
Sharp Fixed n Bounds and Asymptotic Expansions for the

Mean and the Median

of a Gaussian Sample Maximum, and

Applications to Donoho-Jin Model

Anirban DasGupta, S.N. Lahiri, Jordan Stoyanov

January 23, 2014

Purdue University, North Carolina State University, and Newcastle University, UK

Dedicated to the Fond Memories of Kesar Singh

Abstract We are interested in the sample maximum X(n) of an iid standard normal sample
of size n. First, we derive two-sided bounds on the mean and the median of X(n) that are valid
for any fixed n ≥ n0, where n0 is ‘small’, e.g. n0 = 7. These fixed n bounds are established by
using new very sharp bounds on the standard normal quantile function Φ−1(1 − p). The bounds
found in this paper are currently the best available explicit nonasymptotic bounds, and are of the
correct asymptotic order up to the number of terms involved.

Then we establish exact three term asymptotic expansions for the mean and the median of X(n).
This is achieved by reducing the extreme value problem to a problem about sample means. This
technique is general and should apply to suitable other distributions. One of our main conclusions is
that the popular approximation E[X(n)] ≈

√
2 log n should be discontinued, unless n is fantastically

large. Better approximations are suggested in this article. An application of some of our results
to the Donoho-Jin sparse signal recovery model is made.

The standard Cauchy case is touched on at the very end.
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1 Introduction

Let X(n) denote the maximum of an iid sample X1, · · · , Xn from a univariate standard
normal distribution. A knowledge of distributional properties of X(n), and especially of
its mean value E[X(n)], became important in several frontier areas in theory as well as
applications. A few instances are the widespread use of properties of X(n) for variable
selection in sparse high dimensional regression, in studying the hard and soft thresholding
estimators of Donoho and Johnstone (1994) for sparse signal detection and false discovery,
and in analyzing or planning for extreme events of a diverse nature in practical enterprises,
such as climate studies, finance, and hydrology.

We do know quite a bit about distributional properties of X(n) already. For example, we
know the asymptotic distribution on suitable centering and norming; see Galambos (1978).
We know that up to the first order, the mean, the median, and the mode of X(n) are all
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asymptotically of order
√

2 log n, and that convergence to the asymptotic distribution is
very slow; see Hall (1979). There is also very original and useful nonasymptotic work by
Lai and Robbins (1976) on the mean of X(n). The Lai-Robbins bounds were generalized
to other order statistics, including the maximum, in Gascuel and Caraux (1992) and in
Rychlik (1998), who considers general L-estimates.

In this article, we first provide the currently best available nonasymptotic bounds on
the mean and the median of X(n). The bounds resemble the Edgeworth expansions of
sample means. However, here the bounds are valid for fixed n. For example, our Theorem
4.1 shows that for n ≥ 7, we have

E[X(n)] ≤
√

2 log n − log 4π + log log n − 2

2
√

2 log n
+

K(log 4π + log log n)

(2 log n)3/2
,

where the constant K is explicit and can be taken to be 1.5 (or anything bigger). If simpler
nonasymptotic bounds, although numerically less accurate, were desired, they could be
easily extracted out from the above bound. In particular, it follows that for all n ≥ 10,

E[X(n)] ≤
√

2 log n − log 4π + log log n − 6

6
√

2 log n
.

While valid for fixed n, the successive terms in the above bound go down at increasing
powers of 1/

√
2 log n, just as the successive terms in an Edgeworth expansion for the CDF

of a sample mean go down at increasing powers of 1/
√

n. However, the greatest utility
of our bounds is that they are nonasymptotic, the sharpest ones available to date, and
moreover, they cover both the mean and the median of X(n). Bounds on the median are
stated in Section 3, and the bounds on the mean in Section 4.

On the technical side, there are a few principal ingredients for the bounds on the mean
and the median. One is the following bound for the standard normal distribution function
Φ and its density ϕ : There are nonnegative constants a, b, c, d such that

1 − Φ(x) ≤ aϕ(x)

bx +
√

c2x2 + d
for all x > 0. (See Szarek and Werner (1999).)

The next important result we need is the following general inequality: If X(n) is the
maximum of n iid random variables drawn from a distribution F , whose inverse function
is denoted by F−1, then

E[X(n)] ≤ F−1

(

1 − 1

n

)

+ n

∫ ∞

F−1(1− 1
n

)
(1 − F (x))dx. (See Lai and Robbins (1976).)

We are going to use also several analytic inequalities, e.g. Jensen, etc.
Our principal strategy is to first analytically bound the standard normal quantile

function zp = Φ−1(1 − p) and then transform those to bounds on the mean and the
median of X(n). For example, it is proved in this article (Corollary 2.1) that for p ≤ 0.1,

zp ≤
√

2 log t − log 4π + log log t

2
√

2 log t

(

1 − K

log t

)

,

where t = 1/p and the constant K can be taken to be 0.6403. Once again, if one wishes,
simpler bounds can be extracted out from this bound, at the cost of some loss in accuracy.
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In fact, the bounds on zp, stated in Section 5, are two-sided, and may quite possibly be
of some independent interest.

In Section 5, we move on to deriving higher order asymptotic expansions for the mean
and the median of X(n). This is achieved by first accomplishing a three term asymptotic
expansion for zp as p → 0 (eq. (23)). We then use the celebrated Rényi’s representation
to reduce the problem about X(n) to a problem about sample means of an iid standard
exponential sequence. The integral representation (20) is the key, and it is applicable in
general, not only in the normal case alone. Very careful collection of terms is then needed
to produce the ultimate three term asymptotic expansions for the mean and the median

of X(n) up to an error of order O
(

(log log n)2

(log n)5/2

)

(see Theorems 5.1 and 5.2). For example,

Theorem 5.2 gives the result that the median of X(n) admits the three term asymptotic
expansion

med(X(n)) =
√

2 log n − log log n + log 4π + 2 log log 2

2
√

2 log n
+

1

8(2 log n)3/2
×

×
[

(log log n − 2(1 + log log 2))2 + (log 4π − 2)2 − 4 log log 2(log 4π + 2 log log 2)

]

+O

(

(log log n)2

(log n)5/2

)

.

In the standard Cauchy case, the same methods lead to the three term asymptotic expan-
sion

med(X(n)) =
n

π log 2
+

1

2π
− (4π2 − 1) log 2

12nπ
+ O(n−2).

Apart from the difficulty of the intermediate calculation, the asymptotic expansions
can be practically useful when n is truly fantastically large and therefore the mean or the
median cannot be reliably calculated.

The article ends with a topical application. For identifying the sparse and weak true
signals in the Donoho-Jin sparse Gaussian mixture model (Donoho and Jin (2004)), the√

2 log n threshold used in the Donoho-Johnstone hard thresholding estimate is replaced
by some substitutes guided by the theorems in this article. Our theorems show that these
adjustments lead to an improvement in the fraction of true signals that get discovered,
at the expense of somwhat looser control of the total number of false discoveries. The
overall conclusion we have arrived at is that although theoretically E[X(n)] ∼

√
2 log n,

the
√

2 log n proxy for E[X(n)] is indeed a poor one practically, being too much of an
overestimate (see Table 3 below). We urge that this approximation should be discontinued
unless n is fantastically large.

