
18 The Exponential Family and Statistical Applications

The Exponential family is a practically convenient and widely used unified family of distributions
on finite dimensional Euclidean spaces parametrized by a finite dimensional parameter vector.
Specialized to the case of the real line, the Exponential family contains as special cases most of the
standard discrete and continuous distributions that we use for practical modelling, such as the nor-
mal, Poisson, Binomial, exponential, Gamma, multivariate normal, etc. The reason for the special
status of the Exponential family is that a number of important and useful calculations in statistics
can be done all at one stroke within the framework of the Exponential family. This generality
contributes to both convenience and larger scale understanding. The Exponential family is the
usual testing ground for the large spectrum of results in parametric statistical theory that require
notions of regularity or Cramér-Rao regularity. In addition, the unified calculations in the Expo-
nential family have an element of mathematical neatness. Distributions in the Exponential family
have been used in classical statistics for decades. However, it has recently obtained additional im-
portance due to its use and appeal to the machine learning community. A fundamental treatment
of the general Exponential family is provided in this chapter. Classic expositions are available in
Barndorff-Nielsen (1978), Brown (1986), and Lehmann and Casella (1998). An excellent recent
treatment is available in Bickel and Doksum (2006).

18.1 One Parameter Exponential Family

Exponential families can have any finite number of parameters. For instance, as we will see,
a normal distribution with a known mean is in the one parameter Exponential family, while a
normal distribution with both parameters unknown is in the two parameter Exponential family.
A bivariate normal distribution with all parameters unknown is in the five parameter Exponential
family. As another example, if we take a normal distribution in which the mean and the variance
are functionally related, e.g., the N(µ, µ2) distribution, then the distribution will be neither in
the one parameter nor in the two parameter Exponential family, but in a family called a curved
Exponential family. We start with the one parameter regular Exponential family.

18.1.1 Definition and First Examples

We start with an illustrative example that brings out some of the most important properties of
distributions in an Exponential family.

Example 18.1. (Normal Distribution with a Known Mean). Suppose X ∼ N(0, σ2). Then
the density of X is

f(x |σ) =
1

σ
√

2π
e−

x2

2σ2 Ix∈R.

This density is parametrized by a single parameter σ. Writing

η(σ) = − 1
2σ2

, T (x) = x2, ψ(σ) = log σ, h(x) =
1√
2π

Ix∈R,

we can represent the density in the form

f(x |σ) = eη(σ)T (x)−ψ(σ)h(x),

498



for any σ ∈ R+.
Next, suppose that we have an iid sample X1,X2, · · · ,Xn ∼ N(0, σ2). Then the joint density of
X1,X2, · · · ,Xn is

f(x1, x2, · · · , xn |σ) =
1

σn(2π)n/2
e−

∑n
i=1 x2

i
2σ2 Ix1,x2,···,xn∈R.

Now writing

η(σ) = − 1
2σ2

, T (x1, x2, · · · , xn) =
n∑

i=1

x2
i , ψ(σ) = n log σ,

and
h(x1, x2, · · · , xn) =

1
(2π)n/2

Ix1,x2,···,xn∈R,

once again we can represent the joint density in the same general form

f(x1, x2, · · · , xn |σ) = eη(σ)T (x1,x2,···,xn)−ψ(σ)h(x1, x2, · · · , xn).

We notice that in this representation of the joint density f(x1, x2, · · · , xn |σ), the statistic T (X1,X2, · · · ,Xn)
is still a one dimensional statistic, namely, T (X1,X2, · · · ,Xn) =

∑n
i=1 X2

i . Using the fact that the
sum of squares of n independent standard normal variables is a chi square variable with n degrees
of freedom, we have that the density of T (X1,X2, · · · ,Xn) is

fT (t |σ) =
e−

t
2σ2 t

n
2 −1

σn2n/2Γ(n
2 )

It>0.

This time, writing

η(σ) = − 1
2σ2

, S(t) = t, ψ(σ) = n log σ, h(t) =
1

2n/2Γ(n
2 )

It>0,

once again we are able to write even the density of T (X1,X2, · · · ,Xn) =
∑n

i=1 X2
i in that same

general form
fT (t |σ) = eη(σ)S(t)−ψ(σ)h(t).

Clearly, something very interesting is going on. We started with a basic density in a specific form,
namely, f(x |σ) = eη(σ)T (x)−ψ(σ)h(x), and then we found that the joint density and the density
of the relevant one dimensional statistic

∑n
i=1 X2

i in that joint density, are once again densities
of exactly that same general form. It turns out that all of these phenomena are true of the
entire family of densities which can be written in that general form, which is the one parameter
Exponential family. Let us formally define it and we will then extend the definition to distributions
with more than one parameter.

Definition 18.1. Let X = (X1, · · · ,Xd) be a d-dimensional random vector with a distribution
Pθ, θ ∈ Θ ⊆ R.
Suppose X1, · · · ,Xd are jointly continuous. The family of distributions {Pθ, θ ∈ Θ} is said to belong
to the one parameter Exponential family if the density of X = (X1, · · · ,Xd) may be represented
in the form

f(x |θ) = eη(θ)T (x)−ψ(θ)h(x),
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for some real valued functions T (x), ψ(θ) and h(x) ≥ 0.
If X1, · · · ,Xd are jointly discrete, then {Pθ, θ ∈ Θ} is said to belong to the one parameter Ex-
ponential family if the joint pmf p(x |θ) = Pθ(X1 = x1, · · · ,Xd = xd) may be written in the
form

p(x |θ) = eη(θ)T (x)−ψ(θ)h(x),

for some real valued functions T (x), ψ(θ) and h(x) ≥ 0.
Note that the functions η, T and h are not unique. For example, in the product ηT , we can multiply
T by some constant c and divide η by it. Similarly, we can play with constants in the function h.

Definition 18.2. Suppose X = (X1, · · · ,Xd) has a distribution Pθ, θ ∈ Θ, belonging to the one
parameter Exponential family. Then the statistic T (X) is called the natural sufficient statistic for
the family {Pθ}.
The notion of a sufficient statistic is a fundamental one in statistical theory and its applications.
Sufficiency was introduced into the statistical literature by Sir Ronald A. Fisher (Fisher (1922)).
Sufficiency attempts to formalize the notion of no loss of information. A sufficient statistic is
supposed to contain by itself all of the information about the unknown parameters of the underlying
distribution that the entire sample could have provided. In that sense, there is nothing to lose
by restricting attention to just a sufficient statistic in one’s inference process. However, the form
of a sufficient statistic is very much dependent on the choice of a particular distribution Pθ for
modelling the observable X. Still, reduction to sufficiency in widely used models usually makes
just simple common sense. We will come back to the issue of sufficiency once again later in this
chapter.

We will now see examples of a few more common distributions that belong to the one parameter
Exponential family.

Example 18.2. (Binomial Distribution). Let X ∼ Bin(n, p), with n ≥ 1 considered as known,
and 0 < p < 1 a parameter. We represent the pmf of X in the one parameter Exponential family
form.

f(x |p) =
(

n

x

)
px(1 − p)n−xI{x∈{0,1,···,n}} =

(
n

x

)(
p

1 − p

)x

(1 − p)nI{x∈{0,1,···,n}}

=
(

n

x

)
ex log p

1−p +n log(1−p)I{x∈{0,1,···,n}}.

Writing η(p) = log p
1−p , T (x) = x, ψ(p) = −n log(1 − p), and h(x) =

(
n
x

)
I{x∈{0,1,···,n}}, we have

represented the pmf f(x |p) in the one parameter Exponential family form, as long as p ∈ (0, 1).
For p = 0 or 1, the distribution becomes a one point distribution. Consequently, the family of
distributions {f(x |p), 0 < p < 1} forms a one parameter Exponential family, but if either of the
boundary values p = 0, 1 is included, the family is not in the Exponential family.

Example 18.3. (Normal Distribution with a Known Variance). Suppose X ∼ N(µ, σ2),
where σ is considered known, and µ ∈ R a parameter. Then,

f(x |µ) =
1√
2π

e−
x2
2 +µx−µ2

2 Ix∈R,
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which can be written in the one parameter Exponential family form by witing η(µ) = µ, T (x) =
x, ψ(µ) = µ2

2 , and h(x) = e−
x2
2 Ix∈R. So, the family of distributions {f(x |µ), µ ∈ R} forms a one

parameter Exponential family.

Example 18.4. (Errors in Variables). Suppose U, V,W are independent normal variables, with
U and V being N(µ, 1) and W being N(0, 1). Let X1 = U +W and X2 = V +W . In other words,
a common error of measurement W contaminates both U and V .
Let X = (X1,X2). Then X has a bivariate normal distribution with means µ, µ, variances 2, 2,
and a correlation parameter ρ = 1

2 . Thus, the density of X is

f(x |µ) =
1

2
√

3π
e
− 2

3

[
(x1−µ)2

2 +
(x2−µ)2

2 −2(x1−µ)(x2−µ)

]
Ix1,x2∈R

=
1

2
√

3π
e

[
2
3 µ(x1+x2)− 2

3 µ2

]
e−

x2
1+x2

2−4x1x2
3 Ix1,x2∈R.

