥ 1, we know that X also has the C(θ, 1)

distribution. Consider testing the hypothesis H0 : θ = 0 versus H1 : θ > 0 by

using a test which rejects for large X. The cutoff point, k, is found by making

Pθ=0(X > k) = α. But k is simply the αth quantile of the C(0, 1) distribution.

Then the power of this test is given by

Pθ(X > k) = P (C(θ, 1) > k) = P (θ + C(0, 1) > k) = P (C(0, 1) > k − θ).
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This is a fixed number, not depending on n. Therefore, the power 6→ 1 as n → ∞,

and so the test is not consistent even against parametric alternatives.

Remark: A test based on the median would be consistent in the C(θ, 1) case.

The following theorem gives a sufficient condition for a sequence of tests to be

consistent.

Theorem 24.2. Consider a testing problem H0 : F ∈ Ω0 vs. H1 : F ∈ Ω1. Let

{Vn} be a sequence of test statistics and {kn} a sequence of numbers such that

PF (Vn ≥ kn) → α < 1 ∀F ∈ Ω0.

For a test which rejects H0 when Vn ≥ kn, suppose:

• Under any F ∈ Ω0 ∪ Ω1, Vn
P⇒ µ(F ), some suitable functional of F

• For all F ∈ Ω0, µ(F ) = µ0 and for all F ∈ Ω1, µ(F ) > µ0

• Under H0,
√

n(Vn−µ0)
σ0

L⇒ N(0, 1) for some 0 < σ0 < ∞.

Then the sequence of tests is consistent against H1 : F ∈ Ω1.

Proof. We can take kn = σ0zα√
n

+ µ0, where zα is a standard normal quantile. With

this choice of {kn},

PF (Vn ≥ kn) → α ∀F ∈ Ω0.

The power of the test is

Qn = PF (Vn ≥ kn) = PF (Vn − µ(F ) ≥ kn − µ(F )).

Since we assume µ(F ) > µ0, it follows that kn − µ(F ) < 0 for all large n and for all

F ∈ Ω1. Also, Vn −µ(F ) converges in probability to 0 under any F , and so Qn → 1.

Since the power goes to 1, the test is consistent against any alternative F in Ω1.

Corollary 24.1. If F is an absolutely continuous cdf with unique median θ = θ(F ),

then the Sign test is consistent for tests on θ.

Proof. Recall that the Sign test rejects H0 : θ(F ) = θ0 in favor of H1 : θ(F ) > θ0 if

Sn =
∑

I{Xi>θ0} ≥ kn. If we choose kn = n
2

+ zα

√
n
4

then, by the ordinary Central

Limit Theorem, we have

PH0(Sn ≥ kn) → α.

Then the consistency of the Sign test follows from the above theorem by letting
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(i) kn = 1
2

+ zα

√
1
4n

(ii) Vn = Sn

n

(iii) µ0 = 1
2
, σ0 = 1

2

(iv) µ(F ) = 1 − F (θ0) > 1
2

for all F in the alternative.

24.4 Wilcoxon Signed-Rank Test

Recall that Hodges and Lehmann proved that the Sign test has a small positive lower

bound of 1
3

on the Pitman efficiency with respect to the t-test in the class of densities

with a finite variance, which is not satisfactory (see Theorem 24.1). The problem

with the Sign test is that it only considers whether an observation is > θ0 or ≤ θ0,

but not the magnitude. A nonparametric test which incorporates the magnitudes

as well as the signs is called the Wilcoxon Signed-Rank Test; see Wilcoxon (1945).

Definition 24.2. Given a generic set of n numbers z1, . . . , zn, the rank of a partic-

ular zi is defined as

Ri = #{k : zk ≤ zi}.

Suppose that X1, . . . , Xn are the observed data from some location parameter

distribution F (x − θ) and assume that F is symmetric. Let θ = Med(F ). We want

to test H0 : θ = 0 against H1 : θ > 0. We start by ranking |Xi| from the smallest

to the largest, giving the units ranks R1, . . . , Rn. Then the Wilcoxon Signed-Rank

statistic is defined to be the sum of these ranks which correspond to originally

positive observations. That is,

T =
n∑

i=1

RiI{Xi>0} (24.2)

If we define Wi = I|X|(i) corresponds to some positive Xj
, then we have an alter-

native expression for T , namely,

T =
n∑

i=1

iWi (24.3)

To do a test, we need the null distribution of T . It turns out that, under H0, the

{Wi} have a relatively simple joint distribution.
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Theorem 24.3. Under H0, W1, . . . ,Wn are IID Bernoulli 1
2

variables.

This, together with the representation of T above and Lyapunov’s CLT (which

we recall below) leads to the asymptotic null distribution of T . See Hettmansperger

(1984) for the formal details in the proofs.

Theorem 24.4. (Lyapunov’s CLT) For n ≥ 1, let Xn1, . . . , Xnn be a sequence

of independent random variables such that EXni = 0 ∀i, Var (
∑

i Xni) = 1 and

E|Xni|3 → 0. Then

n∑
i=1

Xni
L⇒ N(0, 1).

Thus, under H0, the statistic T is a sum of independent, but not iid, random vari-

ables. It follows from Lyapunov’s Theorem, stated above, that T is asymptotically

normal. Clearly

EH0T =
n(n + 1)

4
and VarH0T =

n(n + 1)(2n + 1)

24
.

The above results imply the following theorem.

Theorem 24.5. Let X1, . . . , Xn be iid observations from F (x − θ), where F is

continuous, and F (x) = 1 − F (−x) for all x. Under H0 : θ = 0,

T − n(n+1)
4√

n(n+1)(2n+1)
24

L⇒ N(0, 1).

Therefore, the Signed-Rank test can be implemented by rejecting the null hy-

pothesis, H0 : θ = 0 if

T >
n(n + 1)

4
+ zα

√
n(n + 1)(2n + 1)

24
.

The other option would be to find the exact finite sample distribution of T under

the null. This can be done in principle, but the CLT approximation works pretty

well.

We work out the exact distribution of Tn under the null, due to its classic nature.

Recall that Tn =
∑n

i=1 iWi where Wi are iid Bernoulli 1
2

random variables. Let

M = n(n+1)
2

. The probability generating function of Tn is

ψn(t) = EH0t
Tn =

M∑
k=0

tkP (Tn = k).
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If we can find ψn(t) and its power series representation then we can find P (Tn = k)

by equating the coefficients of tk from each side. But,

M∑
k=0

tkP (Tn = k) = EH0t
Tn = EH0t

∑
kWk =

∏
k

EH0t
kWk

=
n∏

k=1

(
1

2
+

1

2
tk

)
=

1

2n

n∏
k=1

(1 + tk) =
1

2n

M∑
k=0

ck,nt
k

where the sequence {ck,n} is determined from the coefficients of tk in the expansion

of the product. From here, we can get the distribution of Tn by setting P (Tn = k) =

ck,n/2
n. This cannot be done by hand, but is easily done in any software package,

unless n is large, such as n > 30. Tables of PH0(Tn = k) are also widely available.

Remark: If Xi
iid∼ F (x − θ) where F (·) is symmetric but θ 6= 0 (i.e. under the

alternative) then Tn no longer has the representation of the form Tn =
∑n

j=1 Zj for

independent {Zj}. In this case, deriving the asymptotic distribution of Tn is more

complicated. We will do this later by using the theory of U -statistics.

Meanwhile, for sampling from a completely arbitrary continuous distribution,

say H(x), there are formulas for the mean and variance of Tn; see Hettmansperger

(1084) for proofs. These formulas are extremely useful and we provide them next.

Theorem 24.6. Let H be a continuous cdf on the Real line. Suppose X1, X2, X3
iid∼ H.

Define the four quantities:

p1 = PH(X1 > 0) = 1 − H(0)

p2 = PH(X1 + X2 > 0) =

∫ ∞

−∞
[1 − H(−x2)] dH(x2)

p3 = PH(X1 + X2 > 0, X1 > 0) =

∫ ∞

0

[1 − H(−x1)] dH(x1)

p4 = PH(X1 + X2 > 0, X1 + X3 > 0) =

∫ ∞

−∞
[1 − H(−x1)]

2 dH(x1)

Then, for the Wilcoxon Signed-Rank statistic Tn,

EH(Tn) = np1 +
n(n − 1)

2
p2

VarH(Tn) = np1(1 − p1) +
n(n − 1)

2
p2(1 − p2) + 2n(n − 1)(p3 − p1p2) +

+n(n − 1)(n − 2)(p4 − p2
2)
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Example 24.6. Suppose H is symmetric; i.e. H(−x) = 1 − H(x). In this case,

H(0) = 1/2 and so p1 = 1/2. Also, p2 = 1/2 as X1 + X2 is symmetric if X1 and X2

are independent and symmetric. Therefore,

EH(Tn) =
n

2
+

n(n − 1)

2
× 1

2
=

n(n + 1)

4
.

Notice that this matches the expression given earlier. Likewise, p3 = 3/8 and

p4 = 1/3. Plugging into the variance formula above we get

VarH(Tn) =
n(n + 1)(2n + 1)

24
.

Again, this matches the variance expression we derived earlier.

Remark: It can be shown that for any continuous H, p3 =
p2
1+p2

2
.

Since Tn takes into account the magnitude as well as the sign of the sample

observations, we expect that overall it may have better efficiency properties than

the Sign test. The following striking result was proved by Hodges and Lehmann in

1956.

Theorem 24.7. (Hodges-Lehmann, 1956) Define the family of cdf’s F as

F =

{
F : F is continuous, f(z) = f(−z), σ2

F =

∫
z2f(z) dz < ∞

}
.

Suppose X1, . . . , Xn
iid∼ F (x−θ). Then the Pitman efficiency of the Wicoxon Signed-

Rank test, T , with respect to the t-test, t, is

eP (T, t) = 12σ2
F

(∫
f 2(z) dz

)2

.

Furthermore,

inf
F∈F

eP (T, t) =
108

125
= .864,

attained at F such that f(x) = b(a2 −x2), |x| < a, where a =
√

5 and b = 3
√

5/20.

Remark: Notice that the worst case density f is not one of heavy tails, but one

with no tails at all (i.e. it has a compact support). Also note that the minimum

Pitman efficiency is .864 in the class of symmetric densities with a finite variance, a

very respectable lower bound.
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Example 24.7. The following table shows the value of the Pitman efficiency for

several distributions that belong to the family of cdf’s F defined in the theorem

above. They are obtained by direct calculation using the formula given above. It

is interesting that even in the normal case, the Wilcoxon test is 95% efficient with

respect to the t test.

F eP (T, t)

N(0, 1) 0.95

U(−1, 1) 1.00

f(x) = x2

4
e−|x| 1.26

24.5 Robustness of the t-Confidence Interval

If X1, . . . , Xn
iid∼ N(θ, σ2) then an exact 100(1−α)% confidence interval for θ is the

famous t-confidence interval, Cn, with limits given by

X ± tα
2

,n−1
s√
n

,

with the property Pθ,σ(Cn 3 θ) = 1 − α ∀n, θ, σ. However, if the population is

non-normal, then the exact distribution of the statistic tn =
√

n(X−θ)
s

is not t. Con-

sequently, the coverage probability may not be 1−α, even approximately, for finite

n. Asymptotically, the 1 − α coverage property holds for any population with a

finite variance.

Precisely, if X1, . . . , Xn
iid∼ F with µ = EF X1 and σ2 = VarF X1 < ∞ then

tn =

√
n(X − µ)

s
=

√
n(X − µ)/σ

s/σ

L⇒ N(0, 1),

since the numerator converges in law to N(0, 1) and the denominator converges in

probability to 1. Furthermore, for any given α, tα
2

,n−1 → zα
2

as n → ∞. Hence,

PF (Cn 3 µ) = PF

(|tn| ≤ tα
2

,n−1

) −→ P (|Z| ≤ zα/2) = 1 − α.

That is, given a specific F and fixed α and ε

1 − α − ε ≤ PF (Cn 3 µ) ≤ 1 − α + ε

for all n ≥ N = N(F, α, ε).

However, if we know only that F belongs to some large class of distributions, F,

then there are no guarantees about the uniform validity of the coverage. In fact, it

is possible to have

lim
n→∞

inf
F∈F

PF (Cn 3 µ) = 0.
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The t confidence interval is a very popular procedure, routinely used for all

types of data in practical statistics. An obviously important question is whether

this is a safe practice, or more precisely, when is it safe. The literature has some

surprises. The t-interval is not unsafe, as far as coverage is concerned, for heavy-

tailed data, at least when symmetry is present. The paper Logan et al.(1973) has

some major surprises as regards the asymptotic behavior of the t statistic for heavy-

tailed data. However, the t-interval can have poor coverage properties when the

underlying distribution is skewed.

Example 24.8. A Mathematica simulation was done to check the coverage prob-

abilities of the nominal 95% t-interval for various distributions. The table below

summarizes the simulation.

n N(0, 1) U(0, 1) C(0, 1) Exp(1) log N(0, 1)

10 0.95 0.949 0.988 0.915 0.839

25 0.95 0.949 0.976 0.916 0.896

The table indicates that for symmetric distributions, heavy-tailed or light-tailed,

the t-interval does not have a significant coverage bias, for large samples. In fact,

for heavy-tails, the coverage of the t-interval could be > 1 − α (of course, at the

expense of interval width). However, for skewed data, the t-interval has a deficiency

in coverage, even for rather large samples.

The previous example helps motivate our discussion. Now we get to the current

state of the theory on this issue.

Definition 24.3. The family of scale mixtures of normal distributions is defined as

F =

{
f(x) =

∫ ∞

0

1

τ
√

2π
e−

x2

2τ2 dG(τ), where G is a Probability measure

}
.

The family contains many symmetric distributions on the Real line that are heav-

ier tailed than the normal. In particular, t, Double Exponential, Logistic, hyperbolic

cosine, etc. all belong to the family F. Even all symmetric stable distributions be-

long to F.

Here is a rather surprising result which says that the coverage of the t confidence

interval in the normal scale mixture class is often better than the claimed nominal

level.
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Theorem 24.8. (Benjamini, 1983) Let Xi = µ + σZi where Zi
iid∼ f ∈ F for i =

1, . . . , n. Let Cn be the t-interval given by the formula: X ± t s√
n
, where t stands

for the t percentile tα/2,n−1. Then

inf
f∈F

Pµ,σ,f (Cn 3 µ) = Pµ,σ,ϕ(Cn 3 µ),

provided t ≥ 1.8, where ϕ is the standard normal density.

Remark: The cutoff point 1.8 is not a mathematical certainty; so the theorem

is partially numerical. If α = 0.05, then t ≥ 1.8 for all n ≥ 2. If α = 0.10 the result

holds for all n ≤ 11.

This theorem states that the t-interval is safe when the tails are heavy. The

natural question now arises what can happen when the tails are light?