One may wonder if the fixed n bounds we have derived could have been obtained by
using chaining techniques of empirical process theory. We believe that the answer is
no. Our fixed n bounds are so tight, that chaining, which is a versatile tool but weak
in sharpness, cannot produce the correction terms with the accuracy we have provided.
However, while our methods do not obviously apply to dependent situations, chaining will
provide something in well controlled dependent situations with a subgaussian tail. They
may be too weak; we do not know at this time.

All proofs are deferred to Section 7, for easy reading of the nontechnical parts.
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2 New Two-sided Analytic Bounds on the Normal Quantile

In this section we derive upper and lower bounds on the standard normal quantile function
zp = Φ−1(1 − p). These bounds are a precursor for finding bounds on the mean and
the median of X(n) in the next sections. The analytic bounds on zp could be of some
independent theoretical interest.

We need a result from Szarek and Werner (1999) stating that there exist nonnegative
constants a, b, c, d, such that the following inequality is satisfied:

1 − Φ(z) ≤ aϕ(z)

bz +
√

c2z2 + d
for all z > 0. (1)

We assume that p ≤ p0 (p0 will be specified), and use the following notations:

t0 =
1

p0
, β0 = − log(zp0

/
√

2 log t0)

1 − zp0
/
√

2 log t0
, zp0

= Φ−1(1 − p0). (2)

In this case we introduce more notations which will be used further on:

α = b2 + c2, δ =
d

2αz2
p0

. (3)

We are going to establish a new upper bound on the standard normal quantile zp.

Theorem 2.1. For p ≤ p0 (p0 will be specified later) and t = 1/p, we have

zp ≤
√

2 log t − log(4απ/a2) + log log t

2
√

2 log t

(

1 − β0

2 log t

)

− d(1 − δ)

2α(2 log t)3/2

(

1 − β0

2 log t

)

,

where t0, β0, α, δ are defined by (2) and (3) and a, b, c, d are chosen according to (1).

An important consequence of this general upper bound is the following corollary.

Corollary 2.1. For p ≤ 0.1 and t = 1/p,

zp ≤
√

2 log t − log 4π + log log t

2
√

2 log t

(

1 − 0.6403

log t

)

.

The upper bound in Corollary 2.1 comes out in its best colors when p is ‘small’, i.e.,
when we want a fully analytic razor sharp upper bound on an extreme quantile. The table
below testifies to it.

Table 1

p zp Upper bound of Corollary 2.1

10−2 2.326 2.459

10−3 3.090 3.172

10−4 3.719 3.777

10−5 4.265 4.309

10−6 4.753 4.789

10−7 5.199 5.229

10−9 5.998 6.019

10−11 6.706 6.723

10−13 7.349 7.362

10−15 7.949 7.953
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To attack the corresponding lower bound problem correctly, one has to restart with a
lower bound on the tail of the standard normal distribution function. If we use the lower
bound 1 − Φ(z) ≥ ϕ(z)[1z − 1

z3 ], z > 0, and carry out calculations similar to the ones we
use in proving Theorem 2.1, then the following lower bound on zp can be derived.

Theorem 2.2. For p ≤ p0 with p0 specified such that zp0
> 1, we have

zp ≥
√

2 log t − log 4π + log log t − 2 log k0

2
√

2 log t

(

1 − 1

4 log t
+

1

16(log t)2

)

,

where k0 = (z2
p0

− 1)/z2
p0

.

3 Fixed n Bounds on the Median of X(n)

The bounds in Section 2 on the standard normal quantile function are used here to obtain
bounds on the median of X(n). We remember that X(n) is the maximum of an iid standard
normal sample. Let us note that the bounds on the median do not follow immediately
from the bounds in Section 2. A fair amount of new work is still needed, although the
bounds in Section 2 form a critical ingredient. For brevity, we present only the upper
bounds on the median, although explicit lower bounds may also be derived. We let θn

denote the median of X(n), i.e. θn = med(X(n)).

Theorem 3.1. Let p0 be specified, and β0 is as defined in (2). Let

n0 =
log 2

− log(1 − p0)
, a0 = log

21/n0

21/n0 − 1
, b0 =

4

log a0 + log 4π − 2
,

n1 =
log 2

β0(3 + b0) − log[eβ0(3+b0) − 1]
.

Then for any integer n ≥ max{n0, n1}, one has

θn ≤
√

2 log n

(

1 − 2 log log 2 − log 4
n

4 log n

)

− log 4π + log log n

2
√

2 log n

(

1 − β0

log n

)

(

1 −
log 2

n − log log 2

2 log n

)

(4)

=
√

2 log n − log 4π + log log n + 2 log log 2 − log 4
n

2
√

2 log n

+
(log 4π + log log n)( log 2

n − log log 2 + 2β0)

2(2 log n)3/2

− β0(log 4π + log log n)( log 2
n − log log 2)

(2 log n)5/2
. (5)

A bound which is less accurate, but simpler and hence easier to use, is given bellow.
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Corollary 3.1. For n ≥ 31, one has

θn ≤
√

2 log n − log 4π + log log n + 2 log log 2 − log 4
n

2
√

2 log n

(

1 − 1.29

log n

)

≤
√

2 log n − log 4π + log log n − 1

6
√

2 log n
. (6)

Once again, we first provide a small table on the accuracy of the simple bound (6).
The values of θn in the table below are exact; they are obtained by using the exact formula
for θn.

Table 2

n θn Upper bound (6)

50 2.204 2.625
500 2.992 3.367
5000 3.636 3.979
25000 4.031 4.358

105 4.346 4.660

107 5.267 5.551

We see, as expected, that the upper bound in (6) becomes accurate, in terms of both
absolute and relative error, for large n.

4 Fixed n Bounds on the Mean E[X(n)]

Intuitively, the mean of X(n) is approximately equal to Φ−1(1 − 1
n), in the sense that

E[X(n)]/Φ−1(1 − 1
n) → 1 as n → ∞. Therefore, our bounds on the standard normal

quantile function derived in Section 2 should be useful in deriving nonasymptotic bounds
on E[X(n)]. This is what is done here. In addition to the bounds in Section 2, an inequality
from Lai and Robbins (1976) will be very useful, and it is stated as a lemma.

Lemma 4.1. Let F be the CDF of a real valued random variable X with E[|X|] < ∞,
and let an = F−1(1 − 1

n). Then, with F−1 denoting the inverse function to F , we have

E[X(n)] ≤ an + n

∫ ∞

an

(1 − F (x))dx, n ≥ 2. (7)

A consequence of the lemma is the following bound on E[X(n)] in the Gaussian case. We
will refine this to a more explicit form later in this section.

Corollary 4.1. Let a, b, c, d be nonnegative constants for which bound (1) holds and as
before, X(n) be the maximum of iid standard normal random variables X1, . . . , Xn. Then,
for all n ≥ 7,

E[X(n)] ≤ z1/n +
az1/n

(b + c)z2
1/n +

√

c2z2
1/n + d − c

. (8)
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In particular, for all n ≥ 7, one has the inequality

E[X(n)] ≤ z1/n +
1

z1/n
, (9)

and even the stronger inequality

E[X(n)] ≤ z1/n +
2z1/n

2z2
1/n + 1

. (10)

Our next task is to convert Corollary 4.1 into explicit bounds for the mean as announced
in the introduction. This is the content of the next theorem.