This is in the form of a one parameter Exponential family with the natural sufficient statistic
T (X) = T (X1,X2) = X1 + X2.

Example 18.5. (Gamma Distribution). Suppose X has the Gamma density e− x
λ xα−1

λαΓ(α) Ix>0. As
such, it has two parameters λ, α. If we assume that α is known, then we may write the density in
the one parameter Exponential family form:

f(x |λ) = e−
x
λ−α log λ xα−1

Γ(α)
Ix>0,

and recognize it as a density in the Exponential family with η(λ) = − 1
λ , T (x) = x, ψ(λ) =

α log λ, h(x) = xα−1

Γ(α) Ix>0.
If we assume that λ is known, once again, by writing the density as

f(x |α) = eα log x−α(log λ)−log Γ(α)e−
x
λ Ix>0,

we recognize it as a density in the Exponential family with η(α) = α, T (x) = log x, ψ(α) =
α(log λ) + log Γ(α), h(x) = e−

x
λ Ix>0.

Example 18.6. (An Unusual Gamma Distribution). Suppose we have a Gamma density in
which the mean is known, say, E(X) = 1. This means that αλ = 1 ⇒ λ = 1

α . Parametrizing the
density with α, we have

f(x |α) = e−αx+α log x αα

Γ(α)
1
x

Ix>0

= e
α

[
log x−x

]
−
[

log Γ(α)−α log α

]
1
x

Ix>0,

which is once again in the one parameter Exponential family form with η(α) = α, T (x) = log x −
x, ψ(α) = log Γ(α) − α log α, h(x) = 1

xIx>0.

Example 18.7. (A Normal Distribution Truncated to a Set). Suppose a certain random
variable W has a normal distribution with mean µ and variance one. We saw in Example 18.3
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that this is in the one parameter Exponential family. Suppose now that the variable W can be
physically observed only when its value is inside some set A. For instance, if W > 2, then our
measuring instruments cannot tell what the value of W is. In such a case, the variable X that
is truly observed has a normal distribution truncated to the set A. For simplicity, take A to be
A = [a, b], an interval. Then, the density of X is

f(x |µ) =
e−

(x−µ)2

2

√
2π[Φ(b − µ) − Φ(a − µ)]

Ia≤x≤b.

This can be written as

f(x |µ) =
1√
2π

e
µx−µ2

2 −log

[
Φ(b−µ)−Φ(a−µ)

]
e−

x2
2 Ia≤x≤b,

and we recognize this to be in the Exponential family form with η(µ) = µ, T (x) = x, ψ(µ) =
µ2

2 + log[Φ(b − µ) − Φ(a − µ)], and h(x) = e−
x2
2 Ia≤x≤b. Thus, the distribution of W truncated

to A = [a, b] is still in the one parameter Exponential family. This phenomenon is in fact more
general.

Example 18.8. (Some Distributions not in the Exponential Family). It is clear from the
definition of a one parameter Exponential family that if a certain family of distributions {Pθ, θ ∈ Θ}
belongs to the one parameter Exponential family, then each Pθ has exactly the same support.
Precisely, for any fixed θ, Pθ(A) > 0 if and only if

∫
A

h(x)dx > 0, and in the discrete case, Pθ(A) > 0
if and only if A∩X 6= ∅, where X is the countable set X = {x : h(x) > 0}. As a consequence of this
common support fact, the so called irregular distributions whose support depends on the parameter
cannot be members of the Exponential family. Examples would be the family of U [0, θ], U [−θ, θ]
distributions, etc. Likewise, the shifted Exponential density f(x |θ) = eθ−xIx>θ cannot be in the
Exponential family.
Some other common distributions are also not in the Exponential family, but for other reasons.
An important example is the family of Cauchy distributions given by the location parameter form
f(x |µ) = 1

π[1+(x−µ)2]Ix∈R. Suppose that it is. Then, we can find functions η(µ), T (x) such that
for all x, µ,

eη(µ)T (x) =
1

1 + (x − µ)2
⇒ η(µ)T (x) = − log(1 + (x − µ)2)

⇒ η(0)T (x) = − log(1 + x2) ⇒ T (x) = −c log(1 + x2)

for some constant c.
Plugging this back, we get, for all x, µ,

−cη(µ) log(1 + x2) = − log(1 + (x − µ)2) ⇒ η(µ) =
1
c

log(1 + (x − µ)2)
log(1 + x2)

.

This means that log(1+(x−µ)2)
log(1+x2) must be a constant function of x, which is a contradiction. The

choice of µ = 0 as the special value of µ is not important.

18.2 The Canonical Form and Basic Properties

Suppose {Pθ, θ ∈ Θ} is a family belonging to the one parameter Exponential family, with density
(or pmf) of the form f(x |θ) = eη(θ)T (x)−ψ(θh(x). If η(θ) is a one-to-one function of θ, then we can
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drop θ altogether, and parametrize the distribution in terms of η itself. If we do that, we get a
reparametrized density g in the form eηT (x)−ψ∗(η)h(x). By a slight abuse of notation, we will again
use the notation f for g and ψ for ψ∗.

Definition 18.3. Let X = (X1, · · · ,Xd) have a distribution Pη, η ∈ T ⊆ R. The family of
distributions {Pη, η ∈ T } is said to belong to the canonical one parameter Exponential family if
the density (pmf) of Pη may be written in the form

f(x |η) = eηT (x)−ψ(η)h(x),

where
η ∈ T = {η : eψ(η) =

∫
Rd

eηT (x)h(x)dx < ∞},

in the continuous case, and

T = {η : eψ(η) =
∑
x∈X

eηT (x)h(x) < ∞},

in the discrete case, with X being the countable set on which h(x) > 0.
For a distribution in the canonical one parameter Exponential family, the parameter η is called the
natural parameter, and T is called the natural parameter space. Note that T describes the largest
set of values of η for which the density (pmf) can be defined. In a particular application, we may
have extraneous knowledge that η belongs to some proper subset of T . Thus, {Pη} with η ∈ T is
called the full canonical one parameter Exponential family. We generally refer to the full family,
unless otherwise stated.
The canonical Exponential family is called regular if T is an open set in R, and it is called
nonsingular if Varη(T (X)) > 0 for all η ∈ T 0, the interior of the natural parameter space T .

It is analytically convenient to work with an Exponential family distribution in its canonical form.
Once a result has been derived for the canonical form, if desired we can rewrite the answer in terms
of the original parameter θ. Doing this retransformation at the end is algebraically and notationally
simpler than carrying the original function η(θ) and often its higher derivatives with us throughout
a calculation. Most of our formulae and theorems below will be given for the canonical form.

Example 18.9. (Binomial Distribution in Canonical Form). Let X ∼ Bin(n, p) with the
pmf

(
n
x

)
px(1 − p)n−xIx∈{0,1,···,n}. In Example 18.2, we represented this pmf in the Exponential

family form

f(x |p) = ex log p
1−p−nlog(1−p)

(
n

x

)
Ix∈{0,1,···,n}.

If we write log p
1−p = η, then p

1−p = eη, and hence, p = eη

1+eη , and 1 − p = 1
1+eη . Therefore, the

canonical Exponential family form of the binomial distribution is

f(x |η) = eηx−n log(1+eη)

(
n

x

)
Ix∈{0,1,···,n},

and the natural parameter space is T = R.
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18.2.1 Convexity Properties

Written in its canonical form, a density (pmf) in an Exponential family has some convexity proper-
ties. These convexity properties are useful in manipulating with moments and other functionals of
T (X), the natural sufficient statistic appearing in the expression for the density of the distribution.

Theorem 18.1. The natural parameter space T is convex, and ψ(η) is a convex function on T .
Proof: We consider the continuous case only, as the discrete case admits basically the same proof.
Let η1, η2 be two members of T , and let 0 < α < 1. We need to show that αη1 + (1−α)η2 belongs
to T , i.e., ∫

Rd

e(αη1+(1−α)η2)T (x)h(x)dx < ∞.

But, ∫
Rd

e(αη1+(1−α)η2)T (x)h(x)dx =
∫
Rd

eαη1T (x) × e(1−α)η2T (x)h(x)dx

=
∫
Rd

(
eη1T (x)

)α(
eη2T (x)

)1−α

h(x)dx

≤
(∫

Rd

eη1T (x)h(x)dx

)α(∫
Rd

eη2T (x)h(x)dx

)1−α

(by Holder’s inequality)
< ∞,

because, by hypothesis, η1, η2 ∈ T , and hence,
∫
Rd eη1T (x)h(x)dx, and

∫
Rd eη2T (x)h(x)dx are both

finite.
Note that in this argument, we have actually proved the inequality

eψ(αη1+(1−α)η2) ≤ eαψ(η1)+(1−α)ψ(η2).

