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a new and short proof that the product of three or more normal random variables
is moment-indeterminate. The illustrations involve specific distributions such as
the double generalized gamma (DGG), normal, Laplace and logistic. We show that
sometimes, but not always, the power and the product of random variables (of the
same odd ‘order’) share the same moment determinacy property. This is true for
the DGG and the logistic distributions.

The paper also treats two unconventional types of problems: products of ran-
dom variables of different types and a random power of a given random variable.
To mention a few particular corollaries, we show: the product of Laplace and lo-
gistic random variables, the product of logistic and exponential random variables,
the product of normal and χ2 random variables, and the random power ZN , where
Z ∼ N and N is a Poisson random variable, are all moment-indeterminate.
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1. Introduction

Our goal in this article is to first obtain some general results on moment de-
terminacy and then to apply them to study the moment determinacy of powers
and products of iid or independent random variables taking values in the whole
real line R. Hence, we deal with the Hamburger moment problem. This problem
has a rich history and is considered to be a classical problem in mathematics and
probability. The review paper by Diaconis (1987) is a very readable and useful
account on the topic showing the rôle of moments in probability and statistics.

The powers and products are relatively easy nonlinear transformations of ran-
dom data, however their study leads to challenging problems; see, e.g., Slud (1993),
DasGupta (1997), Lin and Huang (1997), Galambos and Simonelli (2004), Berg
(1988, 2005), Pakes (2008), and Lin and Stoyanov (2013). Interestingly, these
transformations are the basis of stochastic models of complex practical phenom-
ena. Among the existing works, we mention here just a few sources: Carmona
and Molchanov (1993), Frisch and Sornette (1997), Galambos and Simonelli (2004),
and De Abreu (2010). Hence, our results and the specific distributions considered
as examples are not of academic interest only.

The Stieltjes moment problem for powers and products of positive random
variables was studied recently by Lin and Stoyanov (2013). The situation is more
delicate when operating with variables taking values in R. Some ideas and tech-
niques used in the Stieltjes case, after being appropriately extended and considered
together with additional arguments, allow us to derive results in the Hamburger
case.

We use traditional notions, notations and terms such as Cramér’s condition,
Carleman’s condition, Krein’s condition, and a few more, without giving their
definitions. The reader can consult several available sources; among them is Stoy-
anov (2013). In particular, we use the abbreviations ‘M-det’ and ‘M-indet’ for
a random variable and also for its distribution which is moment-determinate or
moment-indeterminate, respectively.

Throughout the paper, we use the symbol ' for asymptotic equivalence of
real-valued sequences or functions, and write X ∼ F to mean that X is a random
variable with distribution function F .

The principal contributions of this article are the following:
(a) We formalize the notion of ‘growth rate’ of the even order moments and prove
general results that establish that slow growth leads to moment determinacy (The-
orems 1, 2, and 2′), and fast growth to moment indeterminacy (Theorem 3).
(b) We apply these general results to obtain new determinacy and indeterminacy
results for powers and products, and also to provide shorter and transparent proofs
of some known and by now classic results (Theorem 4, Propositions 1 and 1′, and
Corollaries 2 and 3).
(c) We give several diverse illustrative examples of application of our general results
in special parametric families of distributions, such as Laplace, double generalized
gamma, logistic (Theorems 5 and 6, and Lemma 4).
(d) We provide a set of initial results (Theorems 7 – 10 and Corollary 5) for the
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new problems asking how to characterize the moment (in)determinacy of random
powers, products of a random number of random variables, and products of random
variables of different types, e.g., Laplace, half-normal, χ2 and logistic.

2. General theorems: proofs, comments and corollaries

Suppose that X is a random variable taking values in the whole real line R =
(−∞,∞) and that all moments of X are finite. This means that E[|X|k] < ∞
for any k = 1, 2, . . . and we denote by mk = E[Xk] the kth order moment of X.
In order to avoid some trivial cases, we assume that X is not degenerate at any
point, so all even order moments are positive: m2k > 0. A classical question to ask
is about the uniqueness of X, or, equivalently, of its distribution, in terms of the
moment sequence {mk, k = 1, 2, . . .}. This is the Hamburger moment problem.

It turns out some conclusions about a distribution on R can be drawn from the
subsequence {m2k, k = 1, 2, . . .} of the even order moments instead of involving
the entire moment sequence {mk, k = 1, 2, . . .}.

Let us start with a simple preliminary statement, Lemma 1, describing proper-
ties of the even order moments.

Lemma 1. For each k ≥ 1, we have:
(i) logm2k ≤ logm2(k+1) assuming that m2 ≥ 1;
(ii) m2m2k ≤ m2(k+1);
(iii) m2(k+1)/m2k ≤ m2(k+2)/m2(k+1).
Proof. Notice that claim (i) means that the subsequence {m2k, k = 1, 2, . . .}
is increasing in k if m2 ≥ 1. Both claims (i) and (ii) easily follow by applying
Lyapunov’s inequality; see e.g. Shiryaev (1996) or DasGupta (2008). Claim (iii) is
a consequence of Hölder’s inequality.

2.1. Slow growth rate of the moments implies moment determinacy

We start with a random variable X ∼ F with values in R and all moments
finite and let {mk, k = 1, 2, . . .} be its moment sequence. Since the odd order
moments can be negative or equal to zero, it is reasonable to try to use the even
order moments in deriving properties of F . We want to introduce and exploit a
number, say ρ, which characterizes the ‘growth rate’ of the even order moments
and is related to the moment determinacy of F . For this purpose, consider the
ratio

∆k+1 := m2(k+1)/m2k

From Lemma 1 (iii), ∆k+1 is increasing in k. Suppose that there exist two numbers,
ρ ≥ 0 and Cρ ∈ (0,∞), such that

∆k+1 ' Cρ(k + 1)ρ as k →∞. (1)

In such a case we refer to ρ as the ‘growth rate’ of the even order moments of X
and F. However, instead of (1), the following weaker condition

m2(k+1)/m2k = O((k + 1)ρ) for large k (2)
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will be good enough for us to characterize the moment determinacy of F (see
Theorem 1 below).