Theorem 4.1. Let X1, · · · , Xn be iid standard normal. For all n ≥ 7,

E[X(n)] ≤
√

2 log n − log 4π + log log n − 2

2
√

2 log n
+ C

log 4π + log log n

(2 log n)3/2
, (11)

where the constant C may be taken to be 1.5 (or larger).

Comment: There is something interesting and important about the bound in (11).
Indeed, it is known that in the maximally dependent case, the mean E[X(n)] satisfies the
following relation, see eq. (17) in Lai and Robbins (1976):

E[X(n)] ≤
√

2 log n − log 4π + log log n − 2

2
√

2 log n
+ O

(

(log log n)2

(log n)3/2

)

for large n.

Compare this with (11). It is interesting to see that the two leading terms of this asymptotic
representation in the maximally dependent case are exactly the same as in the nonasymp-
totic bound on the mean of X(n) in Theorem 4.1, while Theorem 4.1 gives a better error
term than the Lai-Robbins result.

5 Asymptotic Expansions and Application to Donoho-Jin

Model

We mentioned in the introduction that the common practice of approximating E[X(n)] by√
2 log n is not practically sound. The upper bound in Theorem 4.1 offers an alternative

approximation. A third approach is outlined below, and then the three approximations
are compared in Table 3, which shows without any doubt how poor the

√
2 log n term is.

Here is the third approach.
The idea is to approximate E[X(n)] by a suitable standard normal quantile Φ−1(1−δn).

One may first consider using δn = 1/n for at least two reasons. First, it follows from
suitable strong laws for sample maxima that in the normal case X(n)/

√
2 log n

a.s.→ 1 as
n → ∞ (see DasGupta (2008), Chapter 8 for a proof). A second reason is that we can
write Xn = Φ−1(1 − ξn) with ξn = 1 − Φ(X(n)), and the quantile transformation shows
that nξn converges in distribution to a standard exponential random variable, say ξ. Thus,
heuristically,

X(n) = Φ−1(1 − ξn) ≈ Φ−1(1 − 1

n
ξ) ≈ Φ−1(1 − 1

n
).

However, these heuristics are just not sufficiently effective. We can do better. In fact, the
approximation E[X(n)] ≈ Φ−1(1− 1

ne−γ), where γ denotes Euler’s constant, is a far better
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practical approximation to E[X(n)] than either
√

2 log n or Φ−1(1 − 1
n). Here is a precise

result.

Proposition 5.1. Define the number δn by the equation

E[X(n)] = Φ−1(1 − δn) ⇐⇒ δn = 1 − Φ(E[X(n)]).

Then nδn → e−γ as n → ∞, where γ denotes Euler’s constant.

This suggests that we may consider approximating E[X(n)] by Φ−1(1 − 1
ne−γ). Below

is a small table that demonstrates the poor performance of the
√

2 log n approximation,
the much better performance of the analytic bound in Theorem 4.1, and the amazingly
good approximation obtained by using Φ−1(1 − 1

ne−γ). The long standing practice of
approximating E[X(n)] by

√
2 log n should probably be discontinued. In the table below,

E[X(n)] has been computed by numerical integration of its defining formula E[X(n)] =
n

∫ ∞
−∞ xφ(x)Φn−1(x)dx.

Table 3

n E[X(n)]
√

2 log n Bound of Theorem 4.1 Φ−1(1 − 1
ne−γ)

50 2.25 2.80 2.73 2.28
500 3.04 3.53 3.34 3.06

104 3.85 4.29 4.06 3.86

106 4.86 5.26 5.01 4.87

108 5.71 6.07 5.82 5.71

109 6.09 6.44 6.19 6.09

A higher order asymptotic expansion for the sequence δn defined above may be derived
by very carefully putting together the terms in the asymptotic expansion for E[X(n)]. This
derivation, in turn, requires higher order asymptotic expansions with remainder terms for
zp as an intermediate step, and these, we believe deserve to be more well known than they
are. Additionally, the derivation of the asymptotic expansion for E[X(n)] to three terms
is quite nontrivial. Also, we can imagine the higher order expansion being useful in some
way in extreme value theory, or for high dimensional Gaussian inference. These reasons
motivate us to present the following first theorem in this section.

Theorem 5.1. Let, as before, X1, X2, · · · be an iid standard normal sequence and γ denote
Euler’s constant. Then the mean E[X(n)] admits the following three term asymptotic
expansion:

E[X(n)] =
√

2 log n − log log n + log 4π − 2γ

2
√

2 log n
+

1

8(2 log n)3/2
×

×
[

(log log n − 2(1 − γ))2 + (log 4π − 2)2 + 4γ(log 4π − 2γ) − 2

3
π2

]

+ O

(

(log log n)2

(log n)5/2

)

for large n.

Our method of proof of Theorem 5.1 is such that it automatically delivers a three term
asymptotic expansion also for the median of X(n). Below is the corresponding result. No-
tice the remarkable similarity between the asymptotic expansion for the mean in Theorem
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5.1 and that for the median in Theorem 5.2 below. The asymptotic expansions should
also be compared with the bounds for fixed n in Theorem 4.1 and Corollary 3.1. The
conclusion is that the nonasymptotic bounds in Theorem 4.1 and Corollary 3.1 are rather
tight, and that there is not much scope for improvement in those nonasymptotic bounds.

Theorem 5.2. Let X1, X2, · · · be an iid standard normal sequence. Then the median of
X(n) admits the following three term asymptotic expansion:

θn = med (X(n)) =
√

2 log n − log log n + log 4π + 2 log log 2

2
√

2 log n
+

1

8(2 log n)3/2
×

×
[

(log log n − 2(1 + log log 2))2 + (log 4π − 2)2 − 4 log log 2(log 4π + 2 log log 2)

]

+ O(
(log log n)2

(log n)5/2
) for large n.

An important potential application below ends this subsection.

Example 5.1. Adjusting the Donoho-Johnstone Estimate. The sparse signal
detection problem is one of detecting a very small percentage of relatively weak signals
hidden among a large number of pure noises. It is evidently a very difficult problem, and
usually we fail to recognize most of these weak signals. The theoretical development has
largely concentrated on Gaussian signals. A popular model is the following mixture of two
normals:

Xi,n
indep.∼ (1 − εn)N(0, 1) + εn N(µi,n, 1).

Here N(0, 1) and N(µi,n, 1) are normal random variables both with variance 1 and with
mean values 0 and µi,n, respectively, while εn is taken to be a numerical sequence con-
verging to zero at a suitable power rate. See Donoho and Jin (2004) for more details on
this model. Donoho and Johnstone (1994), motivated by Gaussian extreme value theory,
gave the hard thresholding estimate

µ̂i = XiI{|Xi|>
√

2 log n}.

The rough motivation is that if the recorded signal exceeds the value E[X(n)], which is the
average value of the maximum among n pure noises, only then we treat it as a possible
true signal.

We have performed simulations which suggest that the
√

2 log n proxy for E[X(n)] in
the Donoho-Johnstone estimate is practically speaking too conservative, in the sense that
a great many of the true signals will not be picked up by using

√
2 log n as the yardstick.