But this is the same as saying

ψ(αη1 + (1 − α)η2) ≤ αψ(η1) + (1 − α)ψ(η2),

i.e., ψ(η) is a convex function on T . ♣

18.2.2 Moments and Moment Generating Function

The next result is a very special fact about the canonical Exponential family, and is the source
of a large number of closed form formulas valid for the entire canonical Exponential family. The
fact itself is actually a fact in mathematical analysis. Due to the special form of Exponential
family densities, the fact in analysis translates to results for the Exponential family, an instance
of interplay between mathematics and statistics and probability.

Theorem 18.2. (a) The function eψ(η) is infinitely differentiable at every η ∈ T 0. Furthermore,
in the continuous case, eψ(η) =

∫
Rd eηT (x)h(x)dx can be differentiated any number of times inside

the integral sign, and in the discrete case, eψ(η) =
∑

x∈X eηT (x)h(x) can be differentiated any
number of times inside the sum.
(b) In the continuous case, for any k ≥ 1,

dk

dηk
eψ(η) =

∫
Rd

[T (x)]keηT (x)h(x)dx,
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and in the discrete case,
dk

dηk
eψ(η) =

∑
x∈X

[T (x)]keηT (x)h(x).

Proof: Take k = 1. Then, by the definition of derivative of a function, d
dη eψ(η) exists if and only if

limδ→0[ eψ(η+δ)−eψ(η)

δ ] exists. But,

eψ(η+δ) − eψ(η)

δ
=

∫
Rd

e(η+δ)T (x) − eηT (x)

δ
h(x)dx,

and by an application of the Dominated convergence theorem (see Chapter 7), limδ→0

∫
Rd

e(η+δ)T (x)−eηT (x)

δ h(x)dx

exists, and the limit can be carried inside the integral, to give

lim
δ→0

∫
Rd

e(η+δ)T (x) − eηT (x)

δ
h(x)dx =

∫
Rd

lim
δ→0

e(η+δ)T (x) − eηT (x)

δ
h(x)dx

=
∫
Rd

d

dη
eηT (x)h(x)dx =

∫
Rd

T (x)eηT (x)h(x)dx.

Now use induction on k by using the Dominated convergence theorem again. ♣
This compact formula for an arbitrary derivative of eψ(η) leads to the following important moment
formulas.

Theorem 18.3. At any η ∈ T 0,

(a)Eη[T (X)] = ψ′(η); Varη[T (X)] = ψ′′(η);

(b) The coefficients of skewness and kurtosis of T (X) equal

β(η) =
ψ(3)(η)

[ψ′′(η)]3/2
; and γ(η) =

ψ(4)(η)
[ψ′′(η)]2

;

(c) At any t such that η + t ∈ T , the mgf of T (X) exists and equals

Mη(t) = eψ(η+t)−ψ(η).

Proof: Again, we take just the continuous case. Consider the result of the previous theorem that
for any k ≥ 1, dk

dηk eψ(η) =
∫
Rd [T (x)]keηT (x)h(x)dx. Using this for k = 1, we get

ψ′(η)eψ(η) =
∫
Rd

T (x)eηT (x)h(x)dx ⇒
∫
Rd

T (x)eηT (x)−ψ(η)h(x)dx = ψ′(η),

which gives the result Eη[T (X)] = ψ′(η).
Similarly,

d2

dη2
eψ(η) =

∫
Rd

[T (x)]2eηT (x)h(x)dx ⇒ [ψ′′(η) + {ψ′(η)}2]eψ(η) =
∫
Rd

[T (x)]2eηT (x)h(x)dx

⇒ ψ′′(η) + {ψ′(η)}2 =
∫
Rd

[T (x)]2eηT (x)−ψ(η)h(x)dx,

which gives Eη[T (X)]2 = ψ′′(η) + {ψ′(η)}2. Combine this with the already obtained result that
Eη[T (X)] = ψ′(η), and we get Varη[T (X)] = Eη[T (X)]2 − (Eη[T (X)])2 = ψ′′(η).
The coefficient of skewness is defined as βη = E[T (X)−ET (X)]3

(VarT (X))3/2 . To obtain E[T (X) − ET (X)]3 =
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E[T (X)]3 −3E[T (X)]2E[T (X)]+2[ET (X)]3, use the identity d3

dη3 eψ(η) =
∫
Rd [T (x)]3eηT (x)h(x)dx.

Then use the fact that the third derivative of eψ(η) is eψ(η)

[
ψ(3)(η) + 3ψ′(η)ψ′′(η) + {ψ′(η)}3

]
. As

we did in our proofs for the mean and the variance above, transfer eψ(η) into the integral on the
right hand side and then simplify. This will give E[T (X) − ET (X)]3 = ψ(3)(η), and the skewness
formula follows. The formula for kurtosis is proved by the same argument, using k = 4 in the
derivative identity dk

dηk eψ(η) =
∫
Rd [T (x)]keηT (x)h(x)dx.

Finally, for the mgf formula,

Mη(t) = Eη[etT (X)] =
∫
Rd

etT (X)eηT (x)−ψ(η)h(x)dx = e−ψ(η)

∫
Rd

e(t+η)T (x)h(x)dx

= e−ψ(η)eψ(t+η)

∫
Rd

e(t+η)T (x)−ψ(t+η)h(x)dx = e−ψ(η)eψ(t+η) × 1

= eψ(t+η)−ψ(η).

An important consequence of the mean and the variance formulas is the following monotonicity ♣
result.

Corollary 18.1. For a nonsingular canonical Exponential family, Eη[T (X)] is strictly increasing
in η on T 0.
Proof: From part (a) of Theorem 18.3, the variance of T (X) is the derivative of the expectation of
T (X), and by nonsingularity, the variance is strictly positive. This implies that the expectation is
strictly increasing.
As a consequence of this strict monotonicity of the mean of T (X) in the natural parameter, non-
singular canonical Exponential families may be reparametrized by using the mean of T itself as the
parameter. This is useful for some purposes.

Example 18.10. (Binomial Distribution). From Example 18.9, in the canonical representa-
tion of the binomial distribution, ψ(η) = n log(1 + eη). By direct differentiation,

ψ′(η) =
neη

1 + eη
; ψ′′(η) =

neη

(1 + eη)2
;

ψ(3)(η) =
−neη(eη − 1)

(1 + eη)3
; ψ(4)(η) =

neη(e2η − 4eη + 1)
(1 + eη)4

.

Now recall from Example 18.9 that the success probability p and the natural parameter η are
related as p = eη

1+eη . Using this, and our general formulas from Theorem 18.3, we can rewrite the
mean, variance, skewness, and kurtosis of X as

E(X) = np; Var(X) = np(1 − p); βp =
1 − 2p√
np(1 − p)

; γp =
1

p(1−p) − 6

n
.

For completeness, it is useful to have the mean and the variance formula in an original parametriza-
tion, and they are stated below. The proof follows from an application of Theorem 18.3 and the
chain rule.

Theorem 18.4. Let {Pθ, θ ∈ Θ} be a family of distributions in the one parameter Exponential
family with density (pmf)

f(x |θ) = eη(θ)T (x)−ψ(θ)h(x).
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Then, at any θ at which η′(θ) 6= 0,

Eθ[T (X)] =
ψ′(θ)
η′(θ)

; Varθ(T (X)) =
ψ′′(θ)
[η′(θ)]2

− ψ′(θ)η′′(θ)
[η′(θ)]3

.

18.2.3 Closure Properties

The Exponential family satisfies a number of important closure properties. For instance, if a d-
dimensional random vector X = (X1, · · · ,Xd) has a distribution in the Exponential family, then
the conditional distribution of any subvector given the rest is also in the Exponential family. There
are a number of such closure properties, of which we will discuss only four.
First, if X = (X1, · · · ,Xd) has a distribution in the Exponential family, then the natural sufficient
statistic T (X) also has a distribution in the Exponential family. Verification of this in the greatest
generality cannot be done without using measure theory. However, we can easily demonstrate
this in some particular cases. Consider the continuous case with d = 1 and suppose T (X) is a
differentiable one-to-one function of X. Then, by the Jacobian formula (see Chapter 1), T (X) has
the density

fT (t |η) = eηt−ψ(η) h(T−1(t))
|T ′(T−1(t))| .