The following theorem (see Basu and DasGupta(1995))uses the family of sym-

metric unimodal densities given by

Fsu = {f : f(z) = f(−z), f is unimodal }

Theorem 24.9. Let Xi = µ + σZi where Zi
iid∼ f ∈ Fsu.

(a) If t < 1 then

inf
f∈Fsu

Pµ,σ,f (Cn 3 µ) = 0 ∀n ≥ 2.

(b) For all n ≥ 2, there exists a number τn such that, for t ≥ τn,

inf
f∈Fsu

Pµ,σ,f (Cn 3 µ) = Pµ,σ,U [−1,1](Cn 3 µ).

Remark: The problem of determining the value of the above infimum for 1 ≤
t ≤ τn remains unsolved. The theorem also shows that t-intervals with small nominal

coverage are arbitrarily bad over the family Fsu, while those with a high nominal

coverage are quite safe, because the t interval performs quite well for uniform data.

Example 24.9. The values of τn cannot be written down by a formula, but difficult

calculations can be done to get them, for a given value of n, as shown in the following

table. In the table, 1 − α is the nominal coverage when the coefficient t equals τn.

n 2 5 7 10

τn 1.00 1.92 2.00 2.25

1 − α 0.50 0.85 0.90 0.95
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For example, for all n ≥ 10, the infimum in the above theorem is attained at

symmetric uniform densities, if α = 0.05. The next table shows the actual values of

the infimum coverage in the symmetric unimodal class for various sample sizes and

significance levels.

α ↓ , n → 2 3 5 7 10

0.2 0.75 0.77 - - -

0.1 0.86 0.87 0.89 - -

0.05 0.92 0.92 0.93 0.94 0.945

0.01 0.98 0.98 0.98 0.983 0.983

Remark: The numerics and the theorems presented indicate that the coverage

of the t-interval can have a significant negative bias if the underlying population F

is skewed, although for any F with finite variance, we know it to be asymptotically

correct. That is,

lim
n→infty

PF (Cn 3 µ) = 1 − α.

They also indicate that for data from symmetric densities, regardless of tail, the

t-interval is quite safe.

We can give a theoretical explanation for why the t-interval is likely to have a

negative bias in coverage for skewed F . This explanation is provided by looking

at a higher order expansion of the CDF of the t statistic under a general F with

some moment conditions. This is the previously described Edgeworth Expansion in

chapter 13. We recall it below.

Theorem 24.10. Let X1, . . . , Xn
iid∼ F with EF X4

1 < ∞. Assume that F satisfies

the Cramér condition. Define

tn =

√
n(X − µ(F ))

s

γ =
EF (X − µ)3

σ3(F )

κ =
E(X − µ)4

σ4(F )
− 3

Then

PF (tn ≤ t) = Φ(t) +
p1(t, F )ϕ(t)√

n
+

p2(t, F )ϕ(t)

n
+ o(n−1),
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where

p1(t, F ) =
γ(1 + 2t2)

6

p2(t, F ) = t

[
κ(t2 − 3)

12
− γ2

18
(t4 + 2t2 − 3) − 1

4
(t2 + 3)

]

Corollary 24.2. If Cn denotes the t-interval then, by the above theorem

PF (Cn 3 µ(F )) = PF (|tn| ≤ t)

= PF (tn ≤ t) − PF (tn ≤ −t)

= 2Φ(t) − 1 +
2t

n
ϕ(t)

{
κ

12
(t2 − 3) − γ2

18
(t4 + 2t2 − 3) − 1

4
(t2 + 1)

}

The corollary shows that when |γ| is large, the coverage is likely to have a negative

bias and fall below 1 − α ≈ 2Φ(t) − 1.

Going back to the asymptotic correctness of the t-interval, for any F with a finite

variance, we now show that the validity is not uniform in F .

Theorem 24.11. Let F = {F : VarF (X) < ∞}. Then

inf
F∈F

PF (Cn 3 µ(F )) = 0, ∀n ≥ 2.

Proof. Fix n and take a number c such that e−n < c < 1. Let pn = pn(c) = − log(c)
n

.

Take the two point distribution F = Fn,c with

PF (X = pn) = 1 − pn and PF (X = pn − 1) = pn.

Then µ(F ) = EF (X) = 0 and VarF (X) < ∞. Now, if all the sample observations

are equal to pn, then the t-interval is just the single point pn, and hence,

PF (Cn 63 µ(F )) ≥ PF (Xi = pn, ∀ i ≤ n)

= (1 − pn)n =

(
1 +

log(c)

n

)n

But this implies that for any fixed n ≥ 2,

sup
F∈F

PF (Cn 63 µ(F )) ≥ (1 +
log(c)

n
)n ⇒ inf

F∈F
PF (Cn 3 µ(F )) = 0

by now letting c → 1.
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Remark: The problem here is that we have no control over the skewness in the

class F. In fact, the skewness of the two point distribution F used in the proof is

γF =
2pn − 1√
pn(1 − pn)

→ −∞, as c → 1.

It turns out that with minimal assumptions like a finite variance, no intervals can be

produced which are uniformly (in F ) asymptotically correct and, yet, non-trivial.

To state this precisely, recall the duality between testing and confidence set con-

struction. If {ϕn} is any (nonrandomized) sequence of test functions, then inversion

of the test produces a confidence set Cn for the parameter. The coverage of Cn is

related to the testing problem by

Pθ0(Cn 3 θ0) = 1 − Eθ0(ϕn).

Bahadur and Savage (1956) proved that for sufficiently rich convex families of dis-

tribution functions F , there cannot be any tests for the mean which have uniformly

small type I error probability and non-trivial (non-zero) power at the same time.

This result is considered to be one of the most important results in testing and

interval estimation theory.

24.6 The Bahadur-Savage Theorem

Theorem 24.12. (Bahadur & Savage, 1956) Let F be any family of cdf’s such that

(a) EF |X| < ∞ for all F ∈ F,

(b) For any real number r, there is an F ∈ F such that µ(F ) = EF (X) = r, and

(c) If F1, F2 ∈ F then for any 0 < λ < 1, λF1 + (1 − λ)F2 ∈ F.

Suppose X1, X2, . . . , Xn are iid from some F ∈ F and Cn = Cn(X1, X2, . . . , Xn) a

(measurable) set. If there exists an F0 ∈ F such that PF0(Cn is bounded from below)

= 1, then, infF∈F PF (C(n) 3 µ(F )) = 0.

Remark: Examples of families of distributions which satisfy the conditions of

the Bahadur-Savage theorem are

• The family of all distributions with a finite variance;

• The family of all distributions with all moments finite;
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• The family of all distributions with an (unknown) compact support.

It is a consequence of the Bahadur-Savage theorem that in general, we cannot

achieve uniform asymptotic validity of the t-interval over rich convex classes. It is

natural to ask what additional assumptions will ensure that the t-interval is uni-

formly asymptotically valid, or, more generally, what assumptions are needed for

any uniformly asymptotically valid interval to exist at all. Here is a positive result;

notice how the skewness is controlled in this next result. See Lehmann and Romano

(2005) for a proof.

Theorem 24.13. Fix a number b ∈ (0,∞). Define the family of cdf’s

Fb =

{
F :

EF |X − µ(F )|3
σ3(F )

≤ b

}
.

Then the t-interval is uniformly asymptotically correct over Fb.

24.7 Kolmogorov-Smirnov & Anderson Confidence Inter-

vals

A second theorem on existence of uniformly asymptotically valid intervals for a mean

is due to T.W. Anderson (see Lehmann and Romano(2005)). This construction

makes the assumption of a known compact support. The construction depends

on the classical goodness-of-fit test due to Kolmogorov and Smirnov, summarized

below; see Chapter 26 for more details.

Suppose X1, . . . , Xn
iid∼ F and we wish to test H0 : F = F0. The common sense

estimate of the unknown cdf is the empirical cdf Fn. From the Glivenko-Cantelli

theorem, we know that

‖Fn − F‖∞ = sup
x

|Fn(x) − F (x)| −→ 0, a.s.

However, the statistic

Dn =
√

n‖Fn − F‖∞
has a non-degenerate limit distribution, and for every n, if the true cdf F is con-

tinuous, then Dn has the remarkable property that its distribution is completely

independent of F .

The quickest way to see this property is to notice the identity:

Dn
L
=

√
n max

1≤i≤n
max

{
i

n
− U(i), U(i) − i − 1

n

}
,
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where U(1) ≤ . . . ≤ U(n) are order statistics of an independent sample from U(0, 1)

and the relation =L denotes “equality in law”.

Therefore, given α ∈ (0, 1), there is a well-defined d = dα,n such that, for any

continuous cdf F , PF (Dn > d) = α. Thus,

1 − α = PF (Dn ≤ d)

= PF

(√
n‖Fn − F‖∞ ≤ d

)
= PF

(
|Fn(x) − F (x)| ≤ d√

n
∀x

)

= PF

(
− d√

n
≤ Fn(x) − F (x) ≤ d√

n
∀x

)

= PF

(
Fn(x) − d√

n
≤ F (x) ≤ Fn(x) +

d√
n
∀x

)

This gives us a ”confidence band” for the true cdf F . More precisely, the 100(1−α)%

Kolmogorov-Smirnov confidence band for the cdf F is:

KSn,α : max

{
0, Fn(x) − d√

n

}
≤ F (x) ≤ min

{
1, Fn(x) +

d√
n

}
.

Remark: The computation of d = dα,n is quite non-trivial but tables are avail-

able. See Chapter 26.

Anderson constructed a confidence interval for µ(F ) using the Kolmogorov-

Smirnov band for F . The interval is constructed as follows.

CA = {µ : µ = µ(H) for some H ∈ KSn,α} .

That is, this interval contains all µ that are the mean of a KS-plausible distribution.

With the compactness assumption, the following theorem holds; see Lehmann and

Romano (2005).

Theorem 24.14. Let X1, . . . , Xn
iid∼ F . Suppose F is continuous and supported on

a known compact interval [a, b]. Then, for any α ∈ (0, 1) and for any n,

PF (CA 3 µ(F )) ≥ 1 − α.

This interval can be computed by finding the associated means for the upper

and lower bounds of the KS confidence band.

Remark: So again, with suitable assumptions, in addition to finiteness of vari-

ance, uniformly asymptotically valid intervals for the mean exist.
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24.8 Hodges-Lehmann Confidence Interval

The Wilcoxon Signed-Rank statistic Tn can be used to construct a point estimate

for the point of symmetry of a symmetric density and, out of it, one can construct

a confidence interval.

Suppose X1, . . . , Xn
iid∼ F , where F has a symmetric density, centered at θ.

For any pair i, j with i ≤ j, define the Walsh average Wij = 1
2
(Xi + Xj) (see

Walsh(1959)). Then the Hodges-Lehmann estimate θ̂ is defined as

θ̂ = med {Wij : 1 ≤ i ≤ j ≤ n} .

A confidence interval for θ can be constructed using the distribution of θ̂. The

interval is found from the following connection with the null distribution of Tn.

Let a be a number such that Pθ=0(Tn ≥ N − a) ≤ α
2
, where N = n(n+1)

2
is the

number of Walsh averages. Let W(1) ≤ . . . ≤ W(N) be the ordered Walsh averages.

Then, for all continuous symmetric F ,

PF

(
W(a+1) ≤ θ(F ) ≤ W(N−a)

) ≥ 1 − α.

This is the Hodges-Lehmann interval for θ.

Remark: We cannot avoid calculation of the N Walsh averages for this method.

Furthermore, we must use a table to find a. However, we can approximate a by using

asymptotic normality of Tn:

ã =
n(n + 1)

4
− 1

2
− zα/2

√
n(n + 1)(2n + 1)

24
.

Alternatively, we can construct a confidence interval for θ based on the Hodges-

Lehmann estimate using its asymptotic distribution; see Hettmansperger (1984).

Theorem 24.15. Let X1, . . . , Xn
iid∼ F (x − θ), where f , the density of F is sym-

metric around zero. Let θ̂ be the Hodges-Lehmann estimator of θ. Then, if f ∈ L2,

√
n(θ̂ − θ)

L⇒ N(0, τ 2
F ),

where

τ 2
F =

1

12‖f‖4
2

.
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Clearly, this asymptotic result can be used to construct a confidence interval for

θ in the usual way. That is,

Pθ,F

(
θ̂ − zα/2√

12n‖f‖4
2

≤ θ ≤ θ̂ +
zα/2√

12n‖f‖4
2

)
→ 1 − α.

Of course, the point of nonparametrics is to make minimal assumptions about the

distribution F . Therefore, in general, we do not know f and, hence, we cannot

know ‖f‖2. However, if we can estimate ‖f‖2 then we can simply plug it in to the

asymptotic variance formula.

24.9 Power of the Wilcoxon Test

Unlike the null case, the Wilcoxon Signed-Rank statistic T does not have a repre-

sentation as a sum of independent random variables under the alternative. So the

asymptotic non-null distribution of T , which is very useful for approximating the

power, does not follow from the CLT for independent summands. However, T still

belongs to the class of U -statistics, and hence our previously described CLTs for

U -statistics can be used to derive the asymptotic nonnull distribution of T , and

thereby get an approximation to the power of the Wilcoxon Signed-Rank test.

Example 24.10. We have previously seen exact formulas for EHTn and VarHTn

under an arbitrary distribution H. These are now going to be useful for approxima-

tion of the power. Suppose X1, . . . , Xn
iid∼ F (x− θ) and we want to test H0 : θ = 0.

Take an alternative θ > 0. The power of Tn at θ is

β(θ) = Pθ(Tn > kn,α)

= Pθ

(
Tn − Eθ(Tn)√

Varθ(Tn)
>

kn,α − Eθ(Tn)√
Varθ(Tn)

)

≈ 1 − Φ

(
kn,α − Eθ(Tn)√

Varθ(Tn)

)

where the normal approximation is made from the CLT for U -statistics. Whether

the approximation is numerically accurate is a separate issue.

24.10 Exercises

Exercise 24.1. Prove that the quantile F−1
n (p) is a strongly consistent estimate of

F−1(p) under very minimal assumptions.
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Exercise 24.2. For each of the following cases, explicitly determine inclusion of how

many order statistics of the sample gives an exact nonparametric confidence interval

for the median of a density : n = 20, α = .05, n = 50, α = .05, n = 50, α = .01.

Exercise 24.3. Find the Pitman efficiency of the Sign test wrt the t test for a

triangular, a double exponential, and a logistic density.

Exercise 24.4. * Find the Pitman efficiency of the Sign test wrt the t test for a t

density with a general degree of freedom ≥ 3 and plot it.

Exercise 24.5. * Is the Sign test consistent for any continuous CDF F ? Prove,

or give a concrete counterexample.

Exercise 24.6. * Find the third and the fourth moments of the Wilcoxon signed

rank statistic, and hence derive an expression for its skewness and kurtosis. Do they

converge to the limiting normal case values ?

Exercise 24.7. Tabulate the exact distribution of the Wilcoxon signed rank statis-

tic when n = 3, 5, 10.