For X with values in R or its subset, ρ can be zero or positive, or maybe such
a ρ does not exist. The latter is true for the lognormal distribution. We will see
below that the value of ρ is essential for the moment (in)determinacy of F .

Theorem 1. Suppose the ratio of the even order moments of X is m2(k+1)/m2k =
O((k + 1)2) as k → ∞, i.e. ρ = 2 in (2). Then X satisfies Carleman’s condition
and hence is M-det.
Proof. It easily follows from the assumption that there exists a constant c > 0
such that

m
2(k+1)/(2k)
2k ≤ m2(k+1) ≤ c(k + 1)2m2k for all large k.

This implies
m

1/k
2k ≤ c(k + 1)2 for all large k,

and hence
m
−1/(2k)
2k ≥ c−1/2(k + 1)−1 for large k.

Therefore, X satisfies Carleman’s condition
∑∞

k=1m
−1/(2k)
2k =∞, which is sufficient

for X to be M-det.

Remark 1. The power ρ = 2 in the condition of Theorem 1 is the best possible in
the following sense. For each ε > 0, there exists a random variable ξ such that its
even order moments satisfy the condition m2(k+1)/m2k = O((k+ 1)2+ε) as k →∞,
i.e. ρ > 2, and ξ is M-indet. To see this, consider a random variable ξ with the
density f(x) = c exp(−|x|β), x ∈ R. In fact, ξ ∼ DGG(1, β, 1), where DGG is the
class of the double generalized gamma distributions; for more details see Section 3
below. By using the well-known Stirling’s approximation for the gamma-function:
Γ(x + 1) = xΓ(x) '

√
2πxx+1/2e−x as x → ∞ (see, e.g., Whittaker and Watson

(1927), p. 253), we obtain

E[ξ2(k+1)]

E[ξ2k]
=

Γ((1 + 2(k + 1))/β)

Γ((1 + 2k)/β)
= O((k + 1)2/β) as k →∞.

For each ε > 0 and β = 1/(1 + ε/2) we find E[ξ2(k+1)]/E[ξ2k] = O((k + 1)2+ε)
as k → ∞. However, for β < 1 the Krein quantity of the density f is finite, i.e.
K[f ] :=

∫∞
−∞(− log f(x)/(1 + x2))dx <∞. This is a sufficient condition for ξ to be

M-indet. The M-indet property of ξ also follows from Lemma 4 below.

Under the same assumption as that in Theorem 1, we have an even stronger
statement; see Theorem 2 below. Note that its proof does not use Lyapunov’s
inequality, and that Cramér’s condition implies Carleman’s condition, because its
equivalent condition lim supk→∞

1
2k
m

1/(2k)
2k < ∞ implies

∑∞
k=1m

−1/(2k)
2k = ∞; see

Shiryaev (1996). Recall that the converse is not in general true.

Theorem 2. Suppose X is a random variable with all moments finite, such that
the condition in Theorem 1 holds: m2(k+1)/m2k = O((k+ 1)2) as k →∞. Then X
satisfies Cramér’s condition, and hence is M-det.
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To prove Theorem 2, we apply a characterization of Hardy’s condition, which
was established in Stoyanov and Lin (2012, Theorem 3). In Lemma 2 below, c and
c0 are constants, and for reader’s convenience we state Hardy’s condition explicitly.

Lemma 2. Let U be a nonnegative random variable. Then for a real number a ∈
(0, 1], E[exp(cUa)] < ∞ for some c > 0 iff E[Uk] ≤ ck0 Γ(k/a + 1), k = 1, 2, . . . ,
for some c0 > 0 (independent of k). In particular, U satisfies Hardy’s condition,
i.e., E[exp(c

√
U )] < ∞ for some c > 0, iff E[Uk] ≤ ck0 (2k)!, k = 1, 2, . . . , for

some c0 > 0 (independent of k).

Proof of Theorem 2. By the assumption, there exists a constant c∗ ≥ m2 > 0
such that

m2(k+1) ≤ c∗(k + 1)2m2k for k = 0, 1, 2, . . . ,

where m0 ≡ 1. This implies that

m2(k+1) ≤ (c∗/2)(2k + 2)(2k + 1)m2k for k = 0, 1, 2, . . . ,

and hence m2(k+1) ≤ (c∗/2)k+1Γ(2k + 3)m0 for k = 0, 1, 2, . . . .
Taking c0 = c∗/2, we obtain

m2(k+1) ≤ ck+1
0 Γ(2k + 3) for k = 0, 1, 2, . . . ,

or, equivalently,
m2k ≤ ck0Γ(2k + 1) for k = 1, 2, . . . .

Hence U := |X|2 satisfies Hardy’s condition by Lemma 2: E[ec|X|] < ∞ for some
constant c > 0. This means that X itself satisfies Cramér’s condition. (Another

approach is to prove directly that lim supk→∞
1
2k
m

1/(2k)
2k <∞.) This completes the

proof.

Denote by bac the largest integer less than or equal to a real number a. We
now slightly extend Theorem 2 as follows.

Theorem 2′. Suppose X is a random variable such that for some real a ≥ 1 its
even order moments satisfy the relation m2(k+1)/m2k = O((k + 1)2/a) as k → ∞.
Then the power of X of order bac, i.e., Xbac, satisfies Cramér’s condition and
hence is M-det.
Proof. Note that

E[(Xbac)2(k+1)]

E[(Xbac)2k]
=

E[X2back+2bac]

E[X2back+2bac−2]

E[X2back+2bac−2]

E[X2back+2bac−4]
· · · E[X2back+2]

E[X2back]

= O((k + 1)(2/a)bac) = O((k + 1)2) as k →∞.