This is once again in the one parameter Exponential family form, with the natural sufficient
statistic as T itself, and the ψ function unchanged. The h function has changed to a new function
h∗(t) = h(T−1(t))

|T ′(T−1(t))| .
Similarly, in the discrete case, the pmf of T (X) will be given by

Pη(T (X) = t) =
∑

x: T (x)=t

eηT (x)−ψ(η)h(x) = eηt−ψ(η)h∗(t),

where h∗(t) =
∑

x: T (x)=t h(x).
Next, suppose X = (X1, · · · ,Xd) has a density (pmf) f(x |η) in the Exponential family and
Y1, Y2, · · · , Yn are n iid observations from this density f(x |η). Note that each individual Yi is
a d-dimensional vector. The joint density of Y = (Y1, Y2, · · · , Yn) is

f(y |η) =
n∏

i=1

f(yi |η) =
n∏

i=1

eηT (yi)−ψ(η)h(yi)

= eη
∑ n

i=1 T (yi)−nψ(η)
n∏

i=1

h(yi).

We recognize this to be in the one parameter Exponential family form again, with the natural
sufficient statistic as

∑n
i=1 T (Yi), the new ψ function as nψ, and the new h function as

∏n
i=1 h(yi).

The joint density
∏n

i=1 f(yi |η) is known as the likelihood function in statistics (see Chapter 3).
So, likelihood functions obtained from an iid sample from a distribution in the one parameter
Exponential family are also members of the one parameter Exponential family.
The closure properties outlined in the above are formally stated in the next theorem.

Theorem 18.5. Suppose X = (X1, · · · ,Xd) has a distribution belonging to the one parameter
Exponential family with the natural sufficient statistic T (X).
(a) T = T (X) also has a distribution belonging to the one parameter Exponential family.
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(b) Let Y = AX + u be a nonsingular linear transformation of X. Then Y also has a distribution
belonging to the one parameter Exponential family.
(c) Let I0 be any proper subset of I = {1, 2, · · · , d}. Then the joint conditional distribution of
Xi, i ∈ I0 given Xj , j ∈ I − I0 also belongs to the one parameter Exponential family.
(d) For given n ≥ 1, suppose Y1, · · · , Yn are iid with the same distribution as X. Then the joint
distribution of (Y1, · · · , Yn) also belongs to the one parameter Exponential family.

18.3 Multiparameter Exponential Family

Similar to the case of distributions with only one parameter, several common distributions with
multiple parameters also belong to a general multiparameter Exponential family. An example is
the normal distribution on R with both parameters unknown. Another example is a multivariate
normal distribution. Analytic techniques and properties of multiparameter Exponential families
are very similar to those of the one parameter Exponential family. Because of that reason, most
of our presentation in this section dwells on examples.

Definition 18.4. Let X = (X1, · · · ,Xd) have a distribution Pθ, θ ∈ Θ ⊆ Rk. The family of
distributions {Pθ, θ ∈ Θ} is said to belong to the k-parameter Exponential family if its density
(pmf) may be represented in the form

f(x |θ) = e
∑ k

i=1 ηi(θ)Ti(x)−ψ(θ)h(x).

Again, obviously, the choice of the relevant functions ηi, Ti, h is not unique. As in the one pa-
rameter case, the vector of statistics (T1, · · · , Tk) is called the natural sufficient statistic, and if we
reparametrize by using ηi = ηi(θ), i = 1, 2, · · · , k, the family is called the k-parameter canonical
Exponential family.
There is an implicit assumption in this definition that the number of freely varying θ’s is the same
as the number of freely varying η’s, and that these are both equal to the specific k in the context.
The formal way to say this is to assume the following:
Assumption The dimension of Θ as well as the dimension of the image of Θ under the map
(θ1, θ2, · · · , θk) −→ (η1(θ1, θ2, · · · , θk), η2(θ1, θ2, · · · , θk), · · · , ηk(θ1, θ2, · · · , θk)) are equal to k.
There are some important examples where this assumption does not hold. They will not be counted
as members of a k-parameter Exponential family. The name curved Exponential family is com-
monly used for them, and this will be discussed in the last section.
The terms canonical form, natural parameter, and natural parameter space will mean the same
things as in the one parameter case. Thus, if we parametrize the distributions by using η1, η2, · · · , ηk

as the k parameters, then the vector η = (η1, η2, · · · , ηk) is called the natural parameter vector,
the parametrization f(x |η) = e

∑ k
i=1 ηiTi(x)−ψ(η)h(x) is called the canonical form, and the set of

all vectors η for which f(x |η) is a valid density (pmf) is called the natural parameter space. The
main theorems for the case k = 1 hold for a general k.

Theorem 18.6. The results of Theorem 18.1 and 18.5 hold for the k-parameter Exponential
family.
The proofs are almost verbatim the same. The moment formulas differ somewhat due to the
presence of more than one parameter in the current context.
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Theorem 18.7. Suppose X = (X1, · · · ,Xd) has a distribution Pη, η ∈ T , belonging to the canon-
ical k-parameter Exponential family, with a density (pmf)

f(x |η) = e
∑ k

i=1 ηiTi(x)−ψ(η)h(x),

where
T = {η ∈ Rk :

∫
Rd

e
∑ k

i=1 ηiTi(x)h(x)dx < ∞}

(and the integral being replaced by a sum in the discrete case).
(a) At any η ∈ T 0,

eψ(η) =
∫
Rd

e
∑ k

i=1 ηiTi(x)h(x)dx

is infinitely partially differentiable with respect to each ηi, and the partial derivatives of any order
can be obtained by differentiating inside the integral sign.

(b)Eη[Ti(X)] =
∂

∂ηi
ψ(η); Covη(Ti(X), Tj(X)) =

∂2

∂ηi∂ηj
ψ(η), 1 ≤ i, j ≤ k.

(c) If η, t are such that η, η + t ∈ T , then the joint mgf of (T1(X), · · · , Tk(X)) exists and equals

Mη(t) = eψ(η+t)−ψ(η).

An important new terminology is that of a full rank.

Definition 18.5. A family of distributions {Pη, η ∈ T } belonging to the canonical k-parameter

Exponential family is called full rank if at every η ∈ T 0, the k×k covariance matrix
((

∂2

∂ηi∂ηj
ψ(η)

))

is nonsingular.

Definition 18.6. (Fisher Information Matrix). Suppose a family of distributions in the

canonical k-parameter Exponential family is nonsingular. Then, for η ∈ T 0, the matrix
((

∂2

∂ηi∂ηj
ψ(η)

))

is called the Fisher information matrix (at η).
The Fisher information matrix is of paramount importance in parametric statistical theory and
lies at the heart of finite and large sample optimality theory in statistical inference problems for
general regular parametric families.
We will now see some examples of distributions in k-parameter Exponential families where k > 1.

Example 18.11. (Two Parameter Normal Distribution). Suppose X ∼ N(µ, σ2), and we
consider both µ, σ to be parameters. If we denote (µ, σ) = (θ1, θ2) = θ, then parametrized by θ,
the density of X is

f(x |θ) =
1√

2πθ2

e
− (x−θ1)2

2θ2
2 Ix∈R =

1√
2πθ2

e
− x2

2θ2
2
+

θ1x

θ2
2

− θ2
1

2θ2
2 Ix∈R.

This is in the two parameter Exponential family with

η1(θ) = − 1
2θ2

2

, η2(θ) =
θ1

θ2
2

, T1(x) = x2, T2(x) = x,

ψ(θ) =
θ2
1

2θ2
2

+ log θ2, h(x) =
1√
2π

Ix∈R.
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The parameter space in the θ parametrization is

Θ = (−∞,∞) ⊗ (0,∞).

If we want the canonical form, we let η1 = − 1
2θ2

2
, η2 = θ1

θ2
2
, and ψ(η) = − η2

2
4η1

− 1
2 log(−η1). The

natural parameter space for (η1, η2) is (−∞, 0) ⊗ (−∞,∞).

Example 18.12. (Two Parameter Gamma). It was seen in Example 18.5 that if we fix one
of the two parameters of a Gamma distribution, then it becomes a member of the one parameter
Exponential family. We show in this example that the general Gamma distribution is a member of
the two parameter Exponential family. To show this, just observe that with θ = (α, λ) = (θ1, θ2),

f(x |θ) = e−
x
θ2

+θ1 log x−θ1 log θ2−log Γ(θ1) 1
x

Ix>0.

This is in the two parameter Exponential family with η1(θ) = − 1
θ2

, η2(θ) = θ1, T1(x) = x, T2(x) =
log x, ψ(θ) = θ1 log θ2+log Γ(θ1), and h(x) = 1

xIx>0. The parameter space in the θ-parametrization
is (0,∞) ⊗ (0,∞). For the canonical form, use η1 = − 1

θ2
, η2 = θ1, and so, the natural parameter

space is (−∞, 0) ⊗ (0,∞). The natural sufficient statistic is (X, log X).