Exercise 24.8. * Analytically evaluate the coefficients p1, p2, p3, p4 when H is a

double exponential density centered at a general θ.

Exercise 24.9. Simulate the coverage probability the nominal 95% t confidence

interval when the underlying true density is the mixture .9N(0, 1) + .1N(0, 9), the

double exponential, and the t density with 5 degrees of freedom. Use n = 10, 25, 50.

Exercise 24.10. * Suppose U ∼ U [0, 1] and that the underlying true density is Uβ.

How does the coverage probability of the t interval behave when β is a large positive

number ?

Exercise 24.11. * Analytically approximate the coverage probability of the nomi-

nal 95% t confidence interval when the underlying true density is an Extreme value

density e−ex
ex by using the Edgeworth expansion of the t statistic.

Exercise 24.12. * Rigorously establish a method of explicitly computing the An-

derson confidence interval.

Exercise 24.13. Find the limiting distribution of the Hodges-Lehmann estimate

when the underlying true density is a uniform; a triangular; a normal; and a double

exponential. Do you see any relation to the tail ?

Exercise 24.14. * By using the asymptotic nonnull distribution, compute an ap-

proximate value of the power of the Wilcoxon signed rank test in the N(θ, 1) model,

and plot it. Superimpose it on the power of the t test. Compare.
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25 Two-Sample Problems

Often in applications, we wish to compare two distinct populations with respect

to some property. For example, we may want to compare the average salaries of

men and women at an equivalent position. Or, we may want to compare the aver-

age effect of one treatment with that of another. We may want to compare their

variances instead of the mean, or we may even want to compare the distributions

themselves. Problems such as these are called two sample problems. In some sense,

the two sample problem is more important than the one sample problem. We rec-

ommend Hajek and Sidak(1967), Hettmansperger(1984), Randles and Wolfe(1979)

and Lehmann and Romano(2005) for further details on the material in this chapter.

Additional specific references are given in the sections.

We start with the example of a common two sample parametric procedure in

order to introduce a well known hard problem called the Behrens-Fisher problem.

Example 25.1. (Two-sample t-test). Let X1, . . . , Xm
iid∼ N(µ1, σ

2) and Y1, . . . , Yn
iid∼ N(µ2, σ

2), where all m + n observations are independent. Then the two

sample t-statistic is

Tm,n =
X − Y

s
√

1
m

+ 1
n

, where s2 =
(m − 1)s2

1 + (n − 1)s2
2

m + n − 2
.

Under H0 : µ1 = µ2, Tm,n ∼ tm+n−2. If m,n → ∞, then Tm,n
L⇒ N(0, 1).

More generally, if X1, . . . , Xm
iid∼ F and Y1, . . . , Yn

iid∼ G and F,G have equal

mean and variance, then by the CLT and Slutsky’s Theorem, we still have Tm,n
L⇒

N(0, 1), as m,n → ∞. The asymptotic level and the power of the two-sample t-test

are the same for any F,G with equal variance, as they would be when F,G are both

normal.

Of course, the assumption of equal variance is not a practical one. However,

the corresponding problem with unequal variances, known as the Behrens-Fisher

problem, has many difficulties. We discuss it in detail next.

25.1 Behrens-Fisher Problem

Suppose X1, . . . , Xm
iid∼ N(µ1, σ

2
1) and Y1, . . . , Yn

iid∼ N(µ2, σ
2
2), where all m + n ob-

servations are independent. We wish to test H0 : µ1 = µ2 in the presence of

possibly unequal variances. We analyze four proposed solutions to this problem.

392



There is by now a huge literature on the Behrens-Fisher problem. We recom-

mend Lehmann(1986), Scheffe(1970), and Linnik(1963) for overall exposition of the

Behrens-Fisher problem. Here are the four ideas we want to explore.

I. Let ∆ = µ1 − µ2. Then

Y − X ∼ N

(
∆,

σ2
1

m
+

σ2
2

n

)
.

Also,

1

σ2
1

m∑
i=1

(Xi − X)2 +
1

σ2
2

n∑
j=1

(Yj − Y )2 ∼ χ2
m+n−2.

Now, define

t = tm,n =

√
m + n − 2(Y − X − ∆)√(

σ2
1

m
+

σ2
2

n

) [
σ−2

1

∑
i(Xi − X)2 + σ−2

2

∑
j(Yj − Y )2

] .

Letting θ = σ2
2/σ

2
1 we can simplify the above expression to get

t =

√
m + n − 2(Y − X − ∆)√(
1 + m

n
θ
) [

m−1
m

s2
1 + n−1

mθ
s2
2

] .

However, t is not a ”statistic” because it depends on the unknown θ. This

is unfortunate because if θ were known (i.e. if we know the ratio of the two

variances) then the statistic t could be used to test the hypothesis ∆ = ∆0..

II. Consider the two-sample t-statistic suitable for the equal variance case. That

is, consider

T = Tm,n =
Y − X − ∆0√

s2
u

(
1
m

+ 1
n

) ,

where s2
u =

(m−1)s2
1+(n−1)s2

2

m+n−2
. We know that, under H0 : ∆ = ∆0, the distribu-

tion of T is exactly tm+n−2 only if σ1 = σ2.

But what happens for large samples, in the case σ1 6= σ2? By a simple appli-

cation of Slutsky’s Theorem, it is seen that, when σ1 6= σ2, if m,n → ∞ in

such a way that m
m+n

→ ρ, then

Tm,n
L⇒ N

(
0,

(1 − ρ) + ρθ

ρ + (1 − ρ)θ

)
, under H0.
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Notice that, if ρ = 1
2
, then Tm,n

L⇒ N(0, 1). That is, if m and n are large and

m ≈ n, then Tm,n can be used to construct a test. However, if m and n are

very different, one must also estimate θ.

III. We next consider the likelihood ratio test for the Behrens-Fisher problem

H0 : µ1 = µ2, H1 : µ1 6= µ2. The LRT statistic is λ = −2 log Λ, where

Λ =
supH0

l(µ1, µ2, σ1, σ2)

supH0∪H1
l(µ1, µ2, σ1, σ2)

,

where l(.) denotes the likelihood function. Then H0 is rejected for large values

of λ. The statistic Λ itself is a complicated function of the data. Of course,

the denominator is found by plugging in the unconstrained MLE’s

µ̂1 = X, µ̂2 = Y , σ̂2
1 =

1

m

∑
i

(Xi − X)2, σ̂2
2 =

1

n

∑
j

(Yj − Y )2.

Let µ̂ be the MLE of the common mean µ (= µ1 = µ2), under H0. Then, the

MLE’s of the two variances under H0 are

σ̂2
1 =

1

m

∑
i

(Xi − µ̂)2 and σ̂2
2 =

1

n

∑
j

(Yj − µ̂)2.

It can be shown that the MLE µ̂ is one of the roots of the cubic equation:

Aµ3 + Bµ2 + Cµ + D = 0,

where

A = −(m + n)

B = (m + 2n)X + (n + 2m)Y

C =
m(n − 1)

n
s2
2 +

n(m − 1)

m
s2
1

D = mX

(
n − 1

n
s2
2 + Y

2
)

+ nY

(
m − 1

m
s2
1 + X

2
)

In the event that the above equation has three real roots, the actual MLE

has to be picked by examination of the likelihood function. The MLE is the

unique root if the above equation has only one real root.

Therefore, the numerator of Λ is not analytically expressible, but at least

asymptotically it can be used, because we have a CLT for λ under the null

(see Chapter 21).
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IV. The final proposed solution of the Behrens-Fisher problem is due to Welch

(Welch(1949)). We know that under the null, Y − X ∼ N(0,
σ2
1

m
+

σ2
2

n
). Welch

considered the statistic

W = Wm,n =
X − Y√

s2
1

m
+

s2
2

n

=
X − Y ÷

√
σ2
1

m
+

σ2
2

n√
s2
1

m
+

s2
2

n
÷

√
σ2
1

m
+

σ2
2

n

(?)

It is clear that W is not of the form N(0, 1)/
√

χ2
d/d, with the two variables

being independently distributed. Let D2 be the square of the denominator in

the right-hand side of (?). Welch wanted to write D2 ≈ χ2
f/f by choosing

an appropriate f . Since the means already match, i.e., EH0(D
2) is already

1, Welch decided to match the second moments. The following formula for f

then results:

f =
(λ1σ

2
1 + λ2σ

2
2)

2

λ2
1σ4

1

m−1
+

λ2
2σ4

2

n−1

, where λ1 =
1

m
,λ2 =

1

n
.

If we plug in s2
1 and s2

2 for σ2
1 and σ2

2, respectively, we get Welch’s random degree

of freedom t-test. That is, we perform a test based on Welch’s procedure by

comparing W to a critical value from the tf̂ distribution, where f̂ = f(s2
1, s

2
2).

Example 25.2. The behavior of Welch’s test has been studied numerically and

theoretically. As regards the size of the Welch test for normal data, the news is

good. The deviation of the actual size from the nominal α is small, even for small or

moderate m,n. The following table was taken from Wang (1971). Let Mα denote the

maximum deviation of the size of the Welch test from α. In this example, α = 0.01,

and θ =
σ2
2

σ2
1
.

m n 1/θ M0.01

5 21 2 0.0035

7 7 1 0.0010

7 13 4 0.0013

7 19 2 0.0015

13 13 1 0.0003

Regarding the power of the Welch test, it is comparative to the likelihood ratio test.

See, for example, Table 2 in Best & Rayner (1987).

Remark: Pfanzagal(1974) has proved that the Welch test has some local asymp-

totic power optimality property. It is also very easy to implement. Its size is very
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close to the nominal level α. Due to these properties, the Welch test has become

quite widely accepted as the standard solution to the Behrens-Fisher problem. It

is not clear, however, that the Welch test is even size robust when the individual

groups are not normal.

In the case when no reliable information is known about the distributional shape,

we may want to use a nonparametric procedure. That is our next topic.

25.2 Wilcoxon Rank-Sum and Mann-Whitney Test

Suppose X1, . . . , Xm
iid∼ F (x−µ) and Y1, . . . , Yn

iid∼ F (y−ν), where F (·) is symmetric

about zero. In practical applications, we often want to know if ∆ = ν −µ > 0. This

is called the problem of testing for treatment effect.

Let Ri = rank(Yi) among all m + n observations. The Wilcoxon Rank-Sum

statistic is U =
∑n

i=1 Ri. Large values of U indicate that there is, indeed, a treatment

effect; i.e. that ∆ > 0 (Mann and Whitney(1947)). To execute the test, we need

the smallest value ξ such that PH0(U > ξ) ≤ α.

In principle, the null distribution of U can be found from the joint distribution of

(R1, . . . , Rn). In particular, if N = m + n, then the marginal and two dimensional

distributions are, respectively,

P (Ri = a) =
1

N
, ∀ a = 1, . . . , N

P (Ri = a,Rj = b) =
1

N(N − 1)
, ∀ a 6= b

It follows immediately that

EH0(U) =
n(N + 1)

2
and VarH0(U) =

mn(N + 1)

12
.

This will be useful for the asymptotic distribution, which we discuss a little later.

As for the exact null distribution of U , we have the following proposition; see

Hettmansperger (1984).

Proposition 25.1. Let pm,n(k) = PH0(U = k + n(n + 1)/2). Then the following

recursive relation holds:

pm,n(k) =
n

m + n
pm,n−1(k − m) +

m

m + n
pm−1,n(k).

From here, the exact finite sample distributions can be numerically computed for

moderate values of m,n.
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There is an interesting way to rewrite U . From its definition,

Ri = #{k : Yk ≤ Yi} + #{j : Xj < Yi},

which implies

U ≡
n∑

i=1

Ri =
n(n + 1)

2
+ #{(i, j) : Xj < Yi}.

Then the statistic

W = U − n(n + 1)

2
=

n∑
i=1

Ri − n(n + 1)

2
= #{(i, j) : Xj < Yi}

is called the Mann-Whitney statistic. Note the obvious relationship between the

Wilcoxon Rank-Sum statistic U and the Mann-Whitney statistic W , in particular

U = W +
n(n + 1)

2
.

Therefore, EH0(W ) = mn
2

and VarH0(W ) = mn(N+1)
12

.

The Mann-Whitney test rejects H0 for large values of W and is obviously equiv-

alent to the Wilcoxon Rank-Sum test.

It follows from one-sample U-statistics theory that, under the null hypothesis,

W is asymptotically normal; see Hettmansperger (1984) for the formal details of the

proof.

Theorem 25.1. Let X1, . . . , Xm
iid∼ F (x − µ), Y1, . . . , Yn

iid∼ F (y − ν), all m + n

observations independent. Suppose that F (·) is symmetric about zero. Under the

null hypothesis H0 : ∆ = ν − µ = 0,

W − EH0(W )√
VarH0(W )

L⇒ N(0, 1).

Therefore, a cutoff value for the α-level test can be found via the CLT:

kα =
mn

2
+

1

2
+ zα

√
mn(N + 1)

12
,

where the additional 1
2

that is added is a continuity correction.

Recall that a point estimate due to Hodges and Lehmann is available in the one

sample case based on the Signed-Rank test. In particular, it was the median of the
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Walsh averages (see Chapter 24). We can do something similar in the two-sample

case.

W = #{(i, j) : Xj < Yi} = #{(i, j) : Dij ≡ Yi − Xj > 0}.

This motivates the estimator ∆̂ = med{Dij}. It turns out that an interval containing

adequately many order statistics of the Dij has a guaranteed coverage for all m,n;

see Hettmansperger (1984) for a proof. Here is the theorem.

Theorem 25.2. Let k = k(m,n, α) be the largest number such that PH0(W ≤ k) ≤
α/2. Then (D(k+1) , D(mn−k)) is a 100(1 − α)% confidence interval for ∆ under the

above shift model.

Remark: Tables can be used to find k for a given case; see, for example, Milton

(1964). This is a widely accepted nonparametric confidence interval for the two

sample location parameter problem.

A natural question would now be how does this test compare to, say, the t-test?

It can be shown that the Mann-Whitney test is consistent for any two distributions

such that P (Y > X) > 1
2
. That is, if X1, . . . , Xm

iid∼ G and Y1, . . . , Yn
iid∼ H and if

X ∼ G, Y ∼ H and X,Y are independent, then consistency holds if

PG,H(Y > X) >
1

2
.

Pitman efficiencies, under the special shift model, can be found and they turn

out to be the same as in the one-sample case. See Lehmann(1986) for details on

consistency and efficiency of the Mann-Whitney test.

25.3 Two-Sample U-Statistics & Power Approximations

The asymptotic distribution of W under the alternative is useful for approximat-

ing the power of the Mann-Whitney test. Under the null, we used one-sample

U-statistics theory to approximate the distribution. However, under the alternative,

there are two underlying distributions, namely F (x−µ) and F (y−ν). So the asymp-

totic theory of one-sample U-statistics cannot be used under the alternative. We

will need the theory of two-sample U-statistics. See Serfling(1980) for derivations of

the basic formulae needed in this section.

