
Right or Wrong, Our Confidence Intervals

A wonderful thing about tenure is that once I had it, I never had to control

my irresistible urge to waste my time on the most useless of all things. The

other day, a close friend said to me, but, I was almost right! I have not the

slightest notion why this pedantic remark of a friend made me wonder if

our everyday confidence intervals (sets) are almost right even when they are

wrong, and squarely right when they are right. At the clear risk of saying

things that were all done a long time ago, I want to report a few simple,

but perhaps interesting, facts on how right are our confidence sets when they

are right, and how wrong are they when they are wrong, and how does the

dimension of the problem affect the answers, precisely.

Simplicity has its virtues. So, how about starting with a simple example that

we can easily relate to. Take the t interval, say Cn, X̄ ± tα/2,n−1
s√
n

for the

mean µ of a one dimensional CDF F with a finite variance. Its margin of

error is of course δn = tα/2,n−1
s√
n
. When our t interval misses the true µ, the

amount by which it misses, say dn, is the distance of µ from the appropriate

endpoint of Cn. Expressed in units of the margin of error, the amount by

which we miss is wn = dn

δn
; dn and δn both go down at the rate

√
n, and it

seemed as though wn is a better index practically, than simply dn. I wanted

to understand how large wn is when the t interval fails, for example, what is

EF (wn |µ 6∈ Cn).

Of course, I did simulate it first. I simulated for seven choices of F,N(0, 1),

standard double exponential, t3, U [−1, 1], Beta(1/2, 1/2), Poisson(4), and χ2
4,

using in each case a simulation size of 8, 000 and α = .05, n = 50, a gentle

sample size. My simulation averages of wn (conditioned on failure) in the

seven cases were .23, .18, .19, .22, .21, .20, and .24. I understood the simula-

tions to mean that the 95% t interval misses µ by about 20% of the margin

of error when it misses. But why are the simulation averages all so tanta-

lizingly close to 20% although the distributions simulated are very different?

We must then expect that there is a theorem here. It turns out that whenever

F has a finite variance, EF (wn |µ 6∈ Cn) → 2φ(zα/2)

αzα/2
− 1 = .1927 for α = .05,

and this explains why my simulation averages all hovered around .2. We can

say more; we have, for w > 0, PF (wn > w |µ 6∈ Cn) → 2[1−Φ(zα/2+w)]

α
. I will

apply this to predicting a US Presidential election in closing. Higher order
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expressions for PF (wn > w |µ 6∈ Cn) are derivable (in nonlattice cases) by

using results in Hall (1987, AOP).

The other side of the coin is how right is the interval when it is right, for

example, EF ( |X̄−µ|
δn

|µ ∈ Cn). And here, it turned out that this converges to
2[φ(0)−φ(zα/2)]

(1−α)zα/2
= .3657 for α = .05; that is, when we succeed, whatever be our

F , the true µ is about 63% deep inside the interval from its boundary. I will

let others decide if these two numbers .1927, .3657 are good or bad.

For the extension to higher dimensions, a little more notation is unavoidable.

I let F be a CDF in p-space with a covariance matrix Σ, which I treat as

known, and as my confidence set I take the usual (Gaussian) ellipsoid cen-

tered at the sample mean and oriented by Σ. The known Σ assumption does

not affect first order asymptotics in this problem, if p is held fixed. One can

write a formula; E(wn |µ 6∈ Cn) =
√

2Γ( p+1
2

)

αΓ( p
2
)
√

χ2
α,p

P (χ2
p+1 > χ2

α,p).

Now, the analogous limit result on EF (wn |µ 6∈ Cn) needs a bit more work, as

one needs to use higher order Stirling approximations to the Gamma function,

and Edgeworth expansions for a χ2 statistic, and Cornish-Fisher expansions

for a χ2 percentile, and then collect terms. My personal curiosity was about

large p, and it turned out that E(wn |µ 6∈ Cn) =
φ(zα)

α
−zα√

2p
+ O(p−1); so, in

units of the margin of error, the amount by which the ellipsoid misses when

it does goes down with the number of dimensions at the rate 1√
p
. Higher the

dimension, when we miss, the true µ is more just around the corner.

I close the circle by returning to one dimension. Take the case of predicting

a very close US Presidential election. Stratification and nonresponse aside,

we are dealing with a binomial p. If we poll n ≥ 6765 voters, and use a 90%

Wald interval, then the pollster may state that the poll’s margin of error is

at most1%, and in case, by misfortune, the poll is wrong, the true p is within

at most another half a percentage point with a 90% probability. Very many

public polls use only about 1000 voters. If we poll only 1000 voters, we can

claim that our margin of error is at most 2.6%, and in case our poll is wrong,

the true p is within at most another 1.5% with a 90% probability.

This story remains the same for essentially all LAN problems. The corre-

sponding Bayesian problems are similar. And now, I must find myself some

other completely useless thought to keep me entertained!
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