In contrast, if we use, for example, Φ−1(1 − 1
ne−γ) as the threshold, then generally,every

signal picked up by the original Donoho-Johnstone estimate is picked up, and about twice
as many true signals get picked up by adjusting the threshold. Formally, we look at the
following three adjustments of the usual Donoho-Johnstone estimate:

µ̂i,1 = XiIAi,1 , where Ai,1 = {|Xi| > Φ−1(1 − 1

n
e−γ)},

µ̂i,2 = XiIAi,2 , where Ai,2 = {|Xi| > Φ−1(1 − 1

n
log 2)},

µ̂i,3 = XiIAi,3 , where Ai,3 = {|Xi| >
√

2 log n − (log log n)/2
√

2 log n}.
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The improved performance of the three adjusted estimates is indicated below by graph-
ics. The important conclusion is that the original Donoho-Johnstone estimate picks up
on an average 6.17 of a total of 60 true signals, and the adjusted Donoho-Johnstone esti-
mates pick up up to about 14. The second adjusted estimate with an adjusted threshold
of Φ−1(1− 1

n log 2), the choice being motivated by Theorem 5.2, picks up the most (13.64
on the average). The common value of the signals was taken to be µi ≡

√
log n = 3.03,

with n = 10, 000. The simulation was repeated 1000 times and the histograms report
the number of signals discovered over those 1000 simulations. There is scope for demon-
strating this advantage of the adjusted estimates theoretically, and we provide below some
concrete theorems that quantify this advantage.
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5.1 Theoretical Advantage of Adjusted Estimates

For theoretically demonstrating the advantage of estimates that adjust the
√

2 log n thresh-
old, we use the Donoho-Jin (2004) model. In the context of doing formal inference with
microarray data, Donoho and Jin (2004) formulated a mixture model for gene expression
levels which has since been seriously studied and adapted or innovated by various authors;
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a few specific references are Hall and Jin (2008, 2010), Cai, Xu, and Zhang (2009), and
Cai and Wang (2011). The model in the 2004 article considered iid data with a null model
that articulates the case that absolutely nothing is going on, and a particular alterna-
tive model that says that a small fraction of observations contain a possibly detectable
signal. The Donoho-Jin model is easily seen to be mathematically the same as our de-
scription here: we have a sequence of iid standard normals, Z1, Z2, · · ·, a contemplated
signal at the level µn =

√
2r log n, 0 < r < 1, and for each n, a collection of iid Bernoullis,

B1, · · · , Bn ∼ Ber(ǫn), where ǫn = n−β, 1/2 < β < 1. These Bernoullis, assumed inde-
pendent of the Z’s, remain hidden from our eyes, but in conjunction with the standard
normals, produce for us our sample values, Xi,n = Zi + µnBi, i = 1, · · · , n; so, we have, at
hand a triangular array of row iid random variables, rather than one long string of iids.
The assumptions 1/2 < β < 1 and r < 1 are there for excellent reasons; they are there
to keep the problem from falling into the realm of trivialities. We record the canonical
Donoho-Jin paradigm for future reference:

Z1, Z2, · · · iid∼ N(0, 1);

Forn ≥ 1, ǫn = n−β, µn =
√

2r log n, 1/2 < β < 1, 0 < r < 1;

For each givenn, B1, · · · , Bn
iid∼ Ber(ǫn);

For each givenn, {B1, · · · , Bn} are independent of {Z1, · · · , Zn};
For each givenn, Xi,n = Zi + µnBi, i = 1, 2, · · · , n. (12)

The original Donoho-Jin rule flags an observation Xi if it exceeds cn =
√

2 log n. Our
intention is to document that we are bound to miss essentially all the signals if we use
this rule without adjustments. The results below show how we can adjust the threshold
sequence cn so that asymptotically we pick up some, or at least more, of the genuine
signals.

We need some notation, which is standard, but needs to be given. We partition the n
observations into the familiar four categories, observations that get flagged and happen to
be genuine signals (discoveries D), observations that get flagged but are actually noises
(false discoveries F ), observations that happen to be signals but we don’t flag them (missed
discoveries M), and observations that we do not flag and also happen to be noises (the
junk J). We let D + M = S, the number of true signals, F + J = N , the number of pure
noises, D + F = L, the number that we think deserves a look because we flagged them,
and M + J = I, the number that we think may be ignored because we didn’t flag them.
Note that obviously, S + N = L + I = n; D, F, M, J, S, N, L, I are all sequences, although
the sequence notation is suppressed here purely for brevity. Often, these are presented in
the form of a familiar table as below:

Table 4

Signal Noise

Flagged D F L
Unflagged M J I

S N n

11



The popular index FDR is the ratio F
L and the missed discovery rate is the ratio M

S ;
we like these to be small. On the other hand, the discovery rate is D

S ; we like D
S to be

large. Generally, we have placed much more emphasis on keeping F
L small over keeping

M
S small, although there is an obvious tension between these two demands. It is in fact
counterproductive to make either one too small, because then the other one soars. We
document that with the

√
2 log n threshold,

F

L

P→ 0,
D

S

P→ 0.

Thus, with the
√

2 log n cutoff, a perfect score on the false discovery front is won in return
for missing all the signals asymptotically. We show that adjusting the threshold helps.
Here are a few theorems that quantify this advantage.

Theorem 5.3. Consider the Donoho-Jin model with the cutoff cn =
√

2 log n. Then,

(a)F
P→ 0.

(b)
F

L

P→ 0.

(c)
D

S

P→ 0;
M

S

P→ 1.

(d)
D

S
=

n−(1−√
r)2

2
√

π(1 −√
r)
√

log n
(1 + op(1)).

This theorem tells us that use of the
√

2 log n cutoff results in unacceptably low values
for the discovery rate D

S . We need less conservative cutoffs to improve the true discovery
rate. If we allow some false discoveries, in return it will buy us an improved value for
D
S . A useful question to ask is how we should adjust the

√
2 log n cutoff to something less

conservative in order to allow a tolerable number of false discoveries. An answer to this
question will guide us to finding adjusted cutoffs for improving our discovery rate D

S . In
the following theorem, we can keep things general by using a general sequence ǫn for the
proportion of observations that are not pure noises; the only assumptions necessary are
that ǫn → 0.

Theorem 5.4. Consider the Donoho-Jin model with a general ǫn and a general µn (not
necessarily n−β and

√
2r log n). Let 0 < λ < ∞ be a fixed constant, and let

cn =
√

2 log n − log log n + log(4πλ2)

2
√

2 log n
. (13)

Then, the number of false discoveries F satisfies

F
L⇒ Poi(λ).

Remark: In effect, Theorem 5.4 is saying that if we replace the traditional thresholding
sequence

√
2 log n by the sharper thresholding sequence essentially as in (13), then F will

admit Poisson asymptoctics, instead of collapsing to zero. A net result of this will be the
desired outcome that the discovery rate D

S will also improve; by adjusting cn as proposed
above, we sarifice some in the false discovery front, but gain on the true discovery front.
Exactly how much is the gain on the true discovery front by adjusting the

√
2 log n cutoff

to the less conservative cutoff of Theorem 5.4? The next result quantifies the order of that
gain.

12



Theorem 5.5. Consider the Donoho-Jin model (12) with µn =
√

2r log n, 0 < r < 1, and
a general sequence ǫn. Let cn be as in (13). Then,

D

S
= (4πλ2 log n)

1−
√

r
2 × n−(1−√

r)2

2
√

π(1 −√
r)
√

log n
(1 + op(1)).