Below we will consider two-sample U-statistics in a much more general scenario

than the location shift model.
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Definition 25.1. Fix 0 < r1, r2 < ∞ and let h(x1, . . . , xr1 , y1, . . . , yr2) be a real-

valued function on Rr1+r2 . Furthermore, assume that h is permutation invariant

among the x’s and among the y’s, separately. Let X = X1, . . . , Xm
iid∼ F and Y =

Y1, . . . , Yn
iid∼ G, and suppose all observations are independent. Define

Um,n = Um,n(X,Y ) =
1(

m
r1

)(
n
r2

) ∑
h

(
Xi1 , . . . , Xir1

, Yj1 , . . . , Yjr2

)

where the sum is over all 1 ≤ i1 ≤ . . . ≤ ir1 ≤ m, 1 ≤ j1 ≤ . . . ≤ jr2 ≤ n. Then Um,n

is called a two-sample U-statistic with kernel h and indices r1 and r2.

Example 25.3. Let r1 = r2 = 1 and h(x, y) = Iy>x. Then it is easy to verify that

Um,n, based on this kernel, is the Mann-Whitney test statistic W .

As in the one sample case, Um,n is asymptotically normal, under suitable condi-

tions. We use the following notation.

θ = θ(F,G) = EF,Gh(X1, . . . , Xr1 , Y1, . . . , Yr2)

h10(x) = EF,G[h(X1, . . . , Xr1 , Y1, . . . , Yr2)|X1 = x]

h01(y) = EF,G[h(X1, . . . , Xr1 , Y1, . . . , Yr2)|Y1 = y]

ζ10 = VarF h10(X)

ζ01 = VarGh01(Y )

Theorem 25.3. Assume that EF,Gh2 < ∞ and ζ10, ζ01 > 0. Also, assume that

m,n → ∞ in such a way that m
m+n

→ λ ∈ (0, 1). Then

√
n(Um,n − θ)

L⇒ N(0, σ2
F,G),

where

σ2
F,G =

r2
1ζ10

λ
+

r2
2ζ01

1 − λ
.

Remark: Sometimes it is more convenient to use the true variance of Um,n and

the version that states

Um,n − θ√
VarF,G(Um,n)

L⇒ N(0, 1).

Recall that if r1 = r2 = 1 and h(x, y) = Iy>x then Um,n is the Mann-Whitney

test statistic W . In this case, we have exact formulae for θ and VarF,G(Um,n).
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Let X1, X2
iid∼ F and Y1, Y2

iid∼ G and define

p1 = PF,G(Y1 > X1) =

∫
(1 − G(x))f(x) dx

p2 = PF,G(Y1 > X1, Y2 > X1) =

∫
(1 − G(x))2f(x) dx

p3 = PF,G(Y1 > X1, Y1 > X2) =

∫
F 2(y)g(y) dy

Proposition 25.2. Let W be the Mann-Whitney statistic. Then

EF,G(W ) = mnp1

VarF,G(W ) = mn(p1 − p2
1) + mn(n − 1)(p2 − p2

1) + mn(m − 1)(p3 − p2
1)

See Hettmansperger (1984) for the above formulae.

Remark: We can use these formulae to compute the approximate quantiles of

W by approximating W−E(W )√
Var(W )

by a N(0, 1). Another option is to use σ2
F,G in place

of the exact variance of W . Here, σ2
F,G is the asymptotic variance, as defined before.

To use the alternative expression σ2
F,G, we need to compute ζ10 and ζ01. For this

computation, it is useful to note that

ζ10 = VarF G(X) and ζ01 = VarGF (Y ).

Remark: Note that the exact variance of W , as well as ζ10 and ζ01, are func-

tionals of F and G, which we cannot realistically assume to be known. In practice,

all of these functionals must be estimated (usually by a plug-in estimator; e.g. in

the formula for p1, replace F by some suitable F̂m and G by some suitable Ĝn, so

that, e.g. p̂1 =
∫

(1 − Ĝn(x)) dF̂m(x)).

25.4 Hettmansperger’s Generalization

So far, we have considered the two cases N(θ1, σ
2
1) vs. N(θ2, σ

2
2) and F (x − µ) vs.

F (y−ν). For the first case, we have settled on Welch’s solution. For the second, we

like the Mann-Whitney test. However, even this second model does not allow the

scale parameters to differ. This is our next generalization.

Let Xi
iid∼ F

(
x−µ

ρ

)
, 1 ≤ i ≤ m, and Yj

iid∼ F
(

y−ν
τ

)
, 1 ≤ j ≤ n, where ρ and τ are

unknown, and as usual, we assume that all observations are independent. We wish

to test H0 : µ = ν.
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A test due to Hettmansperger (1973) with reasonable properties is the following.

Let S = #{j : Yj > med(Xi)} and S∗ = #{i : Xi < med(Yj)}. Also, let σ = τ/ρ.

Then define

Tσ =
√

n

(
S

n
− 1

2

)
÷

√
1 + n/(mσ2)

4

T ∗
σ =

√
m

(
S∗

m
− 1

2

)
÷

√
1 + mσ2/n

4

Then the test statistic is T = min{T1, T
∗
1 }. This test rejects H0 : µ = ν if T > zα, a

normal quantile.

Theorem 25.4. Let X1, . . . , Xm
iid∼ F

(
x−µ

ρ

)
and Y1, . . . , Yn

iid∼ F
(

y−ν
τ

)
, with all

parameters unknown and all (m + n) observations independent. Assume that F is

absolutely continuous, 0 is the unique median of F , and that there exists λ ∈ (0, 1)

such that m
m+n

→ λ. Consider testing H0 : µ = ν against H1 : ν > µ. Then

lim
m,n→∞

PH0(T > zα) ≤ α.

Proof. (Sketch) By a standard argument involving Taylor expansions, for all σ > 0,

each of Tσ and T ∗
σ are asymptotically N(0, 1). From the monotonicity in σ, it follows

that Tσ > T1 and T ∗
σ < T ∗

1 when σ > 1 and the inequalities are reversed for σ ≤ 1.

Therefore, when σ > 1,

P (T1 > c) ≤ P (Tσ > c)

while

P (T ∗
1 > c) ≥ P (T ∗

σ > c).

If we set c ≡ zα then, when σ > 1 we get

P (T ∗
1 > zα) ≥ P (T ∗

σ > zα) ≈ α ≈ P (Tσ > zα) ≥ P (T1 > zα),

where ≈ holds due to the asymptotic normality of Tσ and T ∗
σ . Similarly, when σ ≤ 1

we get the opposite string of inequalities. Consequently,

P (T > zα) = P (min{T1, T
∗
1 } > zα)

= P (T1 > zα, T ∗
1 > zα)

≤ min {P (T1 > zα), P (T ∗
1 > zα)}

≈ α

This explains why the limiting size of the test is ≤ α.
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Remark: The theorem says that the Hettmansperger test is asymptotically

distribution free under H0 and asymptotically conservative with regards to size. An

approximation for the true size of this test is

αtrue ≈ 1 − Φ

(
zα

√
1 + c

σ2 + c
max{1, σ}

)
,

where c = lim n
m

. Note that the right-hand side is equal to α when σ = 1. See

Hettmansperger (1973) for a derivation of this approximation.

Simulations show that, if σ ≈ 1, then the true size is approximately α. However,

if σ is of the order 2 or 1/2, then the test is severely conservative.

In summary, the test proposed by Hettmansperger is reasonable to use if

• the two populations have the same shape,

• the two populations have approximately the same scale parameters,

• F (0) = 1
2
, although F need not be symmetric.

25.5 The Nonparametric Behrens-Fisher Problem

This is the most general version of the two-sample location problem, with as few

assumptions as possible. We want to construct a test which is, at least asymptoti-

cally, distribution free under H0 and consistent against a broad class of alternatives.

The model is as follows: Suppose X1, . . . , Xm
iid∼ F and Y1, . . . , Yn

iid∼ G, where F,G

are arbitrary distribution functions. To avoid the difficulties of ties, we assume that

F and G are (absolutely) continuous. Let µ = med(F ) and ν = med(G). We want

to test H0 : µ = ν vs. H1 : ν > µ. See Fligner and Policello(1981) and Brunner and

Munzel(2000) for the development in this section. Johnson and Weerahandi(1988)

and Ghosh and Kim(2001) give Bayesian solutions to the Behrens-Fisher problem,

while Babu and Padmanabhan(2002) use resampling ideas for the nonparametric

Behrens-Fisher problem.

It turns out that a Welch-type statistic, which was suitable for the ordinary

Behrens-Fisher problem, is used here. But unlike the Welch statistic used in the

case of two normal populations, this test will use the ranks of the Xi’s and the Yj’s.

Let Qi and Rj denote the ranks of X(i) and Y(j) among all m + n observations,

respectively. Here, as usual, X(i) and Y(j) denote the respective order statistics.
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Also, let Pi = Qi − i and Oj = Rj − j. That is,

Pi = #{j : Yj ≤ X(i)},

Oj = #{i : Xi ≤ Y(j)},
Our test function comes from a suitable function T = Tm,n of the vector of ranks

of the Y sample in the combined sample. We would like to choose T in such a way

that whatever be F and G,

T − θF,G

τF,G

L⇒ N(0, 1), where

{
θF,G = EF,G(T )

τ 2
F,G = VarF,G(T )

.

There is some additional complexity here because µ = ν does not force the two

distributions to be the same. Thus, we need to estimate the variance τ 2
F,G under the

null for general F,G. If we can do this and, moreover, if θF,G = θ0, a fixed number,

then we can use a standardized test statistic such as

T − θ0

τ̂F,G

.

So, the choice of T will be governed by the ease of finding θ0 and of finding τ̂F,G,

under H0. The statistic that is used is

T =
1

mn

m∑
i=1

Pi.

It turns out that mnT is actually the same as the Mann-Whitney statistic. For such

a choice of T , under H0, θF,G = θ0 = 1/2. Also, τ 2
F,G has the exact formula given

earlier in this chapter. Of course, this formula involves the unknown F,G so we

need to plug in the empirical cdf’s F̂m and Ĝn. Doing so, we get the test statistic

Ŵ =
W
mn

− 1
2

τ̂F,G

=

∑
i Pi −

∑
j Oj

2
√∑

i(Pi − P )2 +
∑

j(Oj − O)2 + P × O
.

Then the test rejects H0 for large values of Ŵ . If k = km,n(α) is the cutoff for

the Mann-Whitney statistic itself, then, specifically, the test that rejects H0 for

Ŵ > k has the property that if F = G under H0 (which means that equality of

medians forces equality of distributions), then the size is still α. If F 6= G under

H0, then some more assumptions are needed to maintain the size and for reasonable

consistency properties.
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Observe that

lim
m,n→∞

PF,G

(
Ŵ > k

)
= lim

m,n→∞
PF,G

(
W/mn − 1/2

τ̂F,G

> k

)

= lim
m,n→∞

PF,G

(
W/mn − θF,G + θF,G − 1/2

τ̂F,G

> k

)
(?)

But, from the general two-sample U-statistics theory, we know that

W/mn − θF,G

τ̂F,G

L⇒ N(0, 1),

and k = km,n(α) → zα. Then, clearly, the above limit is equal to α if and only if

θF,G = 1
2
, under H0. Recall now that

θF,G =

∫
F dG = PF,G(Y > X) = PF,G(Y − X > 0).

This is 1
2

under H0 if and only if Y −X has median zero. If X ∼ F and Y ∼ G and

F,G are symmetric about some µ and ν then Y − X is symmetric about 0 when

µ = ν. In that case, PF,G(Y −X > 0) = 1
2

holds automatically and the size of Ŵ is

asymptotically maintained.

Also, from (?) above, we see that the power under any F,G converges to 1 if and

only if θF,G > 1
2
. That is, the test Ŵ is consistent against those alternatives (F,G)

for which ∫
F dG = PF,G(Y − X > 0) >

1

2
.

Remark: If we interpret our hypothesis of interest as

H0 : PF,G(Y − X > 0) =
1

2
vs. H1 : PF,G(Y − X > 0) >

1

2
,

then, without any assumptions, the test based on Ŵ maintains its size asymptoti-

cally and is consistent.

Example 25.4. Below are some tables giving the size and power of the Ŵ test for

selected F,G,m, n. For the size values, it is assumed that G(y) = F (y/σ), and for

the power values, it is assumed that G(y) = F (y − ∆).

Size(×1000) Table: α = 0.05, m = 11 & n = 10
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F σ W Ŵ Welch

0.1 81 48 18

0.25 69 54 52

N(0,1) 1 50 48 47

4 71 54 47

10 82 62 52

0.1 75 51 45

0.25 65 54 49

Double Exp 1 50 48 46

4 67 54 45

10 84 62 49

0.1 69 51 26

0.25 62 54 26

C(0,1) 1 49 48 25

4 64 52 25

10 80 62 30

Power (×1000) Table: α = 0.05, m = 25 & n = 20

F ∆ W Ŵ Welch

0.1 195 209 207

N(0,1) 0.2 506 520 523

0.3 851 860 870

0.1 150 159 128

Double Exp 0.2 403 411 337

0.3 791 797 699

0.1 140 145 49

C(0,1) 0.2 348 352 97

0.3 726 723 88

Notice the nonrobustness of Welch’s test, which we had commented on earlier.

25.6 Robustness of the Mann-Whitney Test

A natural question is what happens to the performance of the Mann-Whitney test

itself under general F and G ? Here we consider only the asymptotic size of the

test. Similar calculations can be done to explore the robustness of the asymptotic

405



power.

The true size of W is

PF,G(W > km,n(α)) ≈ PF,G

(
W − mn/2√

mn(m + n + 1)/12
> zα

)

= PF,G

(
W − mnθF,G + mn(θF,G − 1/2)√

mn(m + n + 1)/12
> zα

)

Suppose now that θF,G = 1/2. As mentioned above, symmetry of each of F and G

will imply θF,G = 1/2, under H0. In such a case,

αtrue ≡ PF,G(W > km,n(α))

≈ PF,G

(
W − mnθF,G√

mn(m + n + 1)/12
> zα

)

= PF,G

(
W − mnθF,G√

v(p1, p2, p3)
×

√
v(p1, p2, p3)√

mn(m + n + 1)/12
> zα

)

where

v(p1, p2, p3) = mn(p1 − p2
2) + mn(n − 1)(p2 − p2

1) + mn(m − 1)(p3 − p2
1)

where v(p1, p2, p3) denotes the exact variance of W , and the pi are as defined earlier

in section 25.3. Then the right-hand side has the limit

−→ 1 − Φ

(
zα√

12[λ(p3 − p2
1) + (1 − λ)(p2 − p2

1)]

)
, as m,n → ∞,

and λ = limm,n→∞ m
m+n

. Notice that, in general, this is not equal to α.