Hence, by Theorem 2, Xbac satisfies Cramér’s condition and is M-det.

2.2. Fast growth rate of the moments implies moment indeterminacy

We present below a result showing that if the moments grow ‘fast’, i.e. the
growth rate is ρ > 2 (and this happens if the tails are heavy), then under one
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additional condition, the distribution is M-indet. The heaviness of the tail as a
cause for the moment indeterminacy is well-known and recognized in the moments
theory literature. Thus our Theorem 3 below serves as a mathematical formalism
of this; we may call this an ‘intuitive principle’.

Theorem 3. Suppose that the ratio of the even order moments of the random
variable X is m2(k+1)/m2k ≥ c(k + 1)2+ε for large k, where c and ε are positive
constants. Assume further that X has a symmetric density f (about zero) satisfying
the condition: for some x0 > 0, f is positive and differentiable on [x0,∞) and

Lf (x) := −xf
′(x)

f(x)
↗∞ as x0 < x→∞. (3)

Then X is M-indet.

Proof. Without loss of generality we can assume that m2(k+1)/m2k ≥ c(k + 1)2+ε

for each k ≥ 1. We write a chain of inequalities, multiply them thus obtaining

m2(k+1) ≥ ck((k + 1)!)2+εm2 for k = 1, 2, . . . .

Taking c0 = min{c,m2}, we have

m2(k+1) ≥ ck+1
0 ((k + 1)!)2+ε for k = 1, 2, . . . ,

or, equivalently,

m2k ≥ ck0(k!)2+ε = ck0(Γ(k + 1))2+ε for k = 2, 3, . . . .

As in Remark 1, we use Stirling’s approximation Γ(x+1) = xΓ(x) '
√

2πxx+1/2e−x

as x→∞ to conclude that for some constant c∗ > 0,

m
−1/(2k)
2k ≤ c

−1/2
0 (Γ(k + 1))−(2+ε)/(2k) ' c∗ k

−1−ε/2 for all large k.

This implies that the Carleman quantity for the moments of f is finite:

C[f ] :=
∞∑
k=1

m
−1/(2k)
2k <∞.

Following the proof of Theorem 2 in Lin (1997) we have, by (3), that for some x∗0 >
x0, the logarithmic integral (Krein quantity of f) over the domain {x : |x| ≥ x∗0}
is finite:

K[f ] :=

∫
|x|≥x∗0

− log f(x)

1 + x2
dx <∞.

According to a result of Pedersen (1998, p. 92), this is a sufficient condition for X
to be M-indet on R (see also Pakes (2001)). The proof is complete.

Example 1. Let us illustrate the conditions and the claim of Theorem 3. We
use, as in Remark 1, a particular case of a double generalized gamma distribution.
Consider a random variable ξ ∼ DGG(1, β, 1), where 0 < β < 1. The density of ξ
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is f(x) = c exp(−|x|β), x ∈ R. First, the distribution of ξ is heavy tailed, however
all moments of ξ are finite. Neither Carmér’s condition nor Carleman condition is
valid for ξ. Let us find the growth rate of the moments m2k = E[ξ2k]. We have:

m2(k+1)

m2k

=
Γ((1 + 2(k + 1))/β)

Γ((1 + 2k)/β)
'
(

2

β

)2/β

(k + 1)2/β as k →∞.

It is easy to see that choosing β = 1/(1+ε/2) we obtain that the growth rate of the
even order moments of ξ is ρ = 2+ε. We next use the explicit form of the density f
of ξ and see that indeed the ratio −xf ′(x)/f(x) = β xβ converges monotonically to
infinity as x→∞. Hence all conditions in Theorem 3 are satisfied, so ξ is M-indet.
Let us mention that in this particular case the M-indet property of ξ also follows
from the finiteness of the Krein quantity K[f ] for 0 < β < 1 (see Remark 1 above).

2.3. Determinacy of powers and products of random variables
The previous general results will be used now to characterize the moment de-

terminacy of powers and products of random variables. For ξ1, ξ2, . . . , ξn being
independent copies of a random variable ξ with values in R, we introduce the
power Xn and the product Yn as usual:

Xn = ξn and Yn = ξ1 · · · ξn, n = 1, 2, . . . .

Notice first that by Lyapunov’s inequality, we have the following relation for the
moments of the power Xn and the product Yn: for positive integers k and n,

E[X2k
n ] = E[ξ2nk] ≥ (E[ξ2k])n = E[Y 2k

n ].

This relation suggests that some determinacy type properties will eventually
be transferable in the ‘direction’ from Xn to Yn.

Corollary 1. (i) If the random variable ξ and the integer n are such that Xn = ξn

satisfies Carleman’s condition (and hence is M-det), i.e.,
∑∞

k=1(E[X2k
n ])−1/(2k) =∞,

then so does Yn = ξ1 · · · ξn.
(ii) Suppose that Xn satisfies Cramér’s condition (and hence is M-det), i.e., Xn

has a moment generating function, or, equivalently, the moments of Xn satisfy:

lim sup
k→∞

1

2k
(E[X2k

n ])1/(2k) <∞.

The same holds for Yn. Namely, Yn satisfies Cramér condition, and hence is M-det.

We now concentrate on the M-det property of the product Yn.