Example 18.13. (The General Multivariate Normal Distribution). Suppose X ∼ Nd(µ,Σ),
where µ is arbitrary and Σ is positive definite (and of course, symmetric). Writing θ = (µ,Σ), we
can think of θ as a subset in an Euclidean space of dimension

k = d + d +
d2 − d

2
= d +

d(d + 1)
2

=
d(d + 3)

2
.

The density of X is

f(x |θ) =
1

(2π)d/2|Σ|1/2
e−

1
2 (x−µ)′Σ−1(x−µ)Ix∈Rd .

=
1

(2π)d/2|Σ|1/2
e−

1
2 x′Σ−1x+µ′Σ−1x− 1

2 µ′Σ−1µIx∈Rd

=
1

(2π)d/2|Σ|1/2
e−

1
2

∑ ∑
i,j σijxixj+

∑
i(

∑
k σkiµk)xi− 1

2 µ′Σ−1µIx∈Rd

=
1

(2π)d/2|Σ|1/2
e−

1
2

∑
i σiix2

i−
∑ ∑

i<j σijxixj+
∑

i(
∑

k σkiµk)xi− 1
2 µ′Σ−1µIx∈Rd .

We have thus represented the density of X in the k-parameter Exponential family form with the
k-dimensional natural sufficient statistic

T (X) = (X1, · · · ,Xd,X
2
1 , · · · ,X2

d ,X1X2, · · · ,Xd−1Xd),

and the natural parameters defined by
∑

k

σk1µk, · · · ,
∑

k

σkdµk,−1
2
σ11, · · · ,−1

2
σdd,−σ12, · · · ,−σd−1,d.

Example 18.14. (Multinomial Distribution). Consider the k+1 cell multinomial distribution
with cell probabilities p1, p2, · · · , pk, pk+1 = 1−

∑k
i=1 pi. Writing θ = (p1, p2, · · · , pk), the joint pmf

of X = (X1,X2, · · · ,Xk), the cell frequencies of the first k cells, is

f(x |θ) =
n!

(
∏k

i=1 xi!)(n −
∑k

i=1 xi)!

k∏
i=1

pxi
i (1 −

k∑
i=1

pi)n−∑ k
i=1 xiIx1,···,xk≥0,

∑ k
i=1 xi≤n
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=
n!

(
∏k

i=1 xi!)(n −
∑k

i=1 xi)!
e
∑ k

i=1(log pi)xi−log(1−∑ k
i=1 pi)(

∑ k
i=1 xi)+n log(1−∑ k

i=1 pi)Ix1,···,xk≥0,
∑ k

i=1 xi≤n

=
n!

(
∏k

i=1 xi!)(n −
∑k

i=1 xi)!
e

∑ k
i=1(log

pi
1−∑k

i=1 pi
)xi+n log(1−∑ k

i=1 pi)
Ix1,···,xk≥0,

∑ k
i=1 xi≤n.

This is in the k-parameter Exponential family form with the natural sufficient statistic and natural
parameters

T (X) = (X1,X2, · · · ,Xk), ηi = log
pi

1 −
∑k

i=1 pi

, 1 ≤ i ≤ k.

Example 18.15. (Two Parameter Inverse Gaussian Distribution). It was shown in The-
orem 11.5 that for the simple symmetric random walk on R, the time of the rth return to zero νr

satisfies the weak convergence result

P (
νr

r2
≤ x) → 2[1 − Φ(

1√
x

)], x > 0,

as r → ∞. The density of this limiting CDF is f(x) = e− 1
2x x−3/2√

2π
Ix>0. This is a special inverse

Gaussian distribution. The general inverse Gaussian distribution has the density

f(x |θ1, θ2) =
(

θ2

πx3

)1/2

e−θ1x− θ2
x +2

√
θ1θ2Ix>0;

the parameter space for θ = (θ1, θ2) is [0,∞) ⊗ (0,∞). Note that the special inverse Gaussian
density ascribed to above corresponds to θ1 = 0, θ2 = 1

2 . The general inverse Gaussian density
f(x |θ1, θ2) is the density of the first time that a Wiener proces (starting at zero) hits the straight
line with the equation y =

√
2θ2 −

√
2θ1t, t > 0.

It is clear from the formula for f(x |θ1, θ2) that it is a member of the two parameter Exponential
family with the natural sufficient statistic T (X) = (X, 1

X ) and the natural parameter space T =
(−∞, 0] ⊗ (−∞, 0). Note that the natural parameter space is not open.

18.4 ∗ Sufficiency and Completeness

Exponential families under mild conditions on the parameter space Θ have the property that if
a function g(T ) of the natural sufficient statistic T = T (X) has zero expected value under each
θ ∈ Θ, then g(T ) itself must be essentially identically equal to zero. A family of distributions
that has this property is called a complete family. The completeness property, particularly in
conjunction with the property of sufficiency, has had a historically important role in statistical
inference. Lehmann (1959), Lehmann and Casella (1998) and Brown (1986) give many applications.
However, our motivation for studying the completeness of a full rank Exponential family is primarily
for presenting a well known theorem in statistics, which actually is also a very effective and efficient
tool for probabilists. This theorem, known as Basu’s theorem (Basu (1955)), is an efficient tool for
probabilists in minimizing clumsy distributional calculations. Completeness is required in order to
state Basu’s theorem.

Definition 18.7. A family of distributions {Pθ, θ ∈ Θ} on some sample space X is called complete
if EPθ

[g(X)] = 0 for all θ ∈ Θ implies that Pθ(g(X) = 0) = 1 for all θ ∈ Θ.
It is useful to first see an example of a family which is not complete.
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Example 18.16. Suppose X ∼ Bin(2, p), and the parameter p is 1
4 or 3

4 . In the notation of the
definition of completeness, Θ is the two point set { 1

4 , 3
4}. Consider the function g defined by

g(0) = g(2) = 3, g(1) = −5.

Then,
Ep[g(X)] = g(0)(1 − p)2 + 2g(1)p(1 − p) + g(2)p2

= 16p2 − 16p + 3 = 0, if p =
1
4

or
3
4
.

Therefore, we have exhibited a function g which violates the condition for completeness of this
family of distributions.
Thus, completeness of a family of distributions is not universally true. The problem with the two
point parameter set in the above example is that it is too small. If the parameter space is more rich,
the family of Binomial distributions for any fixed n is in fact complete. In fact, any distribution
in the general k-parameter Exponential family as a whole is a complete family, provided the set of
parameter values is not too thin. Here is a general theorem.

Theorem 18.8. Suppose a family of distributions F = {Pθ, θ ∈ Θ} belongs to a k-parameter Ex-
ponential family, and that the set Θ to which the parameter θ is known to belong has a nonempty
interior. Then the family F is complete.
The proof of this requires the use of properties of functions which are analytic on a domain in Ck,
where C is the complex plane. We will not prove the theorem here; see Brown (1986) (pp 43) for
a proof. The nonempty interior assumption is protecting us from the set Θ being too small.

Example 18.17. Suppose X ∼ Bin(n, p), where n is fixed, and the set of possible values for p

contains an interval (however small). Then, in the terminology of the theorem above, Θ has a
nonempty interior. Therefore, such a family of Binomial distributions is indeed complete. The
only function g(X) that satisfies Ep[g(X)] = 0, for all p in a set Θ that contains in it an interval,
is the zero function g(x) = 0 for all x = 0, 1, · · · , n. Contrast this with Example 18.16.
We require one more definition before we can state Basu’s theorem.

Definition 18.8. Suppose X has a distribution Pθ belonging to a family F = {Pθ, θ ∈ Θ}. A
statistic S(X) is called F-ancillary (or, simply ancillary), if for any set A,Pθ(S(X) ∈ A) does not
depend on θ ∈ Θ, i.e., if S(X) has the same distribution under each Pθ ∈ F .

Example 18.18. Suppose X1,X2 are iid N(µ, 1), and µ belongs to some subset Θ of the real line.
Let S(X1,X2) = X1−X2. then, under any Pµ, S(X1,X2) ∼ N(0, 2), a fixed distribution that does
not depend on µ. Thus, S(X1,X2) = X1 − X2 is ancillary, whatever be the set of values of µ.

Example 18.19. Suppose X1,X2 are iid U [0, θ], and θ belongs to some subset Θ of (0,∞). Let
S(X1,X2) = X1

X2
. We can write S(X1,X2) as

S(X1,X2)
L=

θU1

θU2
=

U1

U2
,

where U1, U2 are iid U [0, 1]. Thus, under any Pθ, S(X1,X2) is distributed as the ratio of two
independent U [0, 1] variables. This is a fixed distribution that does not depend on θ. Thus,
S(X1,X2) = X1

X2
is ancillary, whatever be the set of values of θ.
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Example 18.20. Suppose X1,X2,Xn are iid N(µ, 1), and µ belongs to some subset Θ of the real
line. Let S(X1, · · · ,Xn) =

∑n
i=1(Xi − X)2. We can write S(X1, · · · ,Xn) as

S(X1, · · · ,Xn) L=
n∑

i=1

(µ + Zi − [µ + Z])2 =
n∑

i=1

(Zi − Z)2,

where Z1, · · · , Zn are iid N(0, 1). Thus, under any Pµ, S(X1, · · · ,Xn) has a fixed distribution,
namely the distribution of

∑n
i=1(Zi − Z)2 (actually, this is a χ2

n−1 distribution; see Chapter 5).
Thus, S(X1, · · · ,Xn) =

∑n
i=1(Xi − X)2 is ancillary, whatever be the set of values of µ.