Remark: Comparing with part (d) of Theorem 5.3, we find that by adjusting cn to the

level as in (13), we improve the true discovery rate D
S by the factor (4πλ2 log n)

1−
√

r
2 . So,

adjusting the thresholding level causes a relative improvement in D
S , although D

S will still
converge in probability to zero.

6 Other Possibilities

The methods of Theorem 5.1 and Theorem 5.2 may be useful for writing asymptotic expan-
sions for the mean and the median of a more general extreme order statistic X(n−k+1), 1 ≤
k < ∞; we need to use the corresponding Réyni representation. It may also be possible
to derive formal expansions for the median (and when applicable, the mean) of X(n) for
nonnormal parents, e.g., the double exponential or Cauchy.
To be specific, for example, consider the standard Cauchy case, and let as usual X(n) de-
note the maximum of a sample of size n. Since E[X(n)] does not exist for any n, it is not
sensible to talk about an asymptotic expansion for it. However, the methods of Theorem
5.2 lead to the following correct asymptotic expansion to the median of X(n):

med(X(n)) =
n

π log 2
+

1

2π
− (4π2 − 1) log 2

12nπ
+ O(n−2). (14)

In (14), the very first term n
π log 2 follows from the weak convergence fact that π

nX(n)
L⇒

T−1, where T is a standard exponential; but the entire asymptotic expansion does not
follow from mere weak convergence. It is really quite surprising how fantastically accurate
the expansion in (14) is. With n = 50, the exact value of the median of X(n) is 23.1063;
the one term expansion gives the approximation 22.9612, the two term 23.1204, and the
three term expansion gives the approximation 23.1062, almost the exact value.
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7 Proofs

7.1 Proof of Corollary 2.1

Consider the inequality 1−Φ(z) ≤ φ(z)
z , z > 0. In the notation of Theorem 2.1, this makes

a = 1, b = 1, c = d = 0, α = 1, δ = 0, and since t0 = 1/p0 = 10, we have

β0 = − log
z0.1√

2 log 10
/

(

1 − z0.1√
2 log 10

)

= 1.28052 ⇒ 1

2
β0 = 0.64026 < 0.6403.

If we plug these values into the bound of Theorem 2.1, the corollary follows.

7.2 Proof of Theorem 2.1

Since the constants a, b, c, d are chosen such that 1 − Φ(z) ≤ aϕ(z)/(bz +
√

c2z2 + d) for
all z > 0, see also (1), by using z = zp, we have the following relations:

1 − Φ(z) = p ≤ a√
2πez2/2(bz +

√
c2z2 + d)

⇒ ez2/2(bz +
√

c2z2 + d) ≤ a√
2πp

=
at√
2π

⇒ ez2/2(
√

b2z2 + c2z2 + d) ≤ at√
2π

.

Thus, recalling the notation α = b2 + c2, we obtain the inequality

2 log t + log
a2

2π
≥ z2 + log(αz2 + d) = z2 + log α + log z2 + log

(

1 +
d

αz2

)

. (15)

Using the inequality log(1 + y) ≥ (1− δ)y for y ≤ 2δ with y = d
αz2 , we have from (12),

2 log t + log
a2

2πα
≥ z2 + 2 log z + (1 − δ)

d

αz2
. (16)

Clearly, (13) is a transcendental inequality for z, hence not easy to deal with. To avoid
this difficulty we use a critical technical trick of writing z = zp in the form

z =
√

2 log t − ρ√
2 log t

, t > 1,

where ρ = ρ(t) > 0. This will enable us to find first bounds for the variable ρ and
transform them to bounds for z. Indeed, from this representation of z, we get

z2 = 2 log t +
ρ2

2 log t
− 2ρ = 2 log t

(

1 − ρ

2 log t

)2

,

log z =
1

2
log 2 +

1

2
log log t + log(1 − ρ

2 log t
),

and write the inequalities

1

z2
≥ 1

2 log t
, log z ≥ 1

2
log 2 +

1

2
log log t − β0

ρ

2 log t
.
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We have used above the number β0 as introduced by (2) and the assumption that
p ≤ p0, so t = 1/p ≥ t0 = 1/p0. Therefore, from (15),

2 log t +
ρ2

2 log t
− 2ρ + log 2 + log log t − β0

ρ

log t
+

d(1 − δ)

2α log t
≤ 2 log t + log

a2

2πα
. (17)

For convenience, let us introduce two notations:

A = β0 + 2 log t, B = 2 log t

(

log
4απ

a2
+ log log t +

d(1 − δ)

2α log t

)

.

Thus (16) is equivalent to the following inequality:

ρ2 − 2Aρ + B ≤ 0. (18)

As a function of ρ, the expression ρ2 − 2A + B is a quadratic convex function. The
quadratic equation ρ2 − 2Aρ + B = 0 has two real and positive roots,

ρ1 = A −
√

A2 − B, ρ2 = A +
√

A2 − B.

This implies that in (17) the values of ρ are between the two roots, i.e. ρ1 < ρ < ρ2.
Consider the lower bound:

ρ ≥ ρ1 = A −
√

A2 − B =
B

A +
√

A2 − B
≥ B

A

≥
2 log t

(

log 4απ
a2 + log log t + d(1−δ)

2α log t

)

2(β0 + 2 log t)

≥ 1

2

(

log
4απ

a2
+ log log t +

d(1 − δ)

2α log t

) (

1 − β0

2 log t

)

.

We use this lower bound on ρ to derive an upper bound of z :

z = zp =
√

2 log t − ρ√
2 log t

≤
√

2 log t − 1

2
√

2 log t

(

log
4απ

a2
+ log log t +

d(1 − δ)

2α log t

) (

1 − β0

2 log t

)

.

This is exactly the upper bound for zp as stated in Theorem 2.1.

Comment. It is clear that if we start with the upper bound for ρ, namely, ρ ≤ ρ2,
and follow almost the same steps as above, at the end we will derive a lower bound for
the quantile zp. If we denote by z∗ the upper bound and z∗ the lower bound for the
quantile zp, then of interest is the interval (z∗, z∗) and its length ∆ = z∗ − z∗. We easily
find that ∆ = (ρ1 + ρ2)/

√
2 log t, where ρ1, ρ2 are the two real roots used above. Since

ρ1 +ρ2 = 2A = 2β0 +4 log t we obtain an explicit expression for ∆ and can see its behavior
as a function of t and hence of p.
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7.3 Proof of Corollary 3.1

First note that if we choose p0 = 0.1, then we get β0 = 0.6403 and the conditions n ≥ n0

and n ≥ n1 work out respectively to n ≥ 6.58 and n ≥ 30.55. This explains why we need
the condition n ≥ 31 for the corollary.

Since the term corresponding to (2 log n)−5/2 in Theorem 3.1 is negative, we can ignore
it and get the upper bound

θn ≤
√

2 log n − 1

2
√

2 log n

(

log 4π + log log n + 2 log log 2 − 1

n
log 4

)

+
1

2(2 log n)3/2
(log 4π + log log n)

(

log 2

n
− log log 2 + 2β0

)

=
√

2 log n − 1

2
√

2 log n

(

log 4π + log log n + 2 log log 2 − log 4

n

) (

1 − 1

log n
h(n)

)

,

where

h(n) =
1

2

(log 4π + log log n)( log 2
n − log log 2 + 2β0)

log 4π + log log n + 2 log log 2 − log 4
n

.