Proposition 1. If the random variable ξ and the integer n, the number of inde-
pendent factors ξ1, . . . , ξn, are such that

E[ξ2(k+1)]/E[ξ2k] = O((k + 1)2/n) as k →∞,

then the product Yn = ξ1 · · · ξn satisfies Cramér’s condition and hence is M-det.
Proof. From the assumption on ξ and the independence of ξj we derive that

E[Y 2(k+1)
n ]/E[Y 2k

n ] = (E[ξ2(k+1)]/E[ξ2k])n = O((k + 1)2) as k →∞.
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Therefore, by Theorem 2, Yn satisfies Cramér’s condition and is M-det.

As in Theorem 2′ above, we can slightly extend Proposition 1, too.

Proposition 1′. Let a ≥ 1. If the random variable ξ is such that

E[ξ2(k+1)]/E[ξ2k] = O((k + 1)2/a) as k →∞,

then the product Ybac = ξ1 · · · ξbac satisfies Cramér’s condition and is M-det.
Proof. Take n = bac ≤ a in Proposition 1.

Remark 2. In Proposition 1, the power ρ = 2/n is the best possible. In-
deed, we can show that for each ε > 0, there is a random variable ξ such that
E[ξ2(k+1)]/E[ξ2k] = O((k+1)2/n+ε) as k →∞, however Yn is M-indet. To show this,
consider a random variable ξ ∼ DGG(1, β, 1). For each ε > 0, take β = 2/(2/n+ε),
then

E[ξ2(k+1)]

E[ξ2k]
= O

(
(k + 1)2/n+ε

)
as k →∞.

However the product Yn = ξ1 · · · ξn is M-indet since n > β (see Corollary 4 below).

Let us present a theorem, which in a sense is converse to Proposition 1. It
is concerned with the M-indet property of the product Yn. It will be clear that
important are properties of both the density f and the tail F (x) = 1−F (x), x > 0.

Theorem 4. Let ξ ∼ F, where F is absolutely continuous with density f which is
symmetric (about 0) and strictly positive on R, and let ξ have finite moments of
all positive integer orders. Assume further that:
(i) f(x) is decreasing in x ≥ 0;
(ii) there exist constants x0 ≥ 1 and A > 0 such that

f(x)/F (x) ≥ A/x for x ≥ x0; (4)

(iii) for some constants B > 0, α > 0, β > 0 and real γ we have

F (x) ≥ Bxγe−αx
β

for x ≥ x0. (5)

Then for any positive integer number n > β, the product Yn = ξ1 · · · ξn has a finite
Krein quantity and hence Yn is M-indet.

Remark 3. The condition (ii) above is equivalent to lim infx→∞ LF (x) > 0, where

LF (x) := −x d
dx

logF (x) =
xf(x)

F (x)
, x ≥ x0.

To prove Theorem 4, we need the following Lemma 3 from Lin and Stoyanov
(2013).

Lemma 3. Under condition (4), the following relation holds:∫ ∞
x

f(u)

u
du ≥ A

1 + A

F (x)

x
for x > x0.
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We mention that the proof of Theorem 4 is based on two elementary facts:
Fact 1. Let X and Y be two independent and nondegenerate random variables such
that X is symmetric about a and Y is symmetric about b. Then XY is symmetric
about ab iff ab = 0. Details can be seen in Hamedani and Walter (1985).
Fact 2. Let X and Y be two independent random variables symmetric about 0.
Further, assume that X and Y have the density functions f and g, respectively.
Then the product XY is symmetric about 0 and has a density function h such that
for x > 0,

h(x) = 2

∫ ∞
0

f(t)

t
g
(x
t

)
dt.

Proof of Theorem 4. The density gn of Yn is symmetric about 0 (from Fact 1)
and, in view of Fact 2 and by induction, gn can be written as follows: for x > 0,

gn(x)

= 2n−1
∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

f(u1)

u1

f(u2)

u2
· · · f(un−1)

un−1
f

(
x

u1u2 · · ·un−1

)
du1du2 · · · dun−1.

Hence gn(x) > 0 decreases on (0,∞). For any a > 0, we have

gn(x)

≥ 2n−1
∫ ∞
a

∫ ∞
a

· · ·
∫ ∞
a

f(u1)

u1

f(u2)

u2
· · · f(un−1)

un−1
f

(
x

u1u2 · · ·un−1

)
du1du2 · · · dun−1

≥ 2n−1
∫ ∞
a

∫ ∞
a

· · ·
∫ ∞
a

f(u1)

u1

f(u2)

u2
· · · f(un−1)

un−1
f
( x

an−1

)
du1du2 · · · dun−1

= 2n−1f
( x

an−1

)(∫ ∞
a

f(u)

u
du

)n−1
, x > 0.

The above second inequality follows from the monotone property of f . Taking
a = x1/n > x0, we have, by (4)–(5) and Lemma 3, that

gn(x) ≥ 2n−1f
(
x1/n

)(∫ ∞
x1/n

f(u)

u
du

)n−1
≥ 2n−1f

(
x1/n

)( A

1 + A

F (x1/n)

x1/n

)n−1
≥ 2n−1

(
A

1 + A

)n−1
x−(1−1/n)

f
(
x1/n

)
F (x1/n)

(
F (x1/n)

)n
≥ Cnx

γ/n−1e−αx
β/n

,

where Cn = 2n−1
(

A
1+A

)n−1
ABn. Thus we can evaluate the Krein quantity for gn :

K[gn] = 2

∫ ∞
0

− log gn(x)

1 + x2
dx = 2

∫ xn0

0

− log gn(x)

1 + x2
dx+ 2

∫ ∞
xn0

− log gn(x)

1 + x2
dx

≤ 2 (− log gn(xn0 ))

∫ xn0

0

1

1 + x2
dx+ 2

∫ ∞
xn0

− log gn(x)

1 + x2
dx <∞ if n > β.
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This implies that Yn is M-indet for n > β (see, e.g., Lin (1997), Theorem 1), which
is the claim in Theorem 4.