Example 25.5. In the case where G(y) = F (y/σ), where F is symmetric and

absolutely continuous, it follows from the known formulae for pi that

lim
σ

(p2 − p2
1) =

{
1
4
, σ → 0

0, σ → ∞

lim
σ

(p3 − p2
1) =

{
0, σ → 0
1
4
, σ → ∞

(see below for a proof). Plugging into the above formula for αtrue, if G(y) = F (y/σ)

then

lim
σ

αtrue =




1 − Φ

(
zα√

3(1−λ)

)
, σ → 0

1 − Φ
(

zα√
3λ

)
, σ → ∞
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and the limit is between these values for 0 < σ < ∞. If, for example, α = 0.05 and

λ = 1/2, then limσ αtrue varies between 0.05 and 0.087, which is reasonably robust.

For illustration, we prove the limiting behavior of αtrue as σ → 0,∞ more care-

fully. Since we assume G(y) = F (y/σ) and F,G are symmetric, it follows that

θF,G =
∫

F dG = 1/2. To evaluate the limits of αtrue, we need only evaluate the

limits of p2 − p2
1 and p3 − p2

1 as σ → 0,∞. First,

p2 = PF,G(Y1 > X1, Y2 > X1) =

∫
(1 − G(x))2 dF (x) =

∫
(1 − F (x/σ))2 dF (x)

=

∫
x>0

(1 − F (x/σ))2 dF (x) +

∫
x<0

(1 − F (x/σ))2 dF (x)

Now, F (x/σ) → 1 as σ → 0 for all x > 0, and F (x/σ) → 0 as σ → ∞ for all x < 0.

So, by the Lebesgue Dominated Convergence Theorem (DCT), as σ → 0, we get

p2 → 0+1/2 = 1/2. If σ → ∞, then for all x, F (x/σ) → 1/2 so, again by the DCT,

p2 → 1/4. Next, for p3, when σ → 0, we get

p3 =

∫
F 2(x) dG(x) =

∫
F 2(σx) dF (x) → 1

4
.

When σ → ∞,∫
F 2(σx) dF (x) =

∫
x>0

F 2(σx) dF (x) +

∫
x<0

F 2(σx) dF (x)

−→ 1

2
+ 0 =

1

2

Since p1 = 1/2, plugging into the formula for limσ αtrue we get the desired result,

lim
σ

αtrue =




1 − Φ

(
zα√

3(1−λ)

)
, σ → 0

1 − Φ
(

zα√
3λ

)
, σ → ∞

25.7 Exercises

Exercise 25.1. Give a rigorous proof that the two sample t statistic converges to

N(0, 1) in distribution if the variances are equal and finite.

Exercise 25.2. Simulate a sample of size m = n = 25 from the N(0, 1) and the

N(0, 10) distributions, and compute the MLEs of the common mean and the two

variances.
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Exercise 25.3. * Give a necessary and sufficient condition that the cubic equation

for finding the MLE of the common mean of two normal populations has one real

root.

Exercise 25.4. * For each of the following cases, simulate the random degree of

freedom of Welch’s test : m = n = 20, σ1 = σ2 = 1; m = 10, n = 50, σ1 = σ2 =

1; m = n = 20, σ1 = 3, σ2 = 1.

Exercise 25.5. Compare by a simulation the power function of Welch’s test with

the two sample t test when the populations are normal with variances 1, 4 and the

sample sizes are m = n = 10, 20. Use a small grid for the values of the means.

Exercise 25.6. * Derive an expression for what Welch’s degree of freedom would

have been if he had tried to match a percentile, instead of the second moment.

Exercise 25.7. Use the recursion relation given in text to analytically write the

distribution of the Mann-Whitney statistic when m = n = 3, assuming that the null

is true.

Exercise 25.8. * Give a rigorous proof that the Mann-Whitney test is consistent

under the condition stated in text.

Exercise 25.9. * Analytically find the mean and the variance of the Mann-Whitney

statistic under a normal shift model.

Exercise 25.10. For the normal location-scale model, approximate the true type

I error rate of Hettmansperger’s conservative test and investigate when it starts to

diverge from the nominal value .05 with m = n = 20, 30, 50.

Exercise 25.11. * What is the limiting type I error of the Mann-Whitney test

when the null density is a normal and the alternative is a uniform ? Use the general

expression given in the text.

Exercise 25.12. * What is the limiting type I error of the Mann-Whitney test

when the null density is a normal and the alternative is an exponential ?
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26 Goodness of Fit

Suppose X1, . . . , Xn are iid observations from a distribution F on an Euclidean

space, say R. We would discuss two types of goodness of fit problems: i) test H0 :

F = F0, a completely specified distribution; ii) F ∈ F , where F is a suitable family

of distributions, possibly indexed by some finite dimensional parameter. Problem

i) would be called the simple goodness of fit problem, and problem ii) the composite

goodness of fit problem, or synonymously, goodness of fit with estimated parameters.

It is the composite problem which is of greater interest in practice, although the

simple problem can potentially arise in some situations. For example, one may

have a hunch that F is uniform on some interval [a, b] or that F is Bernoulli with

parameter 1
2
. The simple goodness of fit problem has generated a vast amount

of literature which has had its positive impact on the composite problem. So the

methodologies and the theory for the simple case are worth looking at. We start

with the simple goodness of fit problem and test statistics that use the empirical

CDF Fn(x) (EDF). Of the enormous literature on goodness of fit, we recommend

D’Agostino and Stephens(1986) for treatment of a variety of problems, including the

simple null case, and Stephens(1993) as a very useful review, although primarily for

the composite case, which is discussed in a later chapter. Stuart and Ord(1991) and

Lehmann(1999) provide lucid presentation of some of the the principal goodness of

fit techniques.

Theory and methodology of goodness of fit were revolutionized with the advances

in empirical process theory and the theory of central limit theorems on Banach

spaces. The influence of these developments in what seems, at first glance, to be

abstract probability theory on the goodness of fit literature was two fold. First,

scattered results with case specific proofs could be unified, with a very transparent

understanding of what is really going on. Second, these developments led to devel-

opment of new tests, because tools were now available to work out the asymptotic

theory of the new test procedures. We recommend del Barrio et al. (2007) for a

comprehensive overview of these modern aspects of goodness of fit. In fact, we will

discuss some of it in this chapter.

26.1 Kolmogorov-Smirnov and Other Tests Based on Fn

We know that for large n, Fn is “close” to the true F . For example, by the Gilvenko-

Cantelli Theorem, sup |Fn(x) − F (x)| a.s−→ 0. So if H0 : F = F0 holds, then we
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should be able to test H0 by studying the deviation between Fn and F0. Any choice

of a discrepancy measure between Fn and F0 would result in a test. The utility of

the test would depend on whether one can work out the distribution theory of the

test statistic. A collection of discrepancy measures that have been proposed are the

following:

D+
n = sup−∞<t<∞(Fn(t) − F0(t)),

D−
n = sup−∞<t<∞(F0(t) − Fn(t)) = − inf−∞<t<∞(Fn(t) − F0(t)),

Dn = sup−∞<t<∞ |Fn(t) − F0(t)| = max(D+
n , D−

n ),

Vn = D+
n + D−

n ,

Cn =
∫

(Fn(t) − F0(t))
2dF0(t),

An =
∫ (Fn(t)−F0(t))2

F0(t)(1−F0(t))
dF0(t),

wn = wn,k,g =
∫

(Fn(t) − F0(t))
kg(F0(t))dF0(t),

Dn(g) = sup−∞<t<∞
|Fn(t)−F0(t)|

g(F0(t))
,

where g : [0, 1] → R+ is some fixed function and k ≥ 1 is a fixed positive integer.

The tests corresponding to Dn, Vn, Cn, An are respectively known as the Kolmogorov-

Smirnov, the Kuiper, the Cramér-von Mises and the Anderson-Darling test. The

tests corresponding to wn and Dn(g) are usually referred to as weighted Cramér-von

Mises and weighted Kolmogorov-Smirnov tests.

26.2 Computational Formulas

Dn, Cn and An are the most common among the test statistics listed above. It

can be shown that Dn, Cn, An are equal to the following simple expressions. Let

X(1) < X(2) < · · · < X(n) be the order statistics of the sample and let Ui = F0(X(i)).

Then, assuming F0 is continuous,

Dn = max1≤i≤n max
{

i
n
− U(i), U(i) − i−1

n

}
,

Cn = 1
12n

+
∑n

i=1

(
U(i) − 2i−1

n

)2
,

An = −n − 1
n

[∑n
i=1(2i − 1)(log U(i) + log(1 − U(n−i+1)))

]
.

Remark: It is clear from these computational formulas that for every fixed

n, the sampling distributions of Dn, Cn and An under F0 do not depend on F0,

provided F0 is continuous. Indeed, one can prove directly by making the quantile

transformation U = F0(X) that all the test statistics listed above have sampling

distributions (under H0) independent of F0, provided F0 is continuous. For small n,

the true sampling distributions can be worked out exactly by discrete enumeration.
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The quantiles for some particular levels have been numerically worked out for a

range of values of n . Accurate approximation to the 95th and the 99th percentiles

of Dn for n ≥ 80 are 1.358√
n

and 1.628√
n

.

26.3 Some Heuristics

For an iid U [0, 1] sample Z1, . . . , Zn, let Un(t) = 1
n

∑n
i=1 IZi≤t. Recall that we call

Un(t) a uniform empirical process. Suppose F0 is a fixed CDF on R, and X1, . . . , Xn

are iid samples from F0. Then, defining Zi = F0(Xi), Z1, . . . , Zn are iid U [0, 1].

Therefore,

supt |Fn(t) − F0(t)| = supt

∣∣ 1
n

∑
IXi≤t − F0(t)

∣∣ = supt

∣∣ 1
n

∑
IF0(Xi)≤F0(t) − F0(t)

∣∣
= supt

∣∣ 1
n

∑
IZi≤F0(t) − F0(t)

∣∣ L
= supt |Un(F0(t)) − F0(t)| = sup0≤t≤1 |Un(t) − t| .

and therefore for every n,
√

n supt |Fn(t) − F0(t)| L
=

√
n sup0≤t≤1 |Un(t) − t|, under

F0. So for every n, Dn has the same distribution as
√

n sup0≤t≤1 |Un(t) − t|. Define

Xn(t) =
√

n(Un(t) − t), 0 ≤ t ≤ 1. Recall from chapter 12 that Xn(0) = Xn(1) =

0. and Xn(t) converges to a Gaussian process, B(t), with E(B(t)) = 0,∀t and

Cov(B(s), B(t)) = s ∧ t − st, 0 ≤ s, t ≤ 1, the Brownian bridge on [0, 1]. By

the invariance principle, the distribution of Dn =
√

n sup0≤t≤1 |Un(t) − t| converges

to the distribution of sup0≤t≤1 |B(t)|. We have seen in chapter 12 that a rigorous

development requires the use of weak convergence theory on metric spaces.

26.4 Asymptotic Null Distributions of Dn, Cn, An and Vn

Asymptotic theory of EDF based tests is now commonly handled by using Empirical

process techniques and weak convergence theory on metric spaces. We recommend

Shorack and Wellner(1986),Pollard(1989),Martynov(1992), Billingsley(1999) and del

Barrio et al. (2007), apart from chapter 12 in this text, for details on techniques,

statistical aspects, and concrete applications. The following fundamental results

follow as consequences of the invariance principle for empirical processes, which we

treated in chapter 12.

Theorem 26.1. Let X1, X2, . . .
iid∼ F0, and let Dn = supt |Fn(t) − F0(t)| and Cn =∫ ∞

−∞(Fn(t) − F0(t))
2dF0(t). Then, assuming that F0 is continuous,

√
nDn

L⇒ sup
0≤t≤1

|B(t)|;
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nCn
L⇒

∫ 1

0

B2(t)dt,

nAn
L⇒

∫ 1

0

B2(t)

t(1 − t)
dt,

PF0(
√

nD+
n ≤ λ2,

√
nD−

n ≤ λ1) → P (−λ1 ≤ inf
0≤t≤1

B(t) ≤ sup
0≤t≤1

B(t) ≤ λ2),

√
nVn

L⇒ sup
0≤t≤1

B(t) − inf
0≤t≤1

B(t).

Now, the question reduces to whether one can find the distributions of these

four functionals of B(.). Fortunately, the answer is affirmative. The distributions

of the first and the fourth functional, i.e., the distributions of the supremum of

the absolute value and of the range, can be found by applications of the reflection

principle (see chapter 12). The other two statistics are quadratic functionals of B(.),

and their distributions can be found by using the Karhunen-Loéve expansion (see

chapter 12) of B(t), and then writing the integrals in these two functionals as a linear

combination of independent chi-square random variables. Since the characteristic

function of a chi-square distribution is known, one can also write the characteristic

function of the Brownian quadratic functional itself. Rather remarkably, a Fourier

inversion can be done, and one can arrive at closed form expressions for the CDFs,

which are the CDFs of the limiting distributions we want. See del Barrio et al. (2007)

for the technical details. We record below some of these closed form expressions for

the limiting CDFs.

Corollary 26.1.

lim
n

PF0(
√

nDn ≤ λ) = 1 − 2
∞∑

j=1

(−1)j−1e−2j2λ2

,

lim
n→∞

PF0(nCn > x) =
1

π

∞∑
j=1

(−1)j+1

∫ 4j2π2

(2j−1)2π2

√
−√

y

sin(
√

y)

e−
xy
2

y
dy,

limn→∞ PF0(
√

nD+
n ≤ λ2,

√
nD−

n ≤ λ1)

= 1 − ∑∞
k=1

{
e−2[kλ2+(k−1)λ1]2 + e−2[(k−1)λ2+kλ1]2 − 2e−2k2(λ1+λ2)2

}
.

Remark: The CDF of the limiting distribution of
√

nVn is the CDF of the sum

in the joint CDF provided in the last part above. An expression for the CDF of the

limiting distribution of nAn can also be found on using the fact that it is the CDF of

the infinite linear combination
∑∞

j=1
Yj

j(j+1)
, Yj being iid chi-squares with one degree

of freedom.
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26.5 Consistency and Distributions under Alternative

The tests introduced above based on the empirical CDF Fn all have the pleasant

property that they are consistent against any alternative F 6= F0. For example,

the Kolomogorov-Smirnov statistic Dn has the property that PF (
√

nDn > G−1
n (1 −

α)) → 1,∀F 6= F0, where G−1
n (1 − α) is the (1 − α)th quantile of the distribution

of
√

nDn under F0. To explain heuristically why this should be the case, consider a

CDF F1 6= F0, so that there exists a such that F1(a) 6= F0(a). Let us suppose that

F1(a) > F0(a). First note that G−1
n (1−α) → λ, where λ satisfies P (sup0≤t≤1 |B(t)| ≤

λ) = 1 − α. So

PF1 (
√

nDn > G−1
n (1 − α))

= PF1 (supt |
√

n(Fn(t) − F0(t))| > G−1
n (1 − α))

= PF1 (supt |
√

n(Fn(t) − F1(t)) +
√

n(F1(t) − F0(t))| > G−1
n (1 − α))

≥ PF1 (|√n(Fn(a) − F1(a)) +
√

n(F1(a) − F0(a))| > G−1
n (1 − α))

→ 1

as n → ∞, since
√

n(Fn(a) − F1(a)) = Op(1) under F1,
√

n(F1(a) − F0(a)) → ∞
and as stated above, G−1

n (1 − α) = O(1).