Now we use the fact that as a function of n, h(n) is increasing for n ≥ 7 and is
lower bounded by 1.29, and this gives the first statement of the corollary. For the second
statement, use the bounds

2 log log 2 − log 4

n
≥ 2 log log 2 − log 4

7
> −1, and 1 − 1.29

log n
≥ 1 − 1.29

log 7
>

1

3
.

Plug these two bounds into the first statement of the corollary and get the second one.

7.4 Proof of Theorem 3.1

We start with noting that the median θn satisfies the relation Φ(θn) = 1
2 , and hence,

θn = zp = Φ−1(1 − p), where p = pn = 1 − 2−1/n. Thus, in the notation of Theorem 2.1,

we have t = 1
p = 21/n

21/n−1
. Theorem 3.1 will be established by using the bound in Theorem

2.1 on zp as the principal tool, although additional specific algebraic inequalities will also

be needed. Referring to Theorem 2.1, with t = 21/n

21/n−1
, we will separately upper bound the

terms
√

2 log t and − log 4π+log log t
2
√

2 log t
(1− β0

log t). We combine then these two bounds to produce

the upper bound on θn as stated in Theorem 3.1.
The following inequality will be used in the proof of this theorem:

log t = log

(

21/n

21/n − 1

)

=
log 2

n
− log(e

log 2

n − 1) ≤ log 2

n
− log log 2 + log n (19)

Hence

√

2 log t =

√

2 log n − 2 log log 2 +
log 4

n
=

√

2 log n

√

1 − 2 log log 2 − log 4
n

2 log n

≤
√

2 log n

(

1 − 2 log log 2 − log 4
n

4 log n

)

. (20)
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We now turn our attention to bounding the expression − log 4π+log log t
2
√

2 log t
(1 − β0

log t). For

this, we will use the following calculus fact: The function

u(x) :=
log 4π + log x√

x

(

1 − β0

x

)

(21)

is monotone decreasing for x ≥ x1, where

x1 := β0(3 + y0), β0 is from (2), y0 =
4

log x0 + log 4π − 2
and x0 = log

21/n0

21/n0 − 1
.

This can be proved by a direct differentiation of the function u(x) and checking that its
derivative is negative.

Now in (18) we identify x with log t. After some algebra, we see that the condition
x ≥ x1 is equivalent to

n ≥ n1 =
log 2

β0(3 + y0) − log[eβ0(3+y0) − 1]
.

This explains why we have the condition n ≥ n1 in the statement of Theorem 3.1.
The monotone decreasing property of the function u(x) (under the condition n ≥ n1)

together with the bound (16) above, give us

log 4π + log log t

2
√

2 log t

(

1 − β0

log t

)

≥ log 4π + log(log n + log 2
n − log log 2)

2
√

2
√

log n + log 2
n − log log 2

(

1 − β0

log n + log 2
n − log log 2

)

=
log 4π + log(log n + log 2

n − log log 2)

2
√

2 log n(1 +
log 2

n
−log log 2

log n )1/2

(

1 − β0

log n + log 2
n − log log 2

)

≥ log 4π + log(log n + log 2
n − log log 2)

2
√

2 log n(1 +
log 2

n
−log log 2

log n )1/2

(

1 − β0

log n

)

≥ log 4π + log(log n + log 2
n − log log 2)

2
√

2 log n

(

1 −
log 2

n − log log 2

2 log n

)

(

1 − β0

log n

)

≥ log 4π + log log n

2
√

2 log n

(

1 −
log 2

n − log log 2

2 log n

)

(

1 − β0

log n

)

.

From our findings (16) and (17) we first get assertion (4) of Theorem 3.1 and after ex-
panding (4), we arrive at assertion (5). This completes the proof of Theorem 3.1.

7.5 Proof of Corollary 4.1

We note that the inequality (7) is the key Lai and Robbins (1976) bound, and that (8)
is an improvement on (7) in the Gaussian case. To prove Corollary 4.1, observe that by
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Lemma 4.1,

E[X(n)] ≤ z1/n + n

∫ ∞

z1/n

[1 − Φ(x)]dx = z1/n + n

∫ ∞

z1/n

1 − Φ(x)

ϕ(x)
ϕ(x)dx

≤ z1/n + n

∫ ∞

z1/n

a

bx +
√

c2x2 + d
ϕ(x)dx

≤ z1/n + n
a

bz1/n +
√

c2z2
1/n + d

∫ ∞

z1/n

ϕ(x)dx

≤ z1/n +
a

bz1/n +
√

c2z2
1/n + d

.

We use now the inequality
√

c2z2
1/n + d ≥ cz1/n +(

√

c2z2
1/n + d−c)/z1/n which is valid

for all n such that z1/n ≥ 1, i.e., for n ≥ 7. This is where the assumption n ≥ 7 is needed.

Plugging this bound on
√

c2z2
1/n + d into (8), we get

E[X(n)] ≤ z1/n +
a

bz1/n + cz1/n +
(
√

c2z2
1/n + d − c

)

/z1/n

= z1/n +
az1/n

(b + c)z2
1/n +

√

c2z2
1/n + d − c

,

which is the assertion (8). Assertion (9) follows from (8) by using a = b = 1, c = d = 0

and the inequality 1 − Φ(z) ≤ ϕ(z)
z , z > 0. Finally, (10) follows from (8) by using a =

4, b = 3, c = 1, d = 8, by virtue of the inequality 1 − Φ(z) ≤ 4ϕ(z)/(3z +
√

z2 + 8), z > 0
(Szarek and Werner (1999)), see also relation (1).

7.6 Proof of Theorem 4.1

Let us mention that the statement in this theorem is based on inequality (8). However
somewhat better results can be obtained by using the stronger inequality (9) instead.

The starting point for the proof is the result in Corollary 2.1 that

z1/n ≤ z̄1/n, where z̄1/n :=
√

2 log n − log 4π + log log n

2
√

2 log n

(

1 − β0

log n

)

,

where β0 as defined in (2) may be taken to be 0.6403. Note now that the function x 7→ x+ 1
x

is increasing in x for x ≥ 1. Since z1/n ≥ 1 for n ≥ 7, this implies that

E[X(n)] ≤ z1/n +
1

z1/n
≤ z̄1/n +

1

z̄1/n
.

Hence the statement in this theorem will follow by showing that z̄1/n + 1
z̄1/n

is smaller than

the expression in the right-hand-side of (10). This is what is done below.
We define the number v by the equation 1 − 1

v = supn≥7
log 4π+log log n

4 log n . This gives
the approximate value v = 1.69693. The constant v is involved below when using the
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inequality 1
1−u ≤ 1 + vu whenever u ≤ 1− 1

v , and by identifying u with u = log 4π+log log n
4 log n .