We present below two corollaries. Corollary 2, involving normally distributed
random variables, was proved by Berg (2005) by using a rather different approach.
A special case of Corollary 3, namely, the moment indeterminacy of the product
Y2 of Laplace random variables was shown by DasGupta (1997).

Corollary 2. Let ξ ∼ N (0, 1) with Φ and ϕ used below for the standard normal
distribution function and its density. Then the product Yn = ξ1 · · · ξn is M-det iff
n = 1 or n = 2. This is equivalent to saying that the product of three of more
independent normal random variables is M-indet.
Proof. Since E[ξ2(k+1)]/E[ξ2k] = (2k + 1)!!/(2k − 1)!! = 2k + 1, we conclude,
by Proposition 1, that Yn is M-det if n = 1, 2. On the other hand, we have
ϕ(x)/(1−Φ(x)) ' x as x→∞, and hence for n ≥ 3, the product Yn = ξ1 · · · ξn is
M-indet by taking β = 2 in Theorem 4.

Corollary 3. Let ξ have the standard Laplace distribution. Then the product
Yn = ξ1 · · · ξn is M-det iff n = 1. Equivalently, the product of two or more inde-
pendent Laplace random variables is M-indet.
Proof. In this case f(x) = 1

2
e−x, x > 0, and F (x) = 1

2
e−x = f(x), x > 0. The

conditions in Theorem 4 are satisfied by taking β = 1, and hence Yn is M-indet for
n = 2, 3, . . ..

Remark 4. Let ξ have the standard Laplace distribution. Then X2 = ξ2 is M-det,
while by Corollary 3, Y2 = ξ1ξ2 is M-indet. That is, the power of a Laplace random
variable and the product of independent Laplace random variables (both of ‘order’
two), do not share the same moment determinacy property.

It is useful to mention that in fact the density g2 of Y2 is symmetric and has
the following explicit form: for x > 0,

g2(x) =
1

2

∫ ∞
0

t−1e−t−x/tdt = K0(2
√
x) '

√
π

2
x−1/4e−2

√
x as x→∞.

Here K0 is the so-called modified Bessel function of the second kind. For complete-
ness, we recall the definition of K0(x) and its approximation:

K0(x) =
1

2

∫ ∞
0

t−1e−t−x
2/(4t)dt, x > 0,

=
( π

2x

)1/2
e−x

[
1− 1

8x

(
1− 9

16x

(
1− 25

24x

))
+ o(x−3)

]
as x→∞

(see, e.g., Glasser et al. (2012) and Malham (2005), pp. 37–38).

Remark 5. Let ξ have the standard normal distribution N (0, 1). Then the density
g2 of the product Y2 = ξ1ξ2 is symmetric and has the explicit form: for x > 0,

g2(x) =
1

π
K0(x) ' 1√

2π
x−1/2e−x as x→∞

10



(see also DasGupta (1997)). In this case, we say that Y2 obeys the standard Bessel
distribution.

3. Various illustrations involving specific distributions on R
3.1. Double generalized gamma distributions

On two occasions, see Remark 1 and Example 1 above, we used particular cases
of the double generalized gamma distribution. We treat here the general case.

We use the notation ξ ∼ DGG(α, β, γ) to tell that the random variable ξ has
density f of the form

f(x) = c|x|γ−1 e−α|x|β , x ∈ R. (6)

Here α, β, γ > 0, f(0) = 0, and c is a norming constant; in fact c = βαγ/β/(2Γ(γ/β)).
We start with the following known result (see, e.g., Lin and Huang (1997)):

(i) for s > 0, |ξ|s is M-det iff s ≤ 2β;
(ii) for odd n, Xn = ξn is M-det iff n ≤ β .

Example 2 (M-det case). Let ξ1, . . . , ξn be n independent copies of a random
variable ξ ∼ DGG(α, β, γ). Then for any positive integer number n ≤ β, both the
power Xn = ξn and the product Yn = ξ1 · · · ξn are M-det. To see this, we first
calculate that

E[X
2(k+1)
n ]

E[X2k
n ]

=
E[ξ2n(k+1)]

E[ξ2nk]
=

Γ((γ + 2n(k + 1))/β)

α2n/βΓ((γ + 2nk)/β)

' [2n/(αβ)]2n/β(k + 1)2n/β as k →∞.

We have used Stirling’s approximation: Γ(x) '
√

2πxx−1/2e−x as x→∞.
Then by Theorem 1, the power Xn = ξn is M-det if n ≤ β, and by Propo-

sition 1, the product Yn = ξ1 · · · ξn is M-det if 2/β ≤ 2/n, or if n ≤ β, because
E[ξ2(k+1)]/E[ξ2k] = O((k + 1)2/β) as k →∞.

Example 3 (M-indet case). Let ξ ∼ DGG(α, β, 1), so its density, see (6) with
γ = 1, is f(x) = ce−α|x|

β
, x ∈ R, where α, β > 0 and c is a norming constant.

Then for any positive integer n > β, the product Yn = ξ1 · · · ξn is M-indet. To
see this, note that f(x)/F (x) ' αβxβ−1 and that F (x) ' [c/(αβ)]x1−βe−αx

β
as

x→∞. The density f satisfies the conditions (i) and (ii) in Theorem 4 and hence
Yn is M-indet if n > β.

Corollary 4. Let ξ ∼ DGG(α, β, 1); its density is explicitly written in Example
3. Then the product Yn = ξ1 · · · ξn is M-det iff n ≤ β.

In summary, we have the following neat result about the class of distributions
DGG(α, β, γ) with γ = 1.

Lemma 4. Let n be a positive odd integer and ξ1, . . . , ξn, independent copies of
the random variable ξ ∼ DGG(α, β, 1). Then the power Xn = ξn is M-det iff the
product Yn = ξ1 · · · ξn is M-det and this is true iff n ≤ β.