Theorem 18.9. (Basu’s Theorem for the Exponential Family) In any k-parameter Expo-
nential family F , with a parameter space Θ that has a nonempty interior, the natural sufficient
statistic of the family T (X) and any F-ancillary statistic S(X) are independently distributed un-
der each θ ∈ Θ.
We will see applications of this result following the next section.

18.4.1 ∗ Neyman-Fisher Factorization and Basu’s Theorem

There is a more general version of Basu’s theorem that applies to arbitrary parametric families of
distributions. The intuition is the same as it was in the case of an Exponential family, namely, a
sufficient statistic, which contains all the information, and an ancillary statistic, which contains
no information, must be independent. For this, we need to define what a sufficient statistic means
for a general parametric family. Here is Fisher’s original definition (Fisher (1922)).

Definition 18.9. Let n ≥ 1 be given, and suppose X = (X1, · · · ,Xn) has a joint distribution Pθ,n

belonging to some family
Fn = {Pθ,n : θ ∈ Θ}.

A statistic T (X) = T (X1, · · · ,Xn) taking values in some Euclidean space is called sufficient for
the family Fn if the joint conditional distribution of X1, · · · ,Xn given T (X1, · · · ,Xn) is the same
under each θ ∈ Θ.
Thus, we can interpret the sufficient statistic T (X1, · · · ,Xn) in the following way: once we know
the value of T , the set of individual data values X1, · · · ,Xn have nothing more to convey about
θ. We can think of sufficiency as data reduction at no cost; we can save only T and discard the
individual data values, without losing any information. However, what is sufficient depends, often
crucially, on the functional form of the distributions Pθ,n. Thus, sufficiency is useful for data
reduction subject to loyalty to the chosen functional form of Pθ,n.
Fortunately, there is an easily applicable universal recipe for automatically identifying a sufficient
statistic for a given family Fn. This is the factorization theorem.

Theorem 18.10. (Neyman-Fisher Factorization Theorem) Let f(x1, · · · , xn |θ) be the joint
density function (joint pmf) corresponding to the distribution Pθ,n. Then, a statistic T = T (X1, · · · ,Xn)
is sufficient for the family Fn if and only if for any θ ∈ Θ, f(x1, · · · , xn |θ) can be factorized in the
form

f(x1, · · · , xn |θ) = g(θ, T (X1, · · · ,Xn))h(x1, · · · , xn).

See Bickel and Doksum (2006) for a proof.
The intuition of the factorization theorem is that the only way that the parameter θ is tied to the
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data values X1, · · · ,Xn in the likelihood function f(x1, · · · , xn |θ) is via the statistic T (X1, · · · ,Xn),
because there is no θ in the function h(x1, · · · , xn). Therefore, we should only care to know what
T is, but not the individual values X1, · · · ,Xn.
Here is one example on using the factorization theorem.

Example 18.21. (Sufficient statistic for a Uniform distribution). Suppose X1, · · · ,Xn are
iid and distributed as U [0, θ] for some θ > 0. Then, the likelihood function is

f(x1, · · · , xn |θ) =
n∏

i=1

1
θ
Iθ≥xi

= (
1
θ
)n

n∏
i=1

Iθ≥xi

= (
1
θ
)nIθ≥x(n) ,

where x(n) = max(x1, · · · , xn). If we let

T (X1, · · · ,Xn) = X(n), g(θ, t) = (
1
θ
)nIθ≥t, h(x1, · · · , xn) ≡ 1,

then, by the factorization theorem, the sample maximum X(n) is sufficient for the U [0, θ] family.
The result does make some intuitive sense.
Here is now the general version of Basu’s theorem.

Theorem 18.11. (General Basu Theorem) Let Fn = {Pθ,n : θ ∈ Θ} be a family of distribu-
tions. Suppose T (X1, · · · ,Xn) is sufficient for Fn, and S(X1, · · · ,Xn) is ancillary under Fn. Then
T and S are independently distributed under each Pθ,n ∈ Fn.
See Basu (1955) for a proof.

18.4.2 ∗ Applications of Basu’s Theorem to Probability

We had previously commented that the sufficient statistic by itself captures all of the information
about θ that the full knowledge of X could have provided. On the other hand, an ancillary statistic
cannot provide any information about θ, because its distribution does not even involve θ. Basu’s
theorem says that a statistic which provides all the information, and another that provides no
information, must be independent, provided the additional nonempty interior condition holds, in
order to ensure completeness of the family F . Thus, the concepts of information, sufficiency,
ancillarity, completeness, and independence come together in Basu’s theorem. However, our main
interest is to simply use Basu’s theorem as a convenient tool to quickly arrive at some results that
are purely results in the domain of probability. Here are a few such examples.

Example 18.22. (Independence of Mean and Variance for a Normal Sample). Suppose
X1,X2, · · · ,Xn are iid N(η, τ2) for some η, τ . It was stated in Chapter 4 that the sample mean
X and the sample variance s2 are independently distributed for any n, and whatever be η and τ .
We will now prove it. For this, first we establish the claim that if the result holds for η = 0, τ = 1,
then it holds for all η, τ . Indeed, fix any η, τ , and write Xi = η + τZi, 1 ≤ i ≤ n, where Z1, · · · , Zn

are iid N(0, 1). Now,

(X,

n∑
i=1

(Xi − X)2) L= (η + τZ, τ2
n∑

i=1

(Zi − Z)2).
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Therefore, X and
∑n

i=1(Xi − X)2 are independently distributed under (η, τ) if and only if Z and∑n
i=1(Zi − Z)2 are independently distributed. This is a step in getting rid of the parameters η, τ

from consideration.
But, now, we will import a parameter! Embed the N(0, 1) distribution into a larger family of
{N(µ, 1), µ ∈ R} distributions. Consider now a fictitious sample Y1, Y2, · · · , Yn from Pµ = N(µ, 1).
The joint density of Y = (Y1, Y2, · · · , Yn) is a one parameter Exponential family density with
the natural sufficient statistic T (Y ) =

∑n
i=1 Yi. By Example 18.20,

∑n
i=1(Yi − Y )2 is ancillary.

Since the parameter space for µ obviously has a nonempty interior, all the conditions of Basu’s
theorem are satisfied, and therefore, under each µ,

∑n
i=1 Yi and

∑n
i=1(Yi − Y )2 are independently

distributed. In particular, they are independently distributed under µ = 0, i.e., when the samples
are iid N(0, 1), which is what we needed to prove.

Example 18.23. (An Exponential Distribution Result). Suppose X1,X2, · · · ,Xn are iid Ex-
ponential random variables with mean λ. Then, by transforming (X1,X2, · · · ,Xn) to ( X1

X1+···+Xn
, · · · , Xn−1

X1+···+Xn
,X1+

· · · + Xn), one can show by carrying out the necessary Jacobian calculation (see Chapter 4), that
( X1

X1+···+Xn
, · · · , Xn−1

X1+···+Xn
) is independent of X1 + · · ·+ Xn. We can show this without doing any

calculations by using Basu’s theorem.
For this, once again, by writing Xi = λZi, 1 ≤ i ≤ n, where the Zi are iid standard Exponentials,
first observe that ( X1

X1+···+Xn
, · · · , Xn−1

X1+···+Xn
) is a (vector) ancillary statistic. Next observe that

the joint density of X = (X1,X2, · · · ,Xn) is a one parameter Exponential family, with the natural
sufficient statistic T (X) = X1 + · · · + Xn. Since the parameter space (0,∞) obviously contains a
nonempty interior, by Basu’s theorem, under each λ, ( X1

X1+···+Xn
, · · · , Xn−1

X1+···+Xn
) and X1 + · · ·+Xn

are independently distributed.

Example 18.24. (A Covariance Calculation). Suppose X1, · · · ,Xn are iid N(0, 1), and let X

and Mn denote the mean and the median of the sample set X1, · · · ,Xn. By using our old trick of
importing a mean parameter µ, we first observe that the difference statistic X − Mn is ancillary.
On the other hand, the joint density of X = (X1, · · · ,Xn) is of course a one parameter Exponential
family with the natural sufficient statistic T (X) = X1+· · ·+Xn. By Basu’s theorem, X1+· · ·+Xn

and X − Mn are independent under each µ, which implies

Cov(X1 + · · · + Xn,X − Mn) = 0 ⇒ Cov(X,X − Mn) = 0

⇒ Cov(X,Mn) = Cov(X,X) = Var(X) =
1
n

.