The proof will be completed after seeing the following steps:

z̄1/n+
1

z̄1/n
=

√

2 log n− log 4π + log log n

2
√

2 log n

(

1 − β0

log n

)

+
1

√
2 log n − log 4π+log log n

2
√

2 log n
(1 − β0

log n)

=
√

2 log n − log 4π + log log n

2
√

2 log n

(

1 − β0

log n

)

+
1

√
2 log n[1 − log 4π+log log n

4 log n

(

1 − β0

log n

)

]

≤
√

2 log n − log 4π + log log n

2
√

2 log n
(1 − β0

log n
) +

1
√

2 log n(1 − log 4π+log log n
4 log n )

≤
√

2 log n − log 4π + log log n

2
√

2 log n
(1 − β0

log n
) +

1√
2 log n

(

1 + v
log 4π + log log n

4 log n

)

=
√

2 log n − log 4π + log log n − 2

2
√

2 log n
+

log 4π + log log n

(2 log n)3/2
(β0 +

v

2
).

If writing now β0 + v
2 = C, we get the desired bound (11). Since β0 can be taken to be

0.6403 and v to be 1.69693, it follows that we may take C to be C = 0.6403 + 1.69693
2 =

1.48877 < 1.5, as claimed.

7.7 Proof of Proposition 5.1

Let

an :=
√

2 log n − log log n + log 4π

2
√

2 log n
, n ≥ 2.

Let also Z be a random variable with the standard Gumbel distribution, i.e. its CDF is
G(z) = e−e−z

, z ∈ R. Then, it is well known that

Zn =
√

2 log n(X(n) − an)
L⇒ Z as n → ∞.

Moreover, {Zn} is uniformly integrable, therefore E[Zn] → E[Z] = γ, the Euler constant.
By transposition, we have the implication

E[X(n)] =
√

2 log n − log log n + log 4π − 2γ

2
√

2 log n
+ o

(

1√
log n

)

= bn + o

(

1√
log n

)

, (22)

where

bn :=
√

2 log n − log log n + log 4π − 2γ

2
√

2 log n
.

Therefore,

δn = 1 − Φ

(

bn + o

(

1√
log n

))

.

Now, using the fact that 1 − Φ(x) = ϕ(x)
x (1 + O(x−2)) as x → ∞, we get

δn =
1√
2π

1√
2 log n(1 + o(1))

exp

(

−1

2
[2 log n − (log log n + log 4π − 2γ) + o(1)]

)

=
1√
2π

1

n

√

log n (2
√

π)e−γ(1 + o(1)) =
e−γ(1 + o(1))

n
.

This is the claim in the proposition.
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7.8 Proof of Theorem 5.1

The representation E[X(n)] = bn + o( 1√
log n

) in (19) is not sharp enough to produce an

asymptotic expansion for E[X(n)]. We will derive such an higher order asymptotic expan-
sion for E[X(n)] by using the trick of reducing a problem in extreme value theory to a
problem about sums. This will be achieved by using the celebrated Rényi’s representation
for the distribution of the vector of uniform order statistics. This approach may be much
more generally useful in extreme value theory than the particular purpose for which it is
used in this article.

Since the proof of this theorem is quite long and intricate, we break it into smaller
main steps.

Step 1: Let U1, U2, . . . be an iid U [0, 1] sequence and let U(n) = max{U1, U2, . . . , Un}.
Let X1, X2, . . . denote an iid standard normal sequence, and let ξ0, ξ1, . . . denote an iid
standard exponential sequence. Finally, let Zn := ξ1+...+ξn−n√

n
, and let Fn(z) denote the

CDF of Zn.

By Rényi’s representation, U(n)
L
= ξ1+...+ξn

ξ0+ξ1+...+ξn
. Therefore, by the quantile transforma-

tion

X(n)
L
= Φ−1(U(n))

L
= Φ−1

(

1 − ξ0

ξ0 + ξ1 + . . . + ξn

)

.

Hence,

E[X(n)] = E

[

Φ−1

(

1 − ξ0

ξ0 + ξ1 + . . . + ξn

)]

= E

[

Φ−1

(

1 − ξ0

ξ0 + n +
√

nZn

)]

=

∫

R

∫ ∞

0
Φ−1

(

1 − x

x + n +
√

nz

)

e−xdxdFn(z). (23)

Step 2: For any fixed x and z, the argument x
x+n+

√
nz

in (20) is small for large n. Thus, the

idea now is to obtain and use sufficiently high order asymptotic expansions for Φ−1(1− p)
when p → 0.

The asymptotic expansions for Φ−1(1−p) are derived by inverting Laplace’s expansion
for the standard normal tail probability, which is

1 − Φ(x) = ϕ(x)

[

1

x
− 1

x3
+

1 × 3

x5
− · · · + (−1)k 1 × 3 × (2k − 1)

x2k+1
+ Rk(x)

]

, (24)

where for any specific k, Rk(x) = O(x−(2k+3)) as x → ∞. By using (21) with k = 1, we
obtain successive asymptotic expansions for zp = Φ−1(1 − p) as p → 0: Indeed, writing
t = 1/p, we have the following:

z2
p = 2 log t + O(log log t);

z2
p = 2 log t − log log t + O(1);

z2
p = 2 log t − log log t − log 4π + O

(

log log t

log t

)

;

z2
p = 2 log t − log log t − log 4π +

log log t

2 log t
+ O

(

1

log t

)

;
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z2
p = 2 log t − log log t − log 4π +

log log t + log 4π − 2

2 log t
+ O

(

log log t

(log t)2

)

. (25)

Step 3: From the last expression (22) we obtain:

zp =
√

2 log t

[

1 − log log t + log 4π

2 log t
+

log log t + log 4π − 2

(2 log t)2
+ O

(

log log t

(log t)3

)]1/2

=
√

2 log t

[

1 − log log t + log 4π

4 log t
− (log log t + log 4π)2 − 4 log log t − 4 log 4π + 8

32(log t)2

+ O

(

(log log t)2

(log t)3

) ]

= T1 − T2 + T3 +
√

2 log t × O

(

(log log t)2

(log t)3

)

, (26)

where

T1 :=
√

2 log t, T2 :=
log log t + log 4π

2
√

2 log t
, T3 :=

(log log t − 2)2 + (log 4π − 2)2

32(log t)2√
2 log t

.

Step 4: Relation (23) in conjunction with the integral representation in (20) will be key
in producing the desired asymptotic expansion for E[X(n)].

Toward this, with (20) in mind, we use the notations

p =
x

n + z
√

n + x
and t =

1

p
=

n + z
√

n + x

x
=

n

x

(

1 +
z√
n

+
x

n

)

.

We will now use (23) and derive asymptotic expansions up to the needed order for each
of the three terms T1, T2 and T3. Then we combine them to produce the final asymptotic
expansion for the mean E[X(n)].