We now consider a more general case: γ is any positive odd integer.

11



Theorem 5. Let n be a positive odd integer and ξ ∼ DGG(α, β, γ) with α, β > 0
and γ a positive odd integer. Then Xn is M-det iff Yn is M-det and this is true iff
n ≤ β. In other words, for odd n and odd γ, the power Xn and the product Yn
have the same moment determinacy property.
Proof. Define η = ξγ, ηi = ξγi , i = 1, . . . , n, X∗n = ηn = (ξn)γ = Xγ

n and
Y ∗n = η1 · · · ηn = (ξ1 · · · ξn)γ = Y γ

n . Since η ∼ DGG(α, β/γ, 1), Lemma 4 implies
thatX∗n is M-det iff Y ∗n is M-det and this is true iff n ≤ β/γ. Next, note that for each
x > 0, we have P[X∗n > x] = P[Xn > x1/γ] and P[Y ∗n > x] = P[Yn > x1/γ]. This
implies that any distributional property shared by X∗n and Y ∗n can be transferred
to a similar property shared by Xn and Yn, and vice versa. Therefore, Xn is M-det
iff Yn is M-det iff n ≤ β, because for odd n, Xn is M-det iff n ≤ β (see Lin and
Huang (1997)). This proves Theorem 5.

Remark 6. It seems hard (or even impossible) to prove directly the statement in
Theorem 5 for the product Yn = ξ1 · · · ξn. However, with the help of the result for
the power Xn = ξn, we are able to characterize the moment determinacy of Yn.

3.2. Logistic distributions

Recall that the random variable ξ has the standard logistic distribution if its
density is of the form

f(x) =
e−x

(1 + e−x)2
=

1

2 + ex + e−x
, x ∈ R.

This case is interesting for several reasons including the fact that the logistic
distribution does not belong to the family of DGG distributions.

Theorem 6. Let ξ be a standard logistic random variable. Then:
(a) The power Xn = ξn is M-det if n = 1 and n = 2 and is M-indet for n = 3, 5, . . ..
(b) The product Yn = ξ1 · · · ξn is M-indet for n = 2, 3, . . ..
Consequently, for odd n, the power Xn and the product Yn have the same moment
determinacy property.
Proof. The statement in (a) for Xn is known and is due to Lin and Huang (1997).
Below we provide a new proof. Thus it remains to prove the statement for Yn.
Note first that F (x) = e−x/(1 + e−x) ≥ e−x/2 for x ≥ 0. The second step is to
check that f(x)/F (x) = 1/(1 + e−x) → 1 as x → ∞. Applying Theorem 4 with
β = 1, we conclude that Yn is M-indet for n ≥ 2. Thus the proof is complete.

Remark 7. We have seen that if ξ is a logistic random variable, then P[ξ = 0] = 0,
and X2 = ξ2 is M-det on R, however Y2 = ξ1ξ2 is M-indet on R. Consequently,
X2 and Y2 do not share the same moment determinacy property. Further, for odd
n ≥ 3, both Xn and Yn are M-indet. Note that for even n ≥ 4, the power Xn has
values in R+ = [0,∞) (Stieltjes case), while Yn is with values in R (Hamburger
case). However, we see that for even n ≥ 4, the power Xn and the product Yn are
both M-indet on R.

Again, though the next result is known, we find it useful to apply our Theorem
3 and provide a new proof. The proof is of its own interest, however the same idea

12



and steps can be applied to many other distributions on R.

Theorem LH (Lin and Huang (1997)). Let ξ have the standard logistic density.
Then Xn = ξn is M-det for n = 1 and n = 2, and it is M-indet for n = 3, 5, . . ..
New Proof. As a first step we find explicitly the density hs of |ξ|s for any real
s > 0 :

hs(z) =
2

s
z1/s−1

e−z
1/s

(1 + e−z1/s)2
, z > 0.

Since 1/4 ≤ (1 + e−x)−2 ≤ 1 for x ≥ 0, we estimate the moments of |ξ|s:

1

2
Γ(ks+ 1) ≤ E[(|ξ|s)k] ≤

∫ ∞
0

2

s
zk+1/s−1e−z

1/s

dz = 2Γ(ks+ 1).

Therefore

E[(|ξ|s)k+1]/E[(|ξ|s)k] ≤ 4 · Γ((k + 1)s+ 1)

Γ(ks+ 1)
' 4ss(k + 1)s as k →∞.

On the other hand, we have

E[(|ξ|s)k+1]

E[(|ξ|s)k]
≥ 1

4
· Γ((k + 1)s+ 1)

Γ(ks+ 1)
' 1

4
ss(k + 1)s as k →∞.

If we now take X = ξ, where ξ is the original logistic random variable, we see that
the ratio of the moments of X is

m2(k+1)/m2k = O((k + 1)2) as k →∞.

It follows by Theorem 1 that X itself is M-det. For n = 2 we have X2 = ξ2 = |ξ|2
and the ratio of moments is E[Xk+1

2 ]/E[Xk
2 ] = O((k + 1)2) as k →∞. Therefore,

X2 is M-det by Theorem 1 of Lin and Stoyanov (2013) (noting that ξ is a contin-
uous random variable). It remains to prove that ξn is M-indet for n = 3, 5, . . ..
Recall the moment ratio:

E[(ξn)2k+2]

E[(ξn)2k]
=

E[ξ2nk+2n]

E[ξ2nk]
≥ 1

4
· Γ(2n(k + 1) + 1)

Γ(2nk + 1)
' 1

4
(2n)2n(k + 1)2n as k →∞.