We have achieved this result without doing any calculations at all. A direct attack on this problem
will require handling the joint distribution of (X,Mn).

Example 18.25. (An Expectation Calculation). Suppose X1, · · · ,Xn are iid U [0, 1], and let
X(1),X(n) denote the smallest and the largest order statistic of X1, · · · ,Xn. Import a parameter
θ > 0, and consider the family of U [0, θ] distributions. We have shown that the largest order
statistic X(n) is sufficient; it is also complete. On the other hand, the quotient X(1)

X(n)
is ancillary.

To see this, again, write (X1, · · · ,Xn) L= (θU1, · · · , θUn), where U1, · · · , Un are iid U [0, 1]. As a
consequence, X(1)

X(n)

L= U(1)

U(n)
. So, X(1)

X(n)
is ancillary. By the general version of Basu’s theorem which

works for any family of distributions (not just an Exponential family), it follows that X(n) and
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X(1)

X(n)
are independently distributed under each θ. Hence,

E[X(1)] = E

[
X(1)

X(n)
X(n)

]
= E

[
X(1)

X(n)

]
E[X(n)]

⇒ E

[
X(1)

X(n)

]
=

E[X(1)]
E[X(n)]

=
θ

n+1
nθ

n+1

=
1
n

.

Once again, we can get this result by using Basu’s theorem without doing any integrations or
calculations at all.

Example 18.26. (A Weak Convergence Result Using Basu’s Theorem). Suppose X1,X2, · · ·
are iid random vectors distributed as a uniform in the d-dimensional unit ball. For n ≥ 1, let
dn = min1≤i≤n ||Xi||, and Dn = max1≤i≤n ||Xi||. Thus, dn measures the distance to the closest
data point from the center of the ball, and Dn measures the distance to the farthest data point.
We find the limiting distribution of ρn = dn

Dn
. Although this can be done by using other means,

we will do so by an application of Basu’s theorem.
Toward this, note that for 0 ≤ u ≤ 1,

P (dn > u) = (1 − ud)n; P (Dn > u) = 1 − und.

As a consequence, for any k ≥ 1,

E[Dn]k =
∫ 1

0

kuk−1(1 − und)du =
nd

nd + k
,

and,

E[dn]k =
∫ 1

0

kuk−1(1 − ud)ndu =
n!Γ(k

d + 1)
Γ(n + k

d + 1)
.

Now, embed the uniform distribution in the unit ball into the family of uniform distributions in
balls of radius θ and centered at the origin. Then, Dn is complete and sufficient (akin to Example
18.24), and ρn is ancillary. Therefore, once again, by the general version of Basu’s theorem, Dn

and ρn are independently distributed under each θ > 0, and so, in particular under θ = 1. Thus,
for any k ≥ 1,

E[dn]k = E[Dnρn]k = E[Dn]kE[ρn]k

⇒ E[ρn]k =
E[dn]k

E[Dn]k
=

n!Γ(k
d + 1)

Γ(n + k
d + 1)

nd + k

nd

∼
Γ(k

d + 1)e−nnn+1/2

e−n−k/d(n + k
d )n+ k

d +1/2

(by using Stirling’s approximation)

∼
Γ(k

d + 1)

n
k
d

.

Thus, for each k ≥ 1,

E

[
n1/dρn

]k

→ Γ(
k

d
+ 1) = E[V ]k/d = E[V 1/d]k,

where V is a standard Exponential random variable. This implies, because V 1/d is uniquely
determined by its moment sequence, that

n1/dρn
L⇒ V 1/d,

as n → ∞.
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18.5 Curved Exponential Family

There are some important examples in which the density (pmf) has the basic Exponential family
form f(x |θ) = e

∑ k
i=1 ηi(θ)Ti(X)−ψ(θ)h(x), but the assumption that the dimensions of Θ, and that

of the range space of (η1(θ), · · · , ηk(θ)) are the same is violated. More precisely, the dimension of
Θ is some positive integer q strictly less than k. Let us start with an example.

Example 18.27. Suppose X ∼ N(µ, µ2), µ 6= 0. Writing µ = θ, the density of X is

f(x |θ) =
1√

2π|θ|
e−

1
2θ2 (x−θ)2Ix∈R

=
1√
2π

e−
x2

2θ2 + x
θ − 1

2−log |θ|Ix∈R.

Writing η1(θ) = − 1
2θ2 , η2(θ) = 1

θ , T1(x) = x2, T2(x) = x, ψ(θ) = 1
2 + log |θ|, and h(x) = 1√

2π
Ix∈R,

this is in the form f(x |θ) = e
∑ k

i=1 ηi(θ)Ti(x)−ψ(θ)h(x), with k = 2, although θ ∈ R, which is only
one dimensional. The two functions η1(θ) = − 1

2θ2 and η2(θ) = 1
θ are related to each other by the

identity η1 = −η2
2
2 , so that a plot of (η1, η2) in the plane would be a curve, not a straight line.

Distributions of this kind go by the name of curved Exponential family. The dimension of the
natural sufficient statistic is more than the dimension of Θ for such distributions.

Definition 18.10. Let X = (X1, · · · ,Xd) have a distribution Pθ, θ ∈ Θ ⊆ Rq. Suppose Pθ has a
density (pmf) of the form

f(x |θ) = e
∑ k

i=1 ηi(θ)Ti(x)−ψ(θ)h(x),

where k > q. Then, the family {Pθ, θ ∈ Θ} is called a curved Exponential family.

Example 18.28. (A Specific Bivariate Normal). Suppose X = (X1,X2) has a bivariate
normal distribution with zero means, standard deviations equal to one, and a correlation parameter
ρ,−1 < ρ < 1. The density of X is

f(x |ρ) =
1

2π
√

1 − ρ2
e
− 1

2(1−ρ2)

[
x2
1+x2

2−2ρx1x2

]
Ix1,x2∈R

=
1

2π
√

1 − ρ2
e
− x2

1+x2
2

2(1−ρ2)
+ ρ

1−ρ2 x1x2Ix1,x2∈R.

Therefore, here we have a curved Exponential family with q = 1, k = 2, η1(ρ) = − 1
2(1−ρ2) , η2(ρ) =

ρ
1−ρ2 , T1(x) = x2

1 + x2
2, T2(x) = x1x2, ψ(ρ) = 1

2 log(1 − ρ2), and h(x) = 1
2π Ix1,x2∈R.

Example 18.29. (Poissons with Random Covariates). Suppose given Zi = zi, i = 1, 2, · · · , n,Xi

are independent Poi(λzi) variables, and Z1, Z2, · · · , Zn have some joint pmf p(z1, z2, · · · , zn). It is
implicitly assumed that each Zi > 0 with probability one. Then, the joint pmf of (X1,X2, · · · ,Xn, Z1, Z2, · · · , Zn)
is

f(x1, · · · , xn, z1, · · · , zn |λ) =
n∏

i=1

e−λzi(λzi)xi

xi!
p(z1, z2, · · · , zn)Ix1,···,xn∈N0Iz1,z2,···,zn∈N1

= e−λ
∑ n

i=1 zi+(
∑ n

i=1 xi) log λ
n∏

i=1

zxi
i

xi!
p(z1, z2, · · · , zn)Ix1,···,xn∈N0Iz1,z2,···,zn∈N1 ,
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where N0 is the set of nonnegative integers, and N1 is the set of positive integers.
This is in the curved Exponential family with

q = 1, k = 2, η1(λ) = −λ, η2(λ) = log λ, T1(x, z) =
n∑

i=1

zi, T2(x, z) =
n∑

i=1

xi,

and

h(x, z) =
n∏

i=1

zxi
i

xi!
p(z1, z2, · · · , zn)Ix1,···,xn∈N0Iz1,z2,···,zn∈N1 .

If we consider the covariates as fixed, the joint distribution of (X1,X2, · · · ,Xn) becomes a regular
one parameter Exponential family.

18.6 Exercises

Exercise 18.1. Show that the geometric distribution belongs to the one parameter Exponential
family if 0 < p < 1, and write it in the canonical form and by using the mean parametrization.

Exercise 18.2. (Poisson Distribution). Show that the Poisson distribution belongs to the one
parameter Exponential family if λ > 0. Write it in the canonical form and by using the mean
parametrization.

Exercise 18.3. (Negative Binomial Distribution). Show that the negative binomial distri-
bution with parameters r and p belongs to the one parameter Exponential family if r is considered
fixed and 0 < p < 1. Write it in the canonical form and by using the mean parametrization.