The first term in (23) is

T1 : =
√

2 log t =

√

2(log n − log x) + Op(
1√
n

)

=
√

2 log n

√

1 − log x

log n
+ Op(

1√
n log n

)

=
√

2 log n − log x√
2 log n

− (log x)2

2(2 log n)3/2
+ Op((log n)−5/2). (27)

The next is

T2 : =
log log t + log 4π

2
√

2 log t
=

log(log n − log x + Op(
1√
n
)) + log 4π

2[
√

2 log n − log x√
2 log n

+ Op((log n)−3/2)]

=
log log n − log x

log n + log 4π + Op((log n)−2)

2
√

2 log n[1 − log x
2 log n + Op((log n)−2)]

=
log log n − log x

log n + log 4π + log x log log n
2 log n + log x log 4π

2 log n + Op(
log log n
(log n)2

)

2
√

2 log n
. (28)
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It remains to handle the third term in (23), T3. For this, we use the following observations:

(log log t)2 = [log log n − log x

log n
+ Op((log n)−2)]2

= (log log n)2 − (2 log x)
log log n

log n
+ Op

(

log log n

(log n)2

)

; (29)

−4 log log t = −4 log log n + 4
log x

log n
+ Op((log n)−2); (30)

1
32(log t)2√

2 log t

=
1

16
√

2(log t)3/2
=

1

8(2 log t)3/2

=
1 + 3

2
log x
log n + Op((log n)−2)

8(2 log n)3/2
. (31)

The last three relations, (26), (27) and (28) give a bound for T3 which then is combined
with (24) and (25) thus obtaining

Φ−1

(

1 − x

x + z
√

n + n

)

=
√

2 log n − log log n + log 4π + 2 log x

2
√

2 log n

+
1

8(2 log n)3/2
×

[

(log log n)2 − 4 log log n − 4(log x) log log n + (8 − 4 log 4π)(log x)

−4(log x)2 + (log 4π)2 − 4 log 4π + 8

]

+ Op

(

(log log n)2

(log n)5/2

)

. (32)

Notice the interesting fact that no terms involving z appear in this three term expansion
for Φ−1(1− x

x+z
√

n+n
), although on introspection it is clear why the z terms do not appear.

Step 5: Using now the integration facts
∫ ∞

0
(log x)e−xdx = −γ, and

∫ ∞

0
(log x)2e−xdx = γ2 +

π2

6
,

and (20), (29), and (20.46) in Corollary 20.3 in Bhattacharya and Rao (2010), we get the
following three term asymptotic expansion for E[X(n)]:

E[X(n)] =
√

2 log n − log log n + log 4π − 2γ

2
√

2 log n
+

1

8(2 log n)3/2
×

×
[

(log log n)2 − 4(1 − γ) log log n + γ(4 log 4π − 8) − 4

(

γ2 +
π2

6

)

+ (log 4π)2 − 4 log 4π + 8

]

+ O

(

(log log n)2

(log n)5/2

)

=
√

2 log n − log log n + log 4π − 2γ

2
√

2 log n
+

1

8(2 log n)3/2
×

×
[

(log log n − 2(1 − γ))2 + (log 4π − 2)2 + 4γ(log 4π − 2γ) − 2

3
π2

]

+ O

(

(log log n)2

(log n)5/2

)

.

This completes the proof of this theorem.
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7.9 Proof of Theorem 5.2

Theorem 5.2 follows from our calculations in the proof of Theorem 5.1 after making a
simple observation. Indeed, recall that θn = Φ−1(2−1/n), so θn = Φ−1(1 − p), with

t =
1

p
=

21/n

21/n − 1
=

n

log 2
+ O(1).

Therefore, the asymptotic expansion for θn up to an error of order O
(

(log log n)2

(log n)5/2

)

will

follow in a straightforward manner from relation (23). The details are omitted.

7.10 Proof of Theorem 5.3

We give a sketch of parts (a) and (d); (b) follows readily from (a) and (c) can be derived
from (d).
To prove part (a), observe the representation

F =
n

∑

i=1

IXi>cn,Bi=0 =
n

∑

i=1

IZi>cn,Bi=0. (33)

Since in this theorem cn =
√

2 log n, and the Bernoulli sequence {Bi} and the standard
normals {Zi} are independent, we get

E[F ] = n1−β [1 − Φ(
√

2 log n)]

= n1−β φ(
√

2 log n)√
2 log n

(1 + o(1)) =
n1−β

2n
√

π log n
(1 + o(1))

=
1

2
√

π

n−β

√
log n

(1 + o(1)) = o(1).

Hence, F
P→ 0.

Next, to prove part (d), use the representations

D =
n

∑

i=1

IXi>cn,Bi=1 =
n

∑

i=1

IZi>cn−µn,Bi=1,

and

S =
n

∑

i=1

IBi=1. (34)

Denote
pD = P (Zi > cn − µn, Bi = 1) = ǫn[1 − Φ(cn − µn)],

and
pS = P (Bi = 1) = ǫn.

Then, under the Donoho-Jin model, pD, pS both converge to zero, and it may be shown
by use of the CLT that

D = npD +
√

npDOp(1),
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and
S = npS +

√
npSOp(1).

This will give
D

S
=

pd

pS
(1 + op(1)).

Now, use the facts that
pD

pS
= 1 − Φ(cn − µn),

and calculations will show that if cn =
√

2 log n and µn =
√

2r log n, then

pD

pS
=

n−(1−√
r)2

2
√

π(1 −√
r)
√

log n
(1 + o(1)),

and this gives the stated result in part (d). We omit the intermediate calculations.

7.11 Proof of Theorem 5.4

Theorem 5.4 asserts convergence in distribution of F to a suitable Poisson. For this, define

pF = P (Zi > cn, Bi = 0) = (1 − ǫn)[1 − Φ(cn)]. (35)

It is necessary and sufficient to show that with cn as defined in the theorem,

pF → 0, npF → λ.

We give a sketch of the proof. It is clear that pF → 0, because cn → ∞. On the other
hand, since ǫn → 0,

npF = n(1 − ǫn)[1 − Φ(cn)]

= n
φ(cn)

cn
(1 + o(1)) = n

e−
c2n
2

cn

√
2π

(1 + o(1)).

Use now the definition of the sequence cn given in the theorem. Then, writing K =
log(4πλ2), on calculations, one gets

npF =
ne−

1
2
[2 log n−(log log n+K)+o(1)]

√
2 log n

√
2π(1 + o(1))

=
n
√

log n

n

2λ
√

π√
2 log n

√
2π

(1 + o(1)),

and this simplifies to
npF = λ(1 + o(1)).

Again, we omit the intermediate calculations, which are not difficult.
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7.12 Proof of Theorem 5.5

First note that, using the same arguments as in Theorem 5.3, one still has

D

S
=

pD

pS
(1 + op(1)) = [1 − Φ(cn − µn)](1 + op(1)). (36)

Now, by using the definition of cn in Theorem 5.5, and on using that µn =
√

2r log n, one
gets, writing K = log(4πλ2),

cn − µn =
√

2 log n(1 −
√

r) − log log n + K

2
√

2 log n

⇒ (cn − µn)2 = 2 log n(1 −
√

r)2 − (1 −
√

r)(log log n + K) + o(1). (37)

This gives, with some intermediate calculations,

1 − Φ(cn − µn) =
1√
2π

e−
1
2
(cn−µn)2

cn − µn
(1 + o(1))

=
1√
2π

e−(1−√
r)2 log n+ 1−

√

r
2

(log log n+K)+o(1)

(1 −√
r)
√

2 log n(1 + o(1))

=
n−(1−√

r)2(log n)
1−

√

r
2 (4πλ2)

1−
√

r
2 (1 + o(1))√

2π(1 −√
r)
√

2 log n(1 + o(1))

=
n−(1−√

r)2(4πλ2 log n)
1−

√

r
2

2
√

π(1 −√
r)
√

log n
(1 + o(1)),

and this establishes the claim of Theorem 5.5.
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