Remark: The same argument establishes the consistency of the other EDF

(empirical distribution function) based tests against all alternatives. In contrast, we

will later see that Chi-square goodness of fit tests cannot be consistent against all

alternatives.

The invariance principle argument that we used to derive the limit distributions

under H0 also produce the limit distributions under F , a specified alternative. The

limit distributions are still the distributions of appropriate functionals of suitable

Gaussian processes (see Raghavachari (1973)). First we need some notation. Let

F be a specified CDF different from F0. Without loss of generality, we assume

F (0) = 0 and F (1) = 1 and F0(t) = t. Let

α = sup0≤t≤1 |F (t) − F0(t)| = sup0≤t≤1 |F (t) − t|,
α+ = sup0≤t≤1(F (t) − F0(t)) = sup0≤t≤1(F (t) − t),

α− = inf0≤t≤1(F (t) − F0(t)) = inf0≤t≤1(F (t) − t),

K1 = {0 ≤ t ≤ 1 : F (t) − t = α},
K2 = {0 ≤ t ≤ 1 : t − F (t) = α},
K+ = {0 ≤ t ≤ 1 : F (t) − t = α+},
K− = {0 ≤ t ≤ 1 : F (t) − t = α−}.
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Let also WF denote a Gaussian process on [0, 1] with WF (0) = 0, E(WF (t)) = 0,

and Cov(WF (s),WF (t)) = F (s) ∧ F (t) − F (s)F (t), 0 ≤ s ≤ t ≤ 1.

Theorem 26.2. PF (
√

n(Dn−α) ≤ λ) → P
(
supt∈K1

WF (t) ≤ λ, inft∈K2 WF (t) ≥ −λ
)
.

Remark: This result also gives a proof of the consistency of the test based

on Dn. For given 0 < γ < 1, PF (
√

nDn < G−1
n (1 − γ)) = PF (

√
n(Dn − α) <

G−1
n (1−γ)−α

√
n) → 0 from the above theorem as n → ∞ since G−1

n (1−γ) = O(1)

and α > 0.

One can likewise find the limiting distributions of the other EDF based statistics,

e.g., D+
n and D−

n , under an alternative. For example, PF (
√

n(D+
n − α+) ≤ λ) →

P (supt∈K+ WF (t) ≤ λ). As regards the Kuiper statistic Vn, PF (
√

n(Vn−(α++α−)) ≤
λ → P (supt∈K+ WF (t) − inft∈K− WF (t) ≤ λ).

26.6 Finite Sample Distributions and Other EDF Based Tests

Kolmogorov himself studied the problem of the finite sample distribution of Dn

under H0 (Kolomogorov (1933)). He gave recurrence relations for finding the pmf of

Dn. Wald and Wolfowitz (1940, 1941) gave exact formulae easy to use for small n.

Since then the exact percentiles and exact CDFs have been numerically evaluated

and extensively tabulated. For the reader’s convenience, we report a short table of

exact percentiles of Dn for some selected values of n.

n 95th Percentile 99th Percentile

20 .294 .352

21 .287 .344

22 .281 .337

23 .275 .330

24 .269 .323

25 .264 .317

26 .259 .311

27 .254 .305

28 .250 .300

29 .246 .295

30 .242 .290

35 .224 .269

40 .210 .252

> 40 1.36√
n

1.63√
n
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26.7 Some Important Inequalities

Many inequalities on order statistics, extremes, and spacings, and their moments

have been derived over the years. We collect a number of key such inequalities for

purposes of reference.

Smirnov (1941) found the exact distribution of the one sided statistic D+
n . In-

deed, he found the limiting distribution of
√

nD+
n under the null by taking the exact

distribution for given n and then by finding the pointwise limit. Smirnov’s formula

for given n is

PH0(D
+
n > ε) = (1 − ε)n + ε

[n(1−ε)]∑
j=1

(
j

n

)
(1 − ε − j

n
)n−j(ε +

j

n
)j−1.

By symmetry, therefore, one also knows the exact distribution of D−
n for any given

n. Weighted versions of Dn, Cn and An are also sometimes used. In particular,

the weighted Kolmogorov-Smirnov statistic is Dn(g) = sup−∞<x<∞
|Fn(t)−F0(t)|

g(F0(t))
, and

the weighted Anderson-Darling statistic is wn(g) =
∫ (Fn(t)−F0(t))2

g(F0(t))
dF0(t), for some

suitable function g. For specific types of alternatives, the weighted versions provide

greater power than the original unweighted versions, if the weighting function g is

properly chosen. It is not true that the weighted versions converge in law to what

would seem to be the obvious limit for arbitrary g. In fact, the question of weak

convergence of the weighted versions is surprisingly delicate. Here is the precise

theorem; see del Barrio et al. (2007) for a proof.

Theorem 26.3. (a) Let g be a strictly positive function on (0, 1), nondecreasing in

a neighborhood of t = 0, and nonincreasing in a neighborhood of t = 1. Assume

that for some c > 0,
∫ 1

0
1

t(1−t)
e−c

g2(t)
t(1−t) dt < ∞. Then,

√
nDn(g)

L⇒ sup0<t<1
|B(t)|
g(t)

,

where B(t) is a Brownian bridge on [0, 1].

(b) Let g be a strictly positive function on (0, 1). Assume that
∫ 1

0
t(1−t)
g(t)

dt < ∞.

Then, nwn(g)
L⇒ ∫ 1

0
B2(t)
g(t)

dt, where B(t) is a Brownian bridge on [0, 1].

Remark: See Csörgo et al. (1986) for part (a) and Araujo and Giné (1980) for

part (b).

26.8 The Berk-Jones Procedure

Berk and Jones (1979) proposed an intuitively appealing method of testing the

simple goodness of fit null hypothesis F = F0 for some specified continuous F0 in
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the one dimensional iid situation. It is also based on the empirical CDF, and quite

a bit of useful work has been done on finite sample distributions of the Berk-Jones

test statistic. It has also led to subsequent developments of other tests for the

simple goodness of fit problem, as generalizations of the Berk-Jones idea. On the

other hand, there are some unusual aspects about the asymptotic behavior of the

Berk-Jones test statistic, and the statistics corresponding to its generalizations. We

discuss the Berk-Jones test in this section, and certain generalizations in the next

section.

The Berk-Jones method is to transform the simple goodness of fit problem into

a family of Binomial testing problems. More specifically, if the true underlying CDF

is F , then for any given x, nFn(x) ∼ Bin(n, F (x)). Suppressing the x, and writing p

for F (x), p0 for F0(x), for the given x, we want to test p = p0. Since F0 is specified,

by the usual quantile transform method, we may assume that the observations take

values in [0, 1] and that F0 is the CDF of the U [0, 1] distribution. We can use a

likelihood ratio test corresponding to a two-sided alternative to test this hypothesis.

It will require maximization of the binomial likelihood function over all values of p,

which corresponds to maximization over F (x), with x being fixed, while F being

an arbitrary CDF. The likelihood is maximized at F (x) = Fn(x), resulting in the

likelihood ratio statistic

λn(x) =
Fn(x)nFn(x)(1 − Fn(x))n−nFn(x)

F0(x)nFn(x)(1 − F0(x))n−nFn(x)

= (
Fn(x)

F0(x)
)nFn(x)(

1 − Fn(x)

1 − F0(x)
)n−nFn(x).

But, of course, the original problem is to test that F (x) = F0(x)∀x. So, it would

make sense to take a supremum of the log-likelihood ratio statistics over x. The

Berk-Jones statistic is

Rn = n−1sup0≤x≤1 log λn(x).

As always, the questions of interest are the asymptotic and fixed sample distributions

of Rn under the null, and if possible, under suitable alternatives. We present some

key available results on these questions below. The principal references are Berk

and Jones (1979), Wellner and Koltchinskii (2003), and Jager and Wellner (2006).

To study the asymptotics of the Berk-Jones statistic, first, it is useful to draw

a connection between it and the Kullback-Leibler distance between Bernoulli dis-

tributions. Let K(p, θ) = p(log p − log θ) + (1 − p)(log(1 − p) − log(1 − θ)) be
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the Kullback-Leibler distance between the Bernoulli distributions with parameters

p and θ. Then, it is easily seen that log λn(x) = K(Fn(x), F0(x)), and hence,

Rn = sup0≤x≤1K(Fn(x), F0(x)). Properties of the Kullback-Leibler distance and

Empirical process theory are now brought together, in an entirely nontrivial way,

to derive the limiting distribution of Rn under the null hypothesis. See Jager and

Wellner (2006) for a proof of the next theorem.

Theorem 26.4. Let cn = 2 log log n + 1
2
log log log n − 1

2
log(4π), bn =

√
2 log log n.

Under H0 : F = F0, nRn − c2n
2b2n

L⇒ V , where V has the CDF e−4e−x
,−∞ < x < ∞.

Approximations to finite sample percentiles of nRn are presented in Owen (1995).

Somewhat simpler, but almost as accurate, approximations for the 95th percentile

of nRn are c2n
2b2n

− log(−.25 log .95).

26.9 ϕ-Divergences and the Jager-Wellner Tests

The Kullback-Leibler connection to the Berk-Jones statistic is usefully exploited to

produce a more general family of tests for the simple goodness of fit problem in

Jager and Wellner (2006). We describe these tests and the asymptotic distribution

theory below. Some remarks about the efficiency of these tests are made at the end

of this section.

The generalizations are obtained by considering generalizations of the K(p, θ)

function above. The K(p, θ) function arises from the Kullback-Leibler distance, as

we explained. The more general functions are obtained from distances more general

than the Kullback-Leibler distance. In the information theory literature, these more

general distances are known as ϕ-divergences. Let P1, P2 be two probability measures

on some space, absolutely continuous with respect to a common measure λ (such

an λ always exists). Let p1, p2 be the densities of P1, P2 with respect to λ, and let

g = p2

p1
Ip1>0. Given a nonnegative convex function ϕ on the nonnegative reals, let

Kϕ(P1, P2) = EP1 [ϕ(g)]. These are known as ϕ-divergence measures between a pair

of probability distributions. See Csizár(1963) for the apparently first introduction of

these divergences. Divergence measures have also been used usefully in estimation,

and particularly robust estimation; one reference for an overview is Basu et al.

(1998).

Some examples of the ϕ-function in common use are:

ϕ(x) = (x−1) log x; ϕ(x) = − log x; ϕ(x) = (
√

x−1)2; ϕ(x) = |x−1|; ϕ(x) = −x1−t, 0 < t < 1.
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For the purpose of writing tests for the goodness of fit problem, Jager and Wellner

(2006) use the following one parameter family of ϕ-functions:

ϕs(x) = x − log x − 1, s = 0;

ϕs(x) = x log x − x + 1, s = 1;

ϕs(x) =
1 − s + sx − xs

s(1 − s)
, s 6= 0, 1.

These functions result in the corresponding divergence measures

Ks(p, θ) = θϕs(p/θ) + (1 − θ)ϕs((1 − p)/(1 − θ)).

Accordingly, one has the family of test statistics

Sn(s) = sup0≤x≤1Ks(Fn(x), F0(x)).

Or, instead of taking supremums, one can take averages and get the test statistics

Tn(s) =

∫ 1

0

Ks(Fn(x), F0(x))dx.

It is interesting to note that Sn, Tn generalize well known tests for the simple good-

ness of fit problem; for example, in particular, Sn(1) = The Berk-Jones statistic;

Tn(2) = The integral form of the Anderson-Darling statistic.

The central limit theorem under the null for the families of test statistics Sn(s), Tn(s)

is described in the following theorem; see Jager and Wellner (2006) for a proof.

Theorem 26.5. (a) Let bn, cn, V be as in the previous theorem. For s ∈ [−1, 2], nSn(s)−
c2n
2b2n

L⇒ V under H0, as n → ∞;

(b) For s ∈ (−∞, 2], nTn(s)
L⇒ ∫ 1

0
B2(t)

2t(1−t)
dt under H0, as n → ∞, where B(t) is a

Brownian Bridge on [0, 1].

The question of comparison naturally arises. We now have a large family of

possible tests, all for the simple goodness of fit problem. Which one should one use

? The natural comparison would be in terms of power. This can be done theoreti-

cally, or by large scale simulations. The theoretical study focuses on comparison of

Bahadur slopes of these various statistics. However, this is considerably more subtle

than one would first imagine. The problem is that sometimes, depending on what

is the exact alternative, when one intuitively expects the sequence of statistics to

have an obvious almost sure limit, in reality it converges in law to a nondegenerate
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random variable. There is a boundary phenomenon going on. On one side of the

boundary, there is an almost sure constant limit, while on the other side there is a

nondegenerate weak limit. This would make comparison by Bahadur slopes essen-

tially meaningless. However, some qualitative understanding of power comparison

has been achieved; see Berk and Jones (1979), Groeneboom and Shorack (1981),

and Jager and Wellner (2006). Simulations are available in Jager (2006). Berk-

Jones type supremum statistics appear to come out well in these theoretical studies

and the simulations, but perhaps with a truncated supremum, over x ∈ [X(1), X(n)].

26.10 The Two Sample Case

Suppose Xi, i = 1, 2, · · · , n are iid samples from some continuous CDF F0 and

Yi, i = 1, 2, · · · ,m are iid samples from some continuous CDF F, and all random

variables are mutually independent. Without loss of generality, assume F0(t) = t,

0 ≤ t ≤ 1, and assume that F is a CDF on [0, 1]. Let Fn, Gm denote the empirical

CDFs of the X
′
is and the Y

′
i s respectively. Analogous to the one sample case, one

can define two and one sided Kolmogorov-Smirnov and Kuiper test statistics

Dm,n = sup
0≤t≤1

|Fn − Gm|;

D+
m,n = sup

0≤t≤1
(Fn − Gm);

D−
m,n = sup

0≤t≤1
(Gm − Fn) = − inf

0≤t≤1
(Fn − Gm);

Vm,n = D+
m,n + D−

m,n.

(26.1)

There is substantial literature on the two sample equality of distributions problem.

In particular, see Kiefer(1959),Anderson(1962), and Hodges(1958). As in the one

sample case, the multivariate problem is a lot harder, it being difficult to come up

with distribution-free simple and intuitive tests, even in the continuous case. See

Bickel(1968), and Weiss(1960) for some results.

The limiting distribution of the two-sided Kolmogorov-Smirnov (KS) statistic is

as follows.