This implies that the moment condition in Theorem 3 is satisfied for Xn if n =
3, 5, . . .. Moreover, the density gn of Xn satisfies the condition (3). Indeed,

Lgn(y) := −yg
′
n(y)

gn(y)

= 1− 1

n
+

1

n
y1/n − 2

n
y1/n

e−y
1/n

1 + e−y1/n
↗∞ ultimately as y →∞.

Therefore, by Theorem 3, Xn is M-indet for n = 3, 5, . . .. The proof is complete.
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4. Random powers and random products of normal
random variables

We have studied above the moment determinacy of powers ξn and products
ξ1 · · · ξn, where n is a fixed positive integer number. Instead of fixed n, let us
consider a positive integer-valued random variable N. In order to avoid trivialities,
assume that N is nondegenerate, i.e. N takes with positive probabilities at least
two different values. In such a case ξN is called a ‘random power’ and ξ1 · · · ξN a
‘random product’ and we want to study their moment (in)determinacy.

The approach followed in this section can be applied to many symmetric dis-
tributions, but we deal only with normal distributions here.

We formulate and prove separately two results: Theorem 7 is for random prod-
ucts, Theorem 8 is for random powers. While intuitively the statements are seem-
ingly expected, it is good to have proofs written down.

Theorem 7. Let {ξn, n = 1, 2, . . .} be an infinite sequence of independent random
variables distributed N (0, 1), and let N , independent of {ξn}, be a positive random
variable taking values in the set N = {1, 2, . . .} or some subset of N. Suppose
further that P[N = n∗] := pn∗ > 0 for some n∗ ≥ 3. Then the random product
YN = ξ1 · · · ξN is M-indet.
Proof. Let gN and gj be the density functions of YN and Yj, respectively. Then
both gN and gj are symmetric about zero and

gN(x) =
∞∑
j=1

pjgj(x) ≥ pn∗gn∗(x), x ∈ R.

The Krein quantity for gN is

K[gN ] ≤ 2

∫ ∞
0

− log pn∗

1 + x2
dx+ K[gn∗ ].

Since
∫∞
0

(1+x2)−1dx = π/2 and K[gn∗ ] <∞ by Theorem 4, we see that K[gN ] <∞
and hence YN is M-indet.

Now we look at random powers of a normal random variable. Recall that if
ξ ∼ N (0, 1), and Xn = ξn, then X1 = ξ,X2 = ξ2 and X4 = ξ4 are all M-det, while
all others, X3, X5, X6, . . . are M-indet (see, e.g., Berg (1988)). Let us note that a
very short proof of the M-indet property of X4 = ξ4 based on Hardy’s criterion is
given in Stoyanov and Lin (2012).

For random powers of ξ, we have the following result.

Theorem 8. Let ξ ∼ N (0, 1) and N , independent of ξ, be a positive random
variable taking values in the set N or in some its subset. Let XN = ξN and
pn = P[N = n]. Consider two cases:
Case (i): pn∗ > 0 for some odd n∗ ≥ 3.
Case (ii): pk∗ > 0 for some even k∗ ≥ 6 and pn∗ = 0 for each odd n∗.
Then, in each of these cases the random power XN = ξN is M-indet.
Proof. Let fN and fn be the density functions of XN and Xn, respectively. Note
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that fN is not symmetric about zero if pj > 0 for some even j, and that XN takes
all values in R if pi > 0 for some odd i. Then we have, for each n with pn > 0,

fN(x) =
∞∑
j=1

pjfj(x) ≥ pnfn(x), x ∈ R.

(i) If pn∗ > 0 for some odd n∗ ≥ 3, then the Krein quantity for fN is

K[fN ] =

∫ ∞
−∞

− log fN(x)

1 + x2
dx ≤

∫ ∞
−∞

− log pn∗

1 + x2
dx+

∫ ∞
−∞

− log fn∗(x)

1 + x2
dx.

Denote, for odd n,

K[fn] =

∫ ∞
−∞

− log fn(x)

1 + x2
dx.

It can be shown that K[fn] < ∞ for odd n ≥ 3. Therefore K[fN ] < ∞, hence in
case (i), XN = ξN is M-indet.
(ii) For even m, ξm takes non-negative values, hence the Krein quantity for fm is

K[fm] =

∫ ∞
0

− log fm(x2)

1 + x2
dx.

It can be shown that K[fm] < ∞ for any even m ≥ 6. Therefore K[fN ] < ∞ in
case (ii), and hence ξN is M-indet. This completes the proof.

Remark 8. The M-indet property of ξk for even k ≥ 6 is a part of the statement
that the product of six or more independent half-normal random variables is M-
indet; see Lin and Stoyanov (2013).

Remark 9. It is interesting to mention a particular case. If ξ ∼ N (0, 1) and N is
a Poisson random variable independent of ξ, then the random power ξN is M-indet.
Moreover, the random product ξ1 · · · ξN is also M-indet. In words, a Poisson power
of a normal and a product of normals of Poisson length are both M-indet.

Similarly, we can take N ∼ Ge(p), geometrically distributed random variable.
Then the random power ξN and the random product ξ1 · · · ξN are both M-indet for
any p ∈ (0, 1). Another case is to consider N ∼ Bin(n, p), binomially distributed
random variable. For any integer n ≥ 3 and any p ∈ (0, 1), the random power ξN

and the random product ξ1 · · · ξN are both M-indet.
Instead of normally distributed random variables, we can take variables from the

class DGG(α, β, γ) and N being Poisson, geometric or binomial random variable.
We easily find values of the parameters involved when random powers or random
products are M-det or M-indet. We do not give details.
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5. Determinacy of products of differently distributed
random variables

It is interesting to consider products of independent random variables which
may not have the same distribution. We have the following general result.