Exercise 18.4. * (Generalized Negative Binomial Distribution). Show that the generalized
negative binomial distribution with the pmf f(x |p) = Γ(α+x)

Γ(α)x! pα(1 − p)x, x = 0, 1, 2, · · · belongs to
the one parameter Exponential family if α > 0 is considered fixed and 0 < p < 1.
Show that the two parameter generalized negative binomial distribution with the pmf f(x |α, p) =
Γ(α+x)
Γ(α)x! pα(1 − p)x, x = 0, 1, 2, · · · does not belong to the two parameter Exponential family.

Exercise 18.5. (Normal with Equal Mean and Variance). Show that the N(µ, µ) distribu-
tion belongs to the one parameter Exponential family if µ > 0. Write it in the canonical form and
by using the mean parametrization.

Exercise 18.6. * (Hardy-Weinberg Law). Suppose genotypes at a single locus with two alleles
are present in a population according to the relative frequencies p2, 2pq, and q2, where q = 1−p, and
p is the relative frequency of the dominant allele. Show that the joint distribution of the frequencies
of the three genotypes in a random sample of n individuals from this population belongs to a one
parameter Exponential family if 0 < p < 1. Write it in the canonical form and by using the mean
parametrization.

Exercise 18.7. (Beta Distribution). Show that the two parameter Beta distribution belongs
to the two parameter Exponential family if the parameters α, β > 0. Write it in the canonical form
and by using the mean parametrization.
Show that symmetric Beta distributions belong to the one parameter Exponential family if the
single parameter α > 0.
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Exercise 18.8. * (Poisson Skewness and Kurtosis). Find the skewness and kurtosis of a
Poisson distribution by using Theorem 18.3.

Exercise 18.9. * (Gamma Skewness and Kurtosis). Find the skewness and kurtosis of a
Gamma distribution, considering α as fixed, by using Theorem 18.3.

Exercise 18.10. * (Distributions with Zero Skewness). Show that the only distributions in
a canonical one parameter Exponential family such that the natural sufficient statistic has a zero
skewness are the normal distributions with a fixed variance.

Exercise 18.11. * (Identifiability of the Distribution). Show that distributions in the non-
singular canonical one parameter Exponential family are identifiable, i.e., Pη1 = Pη2 only if η1 = η2.

Exercise 18.12. * (Infinite Differentiability of Mean Functionals). Suppose Pθ, θ ∈ Θ is
a one parameter Exponential family and φ(x) is a general function. Show that at any θ ∈ Θ0 at
which Eθ[|φ(X)|] < ∞, µφ(θ) = Eθ[φ(X)] is infinitely differentiable, and can be differentiated any
number of times inside the integral (sum).

Exercise 18.13. * (Normalizing Constant Determines the Distribution). Consider a
canonical one parameter Exponential family density (pmf) f(x |θ) = eηx−ψ(η)h(x). Assume that
the natural parameter space T has a nonempty interior. Show that ψ(η) determines h(x).

Exercise 18.14. Calculate the mgf of a (k + 1) cell multinomial distribution by using Theorem
18.7.

Exercise 18.15. * (Multinomial Covariances). Calculate the covariances in a multinomial
distribution by using Theorem 18.7.

Exercise 18.16. * (Dirichlet Distribution). Show that the Dirichlet distribution defined in
Chapter 4, with parameter vector α = (α1, · · · , αn+1), αi > 0 for all i, is an (n + 1)-parameter
Exponential family.

Exercise 18.17. * (Normal Linear Model). Suppose given an n × p nonrandom matrix X, a
parameter vector β ∈ Rp, and a variance parameter σ2 > 0, Y = (Y1, Y2, · · · , Yn) ∼ Nn(Xβ, σ2In),
where In is the n × n identity matrix. Show that the distribution of Y belongs to a full rank
multiparameter Exponential family.

Exercise 18.18. (Fisher Information Matrix). For each of the following distributions, calcu-
late the Fisher Information Matrix:
(a) Two parameter Beta distribution;
(b) Two parameter Gamma distribution;
(c) Two parameter inverse Gaussian distribution;
(d) Two parameter normal distribution.

Exercise 18.19. * (Normal with an Integer Mean). Suppose X ∼ N(µ, 1), where µ ∈
{1, 2, 3, · · ·}. Is this a regular one parameter Exponential family?

Exercise 18.20. * (Normal with an Irrational Mean). Suppose X ∼ N(µ, 1), where µ is
known to be an irrational number. Is this a regular one parameter Exponential family?
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Exercise 18.21. * (Normal with an Integer Mean). Suppose X ∼ N(µ, 1), where µ ∈
{1, 2, 3, · · ·}. Exhibit a function g(X) 6≡ 0 such that Eµ[g(X)] = 0 for all µ.

Exercise 18.22. (Application of Basu’s Theorem). Suppose X1, · · · ,Xn is an iid sample
from a standard normal distribution, and suppose X(1),X(n) are the smallest and the largest order
statistics of X1, · · · ,Xn, and s2 is the sample variance. Prove, by applying Basu’s theorem to a
suitable two parameter Exponential family, that E[X(n)−X(1)

s ] = 2E[X(n)]

E(s) .

Exercise 18.23. (Mahalanobis’s D2 and Basu’s Theorem). Suppose X1, · · · ,Xn is an iid
sample from a d-dimensional normal distribution Nd(0,Σ), where Σ is positive definite. Suppose
S is the sample covariance matrix (see Chapter 5) and X the sample mean vector. The statistic
D2

n = nX
′
S−1X is called the Mahalanobis D2- statistic. Find E(D2

n) by using Basu’s theorem.
Hint: Look at Example 18.13, and Theorem 5.10.

Exercise 18.24. (Application of Basu’s Theorem). Suppose Xi, 1 ≤ i ≤ n are iid N(µ1, σ
2
1),

Yi, 1 ≤ i ≤ n are iid N(µ2, σ
2
2), where µ1, µ2 ∈ R, and σ2

1 , σ2
2 > 0. Let X, s2

1 denote the mean
and the variance of X1, · · · ,Xn, and Y , s2

2 denote the mean and the variance of Y1, · · · , Yn. Let
also r denote the sample correlation coefficient based on the pairs (Xi, Yi), 1 ≤ i ≤ n. Prove that
X,Y , s2

1, s
2
2, r are mutually independent under all µ1, µ2, σ1, σ2.

Exercise 18.25. (Mixtures of Normal). Show that the mixture distribution .5N(µ, 1) +
.5N(µ, 2) does not belong to the one parameter Exponential family. Generalize this result to
more general mixtures of normal distributions.

Exercise 18.26. (Double Exponential Distribution). (a) Show that the double exponential
distribution with a known σ value and an unknown mean does not belong to the one parameter
Exponential family, but the double exponential distribution with a known mean and an unknown
σ belongs to the one parameter Exponential family.
(b) Show that the two parameter double exponential distribution does not belong to the two
parameter Exponential family.

Exercise 18.27. * (A Curved Exponential Family). Suppose X ∼ Bin(n, p), Y ∼ Bin(m, p2),
and that X,Y are independent. Show that the distribution of (X,Y ) is a curved Exponential fam-
ily.

Exercise 18.28. (Equicorrelation Multivariate Normal). Suppose (X1,X2, · · · ,Xn) are
jointly multivariate normal with general means µi, variances all one, and a common pairwise
correlation ρ. Show that the distribution of (X1,X2, · · · ,Xn) is a curved Exponential family.

Exercise 18.29. (Poissons with Covariates). Suppose X1,X2, · · · ,Xn are independent Pois-
sons with E(Xi) = λeβzi , λ > 0,−∞ < β < ∞. The covariates z1, z2, · · · , zn are considered fixed.
Show that the distribution of (X1,X2, · · · ,Xn) is a curved Exponential family.

Exercise 18.30. (Incomplete Sufficient Statistic). Suppose X1, · · · ,Xn are iid N(µ, µ2), µ 6=
0. Let T (X1, · · · ,Xn) = (

∑n
i=1 Xi,

∑n
i=1 X2

i ). Find a function g(T ) such that Eµ[g(T )] = 0 for all
µ, but Pµ(g(T ) = 0) < 1 for any µ.
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Exercise 18.31. * (Quadratic Exponential Family). Suppose the natural sufficient statistic
T (X) in some canonical one parameter Exponential family is X itself. By using the formula
in Theorem 18.3 for the mean and the variance of the natural sufficient statistic in a canonical
one parameter Exponential family, characterize all the functions ψ(η) for which the variance of
T (X) = X is a quadratic function of the mean of T (X), i.e., Varη(X) ≡ a[Eη(X)]2 + bEη(X) + c

for some constants a, b, c.

Exercise 18.32. (Quadratic Exponential Family). Exhibit explicit examples of canonical one
parameter Exponential families which are quadratic Exponential families.
Hint: There are six of them, and some of them are common distributions, but not all. See Morris
(1982), Brown (1986).
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