Theorem 26.6. Let Xi, 1 ≤ i ≤ n
iid∼ F0, Yj, 1 ≤ j ≤ m

iid∼ F , where F0, F are
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continuous CDFs. Consider testing H0 : F = F0. Then,

lim
m,n→∞

PH0(

√
mn

m + n
Dm,n ≤ λ) = P ( sup

0≤t≤1
|B(t)| ≤ λ)

= 1 − 2
∞∑

k=1

(−1)k−1e−2k2λ2

provided for some 0 < γ < 1, m
m+n

→ γ.

Remark: Notice that the limiting distribution of the two sample two sided K-S

statistic under H0 is the same as that of the one sample two sided K-S statistic. The

reason is
√

mn
m+n

(Fn(t)−Gm(t)) =
√

mn
m+n

(Fn(t)−t−(Gm(t)−t)) =
√

mn
m+n

(Fn(t)−t)−√
mn

m+n
(Gm(t)−t)

L⇒ √
1 − γB1(t)−√

γB2(t),where B1(.), B2(.) are two independent

Brownian bridges. But
√

1 − γB1(t)−√
γB2(t) is another Brownian bridge. There-

fore, by our usual continuous mapping argument,
√

mn
m+n

Dm,n
L⇒ sup0≤t≤1 |B(t)|.

The asymptotic null distribution of the two-sample Kuiper statistic is also easily

found and is stated next.

Theorem 26.7. Assume the same conditions as in the previous theorem. Let B(t)

be a standard Brownian bridge on [0,1]. Then

lim
m,n→∞

PF0(

√
mn

m + n
Vm,n ≤ λ) = P ( sup

0≤t≤1
B(t) − inf

0≤t≤1
B(t) ≤ λ)

Remark: Notice that again in the two sample case, the asymptotic null distribution

of the Kuiper statistic is the same as that in the one sample case. The reason is the

same as the explanation given above for the case of the K-S statistic.

The asymptotic distributions of Dm,n and Vm,n under an alternative are also

known which we describe below.

Theorem 26.8. Suppose m
m+n

→ γ, 0 < γ < 1. Then

lim
m,n→∞

PF (

√
mn

m + n
(Dm,n − α) ≤ λ)

= P (sup
t∈K1

(
√

γWF (t) −
√

1 − γB(t)) ≤ λ, inf
t∈K2

(
√

1 − γWF (t) −√
γB(t)) ≥ −λ),

where α,K1, K2,WF (t) are as in section 26.5, and WF (t) and B(t) are independent.

Theorem 26.9. Suppose m
m+n

→ γ, 0 < γ < 1. Then

lim
m,n→∞

PF (

√
mn

m + n
(Vm,n − α+ + α−) ≤ λ)

= P ( sup
t∈K+

(
√

γWF (t) −
√

1 − γB(t)) − inf
t∈K−

(
√

γWF (t) −
√

1 − γB(t)) ≤ λ),
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where K± are as in section 26.5, and WF (t) and B(t) are again independent.

Remark: See Raghavachari (1973) for details and proofs of the last two the-

orems in this section. In examples, one of the sets K1 and K2, and one of the

sets K+, K− may be empty and the other one a singleton set. This will facili-

tate analytical calculations of the asymptotic CDFs in the above two theorems. In

general, analytical calculation may be cumbersome. For discrete cases, it is wrong

to use the statistics; however if our ”wrong” p-value is very small, the true p-value

is even smaller than the wrong one, and so it is probably safe to reject in such a case.

26.11 Tests for Normality

Because of its obvious practical importance, there has been a substantial amount

of work on devising tests for normality. Thus, suppose X1, X2, . . . , Xn are iid ob-

servations from a CDF F on the Real line. The problem is to test that F belongs

to the family of normal distributions. Although we will discuss modifications of the

Kolmogorov-Smirnov and the chi-square tests for testing this hypothesis in chapters

27 and 28, we will describe some other fairly popular tests for normality here, due

to the practical interest in the problem.

The Q-Q Plot The Q-Q plot is a hugely popular graphical method for testing

for normality. It appears to have been invented by the research group at the Bell

Labs. See Gnanadesikan(1997). The simple rationale is that the quantile function of

a general normal distribution satisfies Q(α) = µ + σzα, with obvious notation. So a

plot of Q(α) against zα would be linear, with an intercept of µ and a slope σ. With

given data, the order statistics of the sample are plotted against the standard normal

percentiles. This plot should be roughly linear if the data are truly normal. A visual

assessment of linearity is then made. To avoid singularities, the plot consists of the

pairs (Φ−1( i
n+1

), X(i)), i = 1, 2, . . . , n (or some such modification of Φ−1( i
n+1

)).

At the hands of a skilled analyst, the Q-Q plot can provide useful information

about the nature of the true CDF from which the observations are coming. For

example, it can give information about the tail and skewness of the distribution,

and about its unimodality. See Marden(1998,2004). Brown, DasGupta,Marden and

Politis(2004) show that the basic assessment of linearity, however, is fundamentally

unreliable, as most types of data would produce remarkably linear Q-Q plots, except
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for a detour only in the extreme tails. If this detour in the tails is brushed aside as

unimportant, then the Q-Q plot becomes a worthless tool. They give the following

theorem.

Theorem 26.10. Let rn denote the correlation coefficient computed from the bi-

variate pairs (Φ−1( i
n+1

), X(i)), i = 1, 2, . . . , n.Let F denote the true CDF, with finite

variance σ2. Then

lim
n→∞

rn = ρF =

∫ 1

0
F−1(α)Φ−1(α)dα

σ
, a.s.

The a.s. limit is very close to 1 for all kinds of distributions, as can be seen in

the Table below.

F lim rn

Normal 1

Uniform .9772

Double Exponential .9811

t3 .9008

t5 .9832

χ2
5 .9577

Exponential .9032

Tukey .9706

Logistic .9663

They also show that if just 5% of the points from each tail are deleted, then the

corresponding a.s. limits are virtually equal to 1 for even skewed data such as χ2
5.

Having said that, a formal test which uses essentially the correlation coefficient rn

above is an omnibus consistent test for normality. This test is described next.

The Shapiro-Francia-Wilk Test The Shapiro-Francia test is a slight modifi-

cation of the wildly popular Shapiro-Wilk test, but is easier to describe; see Shapiro

and Wilk(1965) and de Wet and Ventner(1972). It rejects the hypothesis of nor-

mality when rn is small. If the true CDF is nonnormal, then rn, on centering, and

norming by
√

n has a limiting normal distribution. If the true CDF is normal,

rn → 1 faster than
√

n. Against all nonnormal alternatives with a finite variance,

the test is consistent. See Sarkadi(1985).

Theorem 26.11. (de Wet and Ventner, 1972; Sarkadi, 1985) a. If F does not

belong to the family of normal distributions, then
√

n(rn − ρF )
L⇒ N(0, τ 2

F ), where

ρF is as above, and τF is a suitable functional of F .
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b. If F belongs to the family of normal distributions, then n(1−rn)
L⇒ ∑∞

i=1 ci(Wi−
1), where Wi are iid χ2

1 variables, and ci are suitable constants.

c. If F does not belong to the family of normal distributions, then limn→∞ P (rn <

1 − c
n
) = 1, for any c > 0.

Among many other tests for normality available in the literature, tests based on

the skewness and the kurtosis of the sample are quite popular; see the Exercises.

There is no clear cut comparison between these tests without focusing on the type

of alternative for which good power is desired.
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26.12 Exercises

Exercise 26.1. * For the data set −1.88,−1.71,−1.40,−.95, .22, 1.18, 1.25, 1.41, 1.70,

1.97, calculate the values of each of D+
n , D−

n , Dn, Cn, An, and Vn, when the null

distribution is F0 = N(0, 1); F0 = DoubleExp(0, 1); F0 = C(0, 1). Do the computed

values make sense intuitively ?

Exercise 26.2. * For n = 15, 25, 50, 100, simulate U [0, 1] data, and then plot the

normalized uniform Empirical process
√

n(Un(t) − t). Comment on the behavior of

your simulated trajectory.

Exercise 26.3. * By repeatedly simulating U [0, 1] data for n = 50, 80, 125, compare

the simulated 95th percentile of Dn with the approximation 1.358√
n

quoted in text.

Exercise 26.4. Show that on D[0, 1], the functionals x → supt|x(t)|, x → ∫
x2(t)dt

are continuous with respect to supnorm (see Chapter 12).

Exercise 26.5. * Find the mean and the variance of the asymptotic null distribu-

tion of the two sided K-S statistic.

Exercise 26.6. * By using Corollary 26.1, find the mean and the variance of the

asymptotic null distribution of nCn.

Exercise 26.7. * By careful computing, plot and superimpose the CDFs of the

asymptotic null distributions of
√

nDn and nCn.

Exercise 26.8. * By careful computing, plot the density of the asymptotic null

distribution of the Kuiper statistic.

Exercise 26.9. * Prove that each of the Kuiper, Cramér-von Mises and the Anderson-

Darling tests is consistent against any alternative.

Exercise 26.10. * By using Theorem 26.4, approximate the power of the two sided

K-S test for testing H0 : F = U [0, 1] against a Beta(α, α) alternative, with α =

.5, 1.5, 2, 5 and n = 25, 50, 100.

Exercise 26.11. * Consider the statistic Nn = Number of times Fn crosses F0.

Simulate the expected value of Nn under the null and compare to its known limiting

value
√

π
2
.
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Exercise 26.12. * Simulate a sample of size m = 20 from the N(0, 25) distribution

and a sample of size n = 10 from the C(0, 1) distribution. Test the hypothesis that

the data come from the same distribution by using the two sample K-S and the two

sample Kuiper statistic. Find the P-values.

Exercise 26.13. * Simulate a sample of size n = 20 from the N(0, 25) distribution.

Test the hypothesis that the data come from a standard Cauchy distribution by

using the Berk-Jones statistic. Use the percentile approximation given in the text to

approximately compute a P-value. Repeat the exercise for testing that the simulated

data come from a N(0, 100) distribution.

Exercise 26.14. * Simulate a sample of size n = 20 from the N(0, 25) distribution

and compute the values of the Sn(s) and Tn(s) statistics for s = −1, 0, 1
2
, 1, 2.

Exercise 26.15. * Geary’s ’a’ Given iid observations X1, X2, . . . , Xn from a dis-

tribution with finite variance, let a =
1
n

∑n
i=1 |Xi−X̄|

s
.

a. Derive the asymptotic distribution of a in general. Using it, derive the

asymptotic distribution of a when the underlying distribution is normal.

b. Hence suggest a test for normality based on Geary’s a.

c. Find the exact mean and variance of a in finite samples under normality.

Exercise 26.16. Q-Q Plot for Exponentiality Let X1, X2, . . . , Xn be iid observa-

tions from a distribution on (0,∞) and let Fn be the empirical CDF. Let t(i)

denote the order statistics of the sample, and let Q(α) = − log(1 − α) be the

quantile function of the standard Exponential. Justify why a plot of the pairs

(t(i), Q(Fn(t(i)) − .5n)) can be used to test that X1, X2, . . . , Xn are samples from

some Exponential distribution.

Exercise 26.17. * Test for Normality Let X1, X2, . . . , Xn be iid observations

from a distribution F on the Real line, and let b1, b2 denote the usual sample skewness

and sample kurtosis coefficients, i.e., b1 =
1
n

∑
(Xi−X̄)3

s3 ,and b2 =
1
n

∑
(Xi−X̄)4

s4 .

a. Show that if F is a normal distribution, then i)
√

nb1
L⇒ N(0, 6), ii)

√
n(b2 −

3)
L⇒ N(0, 24).

b. Suggest a test for normality based on b1; based on b2.

c. Are these tests consistent against all alternatives, or only certain alternatives?

d. Can you suggest a test based jointly on (b1, b2) ?
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27 Chi-square Tests for Goodness of Fit

Well known competitors to EDF based statistics are Chi-square tests. They dis-

cretize the null distribution in some way, and assess the agreement of observed

counts to the postulated counts. So there is obviously some loss of information and

hence a loss in power. But they are versatile. Unlike EDF based tests, a Chi-square

test can be used for continuous as well as discrete data, and in one dimension as well

as many dimensions. Thus a loss of information is being exchanged for versatility

of the principle and the ease of computation.

27.1 The Pearson χ2 Test

Suppose X1, . . . , Xn are IID observations from some distribution F in an Euclidean

space and suppose we want to test H0 : F = F0, F0 being a completely specified

distribution. Let S be the support of F0 and for some given k ≥ 1 , Ak,i, i =

1, 2, · · · , k form a partition of S. Let p0,i = PF0(Ak,i), and ni = #{j : xj ∈ Ak,i}=the

observed frequency of the partition set Ak,i. Therefore, under H0, E(ni) = np0,i.

Karl Pearson suggested that as a measure of discrepancy between the observed

sample and the null hypothesis, one compares (n1, ..., nk) with (np0i, ..., np0k). The

Pearson Chi-square statistic is defined as:

χ2 =
k∑

i=1

(ni − np0i)
2

np0i

For fixed n, certainly, χ2 is not distributed as a Chi-square, for it is just a quadratic

form in a multinomial random vector. However, the asymptotic distribution of χ2

is χ2
k−1, if H0 holds; hence the name Pearson Chi-square for this test.

As hard as it is to believe, Pearson’s chisquare test is actually more than a cen-

tury old(Pearson(1900)). Cox(2000),Rao(2000) give well written accounts. Ser-

fling(1980) and Ferguson(1996) contain theoretical developments. Greenwood and

Nikulin(1996) is a masterly treatment. Modifications of Pearson’s chisquare have

been suggested; see, among others, Rao and Robson(1974).

27.2 Asymptotic Distribution of Pearson’s Chi-square

Theorem 27.1. Suppose X1, X2, . . . , Xn are iid observations from some distribu-

tion F in a finite dimensional Euclidean space. Consider testing H0 : F = F0

(specified). Let χ2 be the Pearson χ2 statistic defined above. Then χ2 L⇒ χ2
k−1
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under H0.

Proof : It is easy to see why the asymptotic null distribution of χ2 should be χ2
k−1.

Define Y = (Y1, ..., Yk) = (n1−np01√
np01

, ..., nk−np0k√
np0k

). By the multinomial CLT (see Chap-

ter 1 exercises), Y
L⇒ Nk(0, Σ), where Σ = I−µµ

′
, where µ

′
= (

√
p01, ...

√
p0k), trace

(Σ) = k − 1. The eigenvalues of Σ are 0 with multiplicity 1 and 1 with multiplicity

(k − 1). Notice now that Pearson’s χ2 = Y
′
Y and if Yv Nk(0, Σ) for any general Σ

then Y
′
Y = X

′
P

′
PX = X

′
X

L
=

∑k
i=1 λiwi, where wi

iid∼ χ2
1, λi are the eigenvalues

of Σ and P
′
ΣP=diag(λ1, ..., λk) is the spectral decomposition of Σ. So X ∼ Nk(0,

diag(λ1, ..., λk)) and it follows that X
′
X =

∑k
i=1 X2

i
L
=

∑k
i=1 λiwi. For our Σ, k − 1

of λ
′
is are 1 and the remaining one is zero. Since a sum of independent Chi-squares

is again a Chi-square, it follows from the multinomial CLT that χ2 L⇒ χ2
k−1 under

H0.