Theorem 9. Suppose that ξ and η are two independent random variables with
symmetric densities, f and g, respectively. Both f and g are assumed to be strictly
positive on R. With ξ1 and ξ2 being independent copies of ξ, assume that the
Krein quantity for the random variable Y2 = ξ1ξ2 is finite (hence Y2 is M-indet).
Assume further that the ratio g(t)/f(t) is bounded away from zero in the sense that
inf{g(t)/f(t) : t ≥ 0} > 0. Then the product Z = ξη is M-indet.
Proof. Note that the density g2 of Y2 is symmetric about zero and we have

g2(x) = 2

∫ ∞
0

t−1f(t)f(x/t)dt, x > 0.

The density h of Z is also symmetric about zero and is of the form

h(x) = 2

∫ ∞
0

t−1g(t)f(x/t)dt, x > 0.

Since the ratio g(t)/f(t) is bounded away from zero, there exists a number c > 0
such that g(t) ≥ cf(t) for all t ≥ 0, and hence

h(x) ≥ cg2(x), x > 0.

Therefore, the Krein quantity for h is as follows:

K[h] = 2

∫ ∞
0

− log h(x)

1 + x2
dx ≤ 2

∫ ∞
0

− log c

1 + x2
dx+ K[g2] <∞.

This implies that Z is M-indet.

Corollary 5. Suppose that ξ and η are two independent random variables obeying
the standard Laplace and the standard logistic distribution, respectively. Then the
product Z = ξη is M-indet.
Proof. Let f(x) = 1

2
e−|x|, x ∈ R, and g(x) = 1/(2 + ex + e−x), x ∈ R, be

the standard Laplace and standard logistic density, respectively. Let the random
variables ξ1 and ξ2 be independent copies of ξ, so each has density f . The first
step is to use Theorem 4 and conclude that the density g2 of the product Y2 = ξ1ξ2
has a finite Krein quantity, namely, K[g2] <∞. The second step is to examine the
ratio g(t)/f(t). Since g(t)/f(t) = 2(1 + e−t)−2 ≥ 1

2
, t ≥ 0, the ratio g(t)/f(t) is

bounded away from zero. This completes the proof.

Finally, we extend the result given in Example 2.

Theorem 10. Let U1, . . . , Un be n independent random variables, and let Ui ∼
DGG(αi, βi, γi), where αi, βi, γi > 0, i = 1, 2, . . . , n. Then the product Tn =
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U1 · · ·Un is M-det if
∑n

i=1 β
−1
i ≤ 1.

Proof. As in Example 2, the ratio

E[T
2(k+1)
n ]

E[T 2k
n ]

=
n∏
i=1

E[U
2(k+1)
i ]

E[U2k
i ]

' C(k + 1)2bn as k →∞,

where C =
∏n

i=1 [2/(αiβi)]
2/βi and bn :=

∑n
i=1 β

−1
i . Hence, by Theorem 1, we

conclude that Un is M-det if
∑n

i=1 β
−1
i ≤ 1. The proof is complete.

Corollary 6. Let ξ1, . . . , ξn be independent random variables distributed as ξ, where
ξ ∼ DGG(α, β, γ). For some positive integers pi and qi with qi odd, i = 1, 2, . . . , n,
define the numbers ri = pi/qi, i = 1, . . . , n. Then the product/power Zn = ξr11 · · · ξrnn
is a well-defined random variable which is M-det if

∑n
i=1 ri ≤ β.

Remark 10. In Theorem 9 we studied products of two random variables both
with values in R. Suppose now that we multiply two independent random variables,
X and Y , where X, with values in R, is symmetric, while Y > 0. Then the product
Z = XY is also symmetric on R and if both X and Y have finite all moments, then
so does the product Z. If at least one of X and Y is M-indet, then the product
Z = XY is also M-indet. It turns out that even if both X and Y are M-det, then
the product may ‘inherit’ the M-det property, however, it may become M-indet.
Everything depends on the behavior of the tails of the distributions of X and Y .
One way to express this is to use the growth rate of the moments of the two factors.
Indeed, suppose that the moments of X and Y satisfy the relations: as k →∞,

E[X2(k+1)]/E[X2k] ' c1 (k + 1)a and E[Y k+1]/E[Y k] ' c2 (k + 1)b,

for some positive constants a, b, c1 and c2. Then, if a+2b ≤ 2, the product Z = XY
is M-det. If, however, a + 2b > 2, the moments of Z = XY grow quite ‘fast’, and
under an additional condition, the product Z = XY will be M-indet.

The claim follows basically from Theorem 1. Here are a couple of particular but
interesting cases. If X is a normal random variable and Y is half-normal, then the
product XY is M-det. However, if X is logistic and Y ∼ Exp, then the product
XY is M-indet. Another case is when X is normal and Y ∼ χ2. Then the product
XY is M-indet. The reader can easily compose his/her own cases of products of
random variables which are either M-det or M-indet.

6. Concluding remarks

For a given random variable ξ with support R, one might expect that the power
Xn = ξn and the (iid) product Yn = ξ1 · · · ξn become M-indet for large enough n,
as shown in the examples above. However, this is not in general true. Let us
consider the random variable ξ with density f(x) = c exp(−e|x|), x ∈ R, where c
is a norming constant. Then any power ξn, n = 1, 2, . . . , is M-det. Moreover, if
ξ1, ξ2, . . . are independent copies of ξ, then the product of any number n of them,
ξ1 · · · ξn, is M-det. We can also consider the following discrete centered random
variable Y which is obtained from ξ: Y = bξc if ξ ≥ 0, and Y = bξc + 1 if
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ξ < 0. It can be shown that any power of Y is M-det because of the relation
P[|Y | > ε] ≤ P[|ξ| > ε] for all ε > 0. The reason for these properties is that the
distribution of ξ has the tails so ‘light’ that any power still remains with light tails.
We do not further pursue this here.
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