Remark: The so called Freeman-Tukey statistic is a kind of symmetrization of

Pearson χ2 with respect to the vector of observed and expected frequencies. It is

defined as FT = 4
∑k

i=1(
√

ni − √
np0i)

2 and it turns out that FT also converges

to χ2
k−1 under H0, which follows by an easy application of the delta theorem. The

Freeman-Tukey statistic is sometimes preferred to Pearson’s chi-square. See Stuart

and Ord (1991) for some additional information.

27.3 Asymptotic Distribution Under Alternative and Con-

sistency

Let F1 be a distribution different from F0 and let p1i = PF1(Ak,i). Clearly, if by

chance, p1i = p0i ∀ i=1,..,k (which is certainly possible), then a test based on the

empirical frequencies of Ak,i cannot distinguish F0 from F1, even asymptotically. In

such a case, the χ2 test cannot be consistent against F1. However, otherwise, it will

be consistent as can be seen easily from the following result.

Theorem 27.2. χ2

n

P⇒ ∑k
i=1

(p1i−p0i)
2

p0i
under F1.

This is evident as χ2 =
∑k

i=1
(ni−np0i)

2

np0i
= n

∑k
i=1

(
ni
n
−p0i)

2

p0i
. But (n1

n
, ..., nk

n
)

P⇒
(p11, ..., p1k) under F1. Therefore, by the continuous mapping theorem χ2

n

P⇒ ∑k
i=1

(p1i−p0i)
2

p0i
.

Corollary 27.1. If
∑k

i=1
(p1i−p0i)

2

p0i
> 0, then χ2 P−→ ∞ under F1 and hence the χ2

test is consistent against F1.

Remark: Thus, for a fixed alternative F1 such that the vector (p11, ..., p1k) 6=
(p01, ..., p0k), Pearsons’ χ2 cannot have a nondegenerate limit distribution under
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F1. However, if the alternative is very close to the null, in the sense of being a

Pitman alternative , there is a nondegenerate limit distribution. We have seen this

phenomenon occur previously in other testing problems.

Theorem 27.3. Consider an alternative F1 = F1,n = F0 + 1√
n
G, where the total

mass of G is 0. Let p1i = p0i + 1√
n
ci where ci =

∫
Ak,i

dG,
∑k

i=1 ci = 0. Then

χ2 L⇒ NCχ2(k − 1, δ2) where δ2 =
∑k

i=1
c2i
p0i

.

Remark: This result can be used to approximate the power of the χ2 test at a close

by alternative by using the noncentral χ2 CDF as an approximation to the exact

CDF of χ2 under the alternative.

27.4 Choice of k

A key practical question in the implementation of χ2 tests is the choice of k and the

actual partitioning sets Ak,i . Both are hard problems and despite huge literature

on the topic, there are no clear cut solutions. Some major references on this hard

problem are Mann and Wald(1942),Oosterhoff(1985), and Stuart and Ord(1991).

A common assumption in much of the theoretical works is to take some suitable

value of k and use the partition sets Ak,i which make p0i ≡ 1
k
. In other words,

the cells are equiprobable under H0. Note that generally this will make the cells of

unequal size (e.g, of unequal width if they are intervals). The problem then is to

seek the optimum value of k. The crux of the problem in optimizing k is that a large

k may or may not be a good choice, depending on the alternative. One can see this

by simple moment calculations, and further comments on this are made below.

Theorem 27.4.

(a)EH0(χ
2) = k − 1;

(b)V arH0(χ
2) =

1

n
(2(n − 1)(k − 1) − k2 +

k∑
i=1

1

p0i

);

(c)EF1(χ
2) =

k∑
i=1

p1i(1 − p1i)

p0i

+ n(
k∑

i=1

p2
1i

p0i

− 1).

Remark: See Sen and Singer (1993) or Serfling (1980) for simple derivations of

the moments of Pearson’s χ2. The variance under the alternative has a somewhat

messy expression. The formula for VarH0(χ
2) indicates the problem one will have

with many cells. If k is very large, then some value of p0i would be small, making
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∑k
i=1

1
p0i

a large number and VarH0(χ
2) quite a bit larger than 2(k− 1). This would

indicate that the χ2
k−1 approximation to the null distribution of χ2 is not accurate.

So even the size of the test may differ significantly from the nominal value if k is

too large. Clearly, the choice of k is a rather subtle issue.

Example 27.1. Here are some values of the power of the Pearson χ2 test, when

F0 = N(0, 1) and F1 = a Cauchy or another normal and when F0 = U [0, 1] and

F1 = a Beta distribution. The numbers in the Table are quite illuminating.

Table (n = 50, α = 0.05, p0i = 1
k
)

k

F0 F1 4 6 8 15

N(0, 1) C(0, σ), σ = 1
2

0.18 0.25 0.28 0.40

N(0, 1) N(0, σ2), σ = 4
3

0.32 0.32 0.30 0.24

U [0, 1] Beta(2
3
, 2

3
) 0.20 0.23 0.25 0.26

U [0, 1] Beta(5
3
, 5

3
) 0.39 0.34 0.32 0.24

For the case F0 = N(0, 1), the power increases monotonically in k when the alterna-

tive is Cauchy, which is thick tailed, but actually deteriorates for the larger k, when

the alternative is another normal, which is thin tailed. Similarly, when F0 = U [0, 1],

the power increases monotonically in k when F1 is a U-shaped Beta distribution, but

deteriorates for the larger k when F1 is a unimodal Beta distribution. We shall later

see that some general results can be given that justify such an empirical finding.

We now present some results on selecting the number of cells k.

27.5 Recommendation of Mann and Wald

Mann and Wald (1942) formulated the problem of selecting the value of k in a

(somewhat complicated) paradigm and came out with an optimal rate of growth of

k as n → ∞. The formulation of Mann and Wald was along the following lines.

Fix a number 0 < ∆ < 1. Let F0 be the null distribution and F1 a plausible alter-

native. Consider the class of alternatives F = F∆ = {F1 : dK(F0, F1) ≥ ∆}, where

dK(F0, F1) is the Kolmogorov distance between F0 and F1. Let β(F1, n, k, α) =
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PF1(χ
2 > χ2

k−1(α)). Mann and Wald (1942) consider inf
F1∈F∆

β(F1, n, k, α) and suggest

kn = kn(α, ∆) = argmax
k

inf
F1∈F∆

β(F1, n, k, α) as the value of k. Actually, the criterion

is a bit more complex than that; see Mann and Wald (1942) for the exact criterion.

They prove that kn grows at the rate n
2
5 , i.e., kn ∼ n

2
5 . Actually, they also produce

a constant in this rate result. Later empirical experience has suggested that the

theoretical constant is a bit too large.

A common practial recommendation influenced by the Mann-Wald result is k = 2n
2
5 .

The recommendation seems to produce values of k that agree well with practical

choices of k. Here is a table.

Table

n Integer nearest to 2n2/5

25 7

50 10

80 12

100 13

These values seem to be close to what common practice is. The important points

are that k should be larger when n is large. But it is not recommended that one

uses a very large value for k, and a choice in the range 5 − 15 seems right.

27.6 Power at Local Alternatives and Choice of k

Suppose we wish to test that X1, X2, . . . , Xn are i.i.d. H, with density h. Thus the

null density is h. For another density g, and 0 ≤ θ ≤ 1, consider alternatives

gθ = (1 − θ)h + θg.

If 0 < θ < 1 is fixed, then the Pearson χ2 P→ ∞ under gθ, as we saw previously

(provided the cell probabilities are not the same under g and h ). But if θ = θn,

and θn converges to zero at the rate 1√
n
, then the Pearson χ2 has a noncentral χ2

limit distribution and the power under the alternative gθn has a finite limit for any

fixed k. The question is, if we let k → ∞, then what happens to the power? If it

converges to 1, letting k grow would be a good idea. If it converges to the level α,
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then letting k grow arbitrarily would be a bad idea.

To describe the results, we first need some notation. We suppress k and n in the

notation.

Let

p0i =

∫
Ak,i

h(x)dx

pi =

∫
Ak,i

gθn(x)dx

p∗i =

∫
Ak,i

g(x)dx

∆k =
k∑

i=1

(p∗i − p0i)
2

p0i

f =
g

h
− 1

Then one has the following results (Kallenberg et. al (1985)).

Theorem 27.5. Suppose

i) k = k(n) → ∞ such that k = o(n),

ii) lim infn min
i

(kp0i) > 0,

iii) limn nθ2
n exists and is nonzero and finite.

Then
lim

n
β(gθn , n, k, α) = 1, iff lim ∆k√

k
= ∞,

= α, iff lim ∆k√
k

= 0,

where as before β(.) denotes the power of the test.

Remark: If 0 < lim ∆k√
k

< ∞, then the power would typically converge to a

number between α and 1, but a general characterization is lacking. The issue about

letting k grow is that the approximate noncentral χ2 distribution for Pearson χ2

under the alternative has a noncentrality parameter increasing in k, which would

make the distribution stochastically larger. On the other hand, by increasing k, the

degree of freedom also increases, which would increase the variance.
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Thus, there are two conflicting effects of increasing k and it is not clear which one

will win. For certain alternatives, the increase in ∆k beats the effect of the increase

in the variance and the power converges to 1. For certain other alternatives, it does

not. The tail of g relative to h is the key factor. The next result makes this precise.

The following result (Kallenberg et al. (1985)) connects the condition lim ∆k√
k

=

∞ (0) to the thickness of the tail of the fixed alternative g.

Theorem 27.6.

a) Suppose lim supn min
i

kp0i > 0. If for some r > 4
3
,

∫ |f |rdH < ∞, then

lim ∆k√
k

= 0.

b) Suppose lim infn min
i

kp0i > 0 and lim supn max
i

kp0i < ∞. If for some 0 <

r < 4
3
,
∫ |f |rdH = ∞, then lim ∆k√

k
= ∞.

Remark: The assumption lim infn min
i

kp0i > 0 says that none of the cells Ak,i

should have very small probabilities under h. Assumption b) that lim sup max
i

kp0i <

∞, likewise says that none of the cells should have a high probability under h. The

two assumptions are both satisfied if p0i ∼ 1
k

for all i and k.

If g has a thick tail relative to h, then for small r,
∫ |f |rdH would typically diverge.

To the contrary, if g has a thin tail relative to h, then
∫ |f |rdH would typically

converge even for large r. So the combined qualitative conclusion of the theorems

above is that if g has thick tails relative to h, then we can afford to choose a large

number of cells, and if g has thin tails relative to h, then we should not use a large

number of cells. These are useful general principles.

The next two examples illustrate the phenomenon.

Example 27.2. Let h(x) = 1√
2π

e−
x2

2 and g(x) = 1
π(1+x2)

. Note that g has thick

tails relative to h. Therefore,

f(x) =
g(x)

h(x)
− 1 =

ce
x2

2

1 + x2
− 1, for some 0 < c < ∞

⇒
∫

|f |rdH =
1√
2π

∫ ∣∣∣∣∣ ce
x2

2

1 + x2
− 1

∣∣∣∣∣
r

e−
x2

2 dx

For any r > 1, this integral diverges. So, from the previous theorems, limβ(gθn , n, kn, α) =

1.
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Example 27.3. Let h(x) = 1√
2π

e−
x2

2 and g(x) = 1
σ
√

2π
e−

x2

2σ2 . The larger the σ is, the

thicker is the tail of g relative to h. Now, f(x) = ce
x2

2
(1− 1

σ2 )−1, for some 0 < c < ∞.

Therefore ∫
|f |rdH =

1√
2π

∫ ∣∣∣∣cex2

2
(1− 1

σ2 ) − 1

∣∣∣∣
r

e−
x2

2 dx

∼
∫

e
x2

2 [r(1− 1
σ2 )−1]dx.

If r = 4
3

and σ2 = 4, r(1 − 1
σ2 ) − 1 = 0. Also, r(1 − 1

σ2 ) − 1 < 0 and the integral∫
e

x2

2 [r(1− 1
σ2 )−1]dx converges for some r < 4

3
, iff σ2 < 4. On the other hand, r(1 −

1
σ2 ) − 1 > 0 and the integral

∫
e

x2

2 [r(1− 1
σ2 )−1]dx diverges for some r < 4

3
, iff σ2 > 4.

So, if g has a ”small” variance, then letting k → ∞ is not a good idea, while g has a

”large” variance, then one can let k → ∞. Note the similarity in conclusion to the

previous example.
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27.7 Exercises

Exercise 27.1. * For testing that F = N(0, 1), and with the cells as (−∞,−3), (−3,−2),

..., (2, 3), (3,∞), find explicitly an alternative F1 such that Pearson’s chisquare is not

consistent.

Exercise 27.2. For testing that a p-dimensional distribution is N(0, I), find k = 10

spherical shells with equal probability under the null.

Exercise 27.3. * For testing H0 : F = N(0, 1) vs. H1 : F = C(0, 1), and with the

cells as (−∞,−4a), (−4a,−3a), (−3a,−2a), ..., (3a, 4a), (4a,∞), find a that maxi-

mizes
∑k

i=1
(p1i−p0i)

2

p0i
. Why would you want to maximize it ?

Exercise 27.4. For k = 6, 8, 10, 12, n = 15, 25, 40, and with the equiprobable cells,

approximately find the power of the chisquare test for testing F = Exp(1) vs.

F = Gamma(2, 1); Gamma(5, 1). Do more cells help ?

Exercise 27.5. For k = 6, 8, 10, 12, n = 15, 25, 40, and with the equiprobable cells,

approximately find the power of the chisquare test for testing F = N(0, 1) vs.

F = DoubleExp(0, 1). Do more cells help ?

Exercise 27.6. For k = 6, 8, 10, 12, n = 15, 25, 40, and with the equiprobable cells,

approximately find the power of the chisquare test for testing F = C(0, 1) vs.

F = t(m),m = 2, 5, 10. Do more cells help ?

Exercise 27.7. Prove that the Freeman-Tukey statistic defined in text is asymp-

totically a chisquare.

Exercise 27.8. * Prove or disprove : EF1χ
2 ≥ EF0χ

2 ∀F1 6= F0.

Exercise 27.9. * Find a formula for V arF1χ
2.

Exercise 27.10. * Find the limiting distribution under the null of χ2−k√
k

, where

k = k(n) → ∞; does a weak limit always exist ?

Exercise 27.11. * With h = N(0, 1), g = DoubleExp(0, 1), in the notation of

section 27.6, does β(gθn , n, k, α) converge to 1,0, or something in between ?

Exercise 27.12. * With h = Gamma(2, 1), g = lognormal(0, 1), in the notation of

section 27.6, does β(gθn , n, k, α) converge to 1,0, or something in between ?
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