
Learning from a Student

I have only a nebulous idea of why I came into academics. It ran in the fam-

ily, and everyone assumed that I would be a teacher too. In my thirty years

as a professional mathematician, I have learned most of what I know from

my own teachers and countless fellow researchers. But I now realize that

every once in a while, a twenty something teaches and enlightens me like no

one did ever before. Today, I wish to share my wondrous joy of mingling

with a bright student.

A year ago, in teaching the canonical doctoral course on inference, I followed

the predictable path of telling my class about various methods of point esti-

mation; UMVUEs when they exist, MLEs, moment estimates, Bayes, default

Bayes, empirical Bayes, and minimax estimates. I was using as my pedestal

the problem of estimating the probability of no events, namely e−λ, in the

Poisson case, a relevant problem in some applications. If we write T for the

sample total, X̄ for the sample mean, and W for the number of zero values,

then, fortunately, we can write most of these estimates in closed form: the

UMVUE is (n−1
n

)T , the MLE is e−X̄ , the Jeffrey-Bayes estimate is ( n
n+1

)T ,

empirical Bayes stemming from an exponential prior is ( nT+n
(n+1)T+n

)T+1, and

the basic moment estimate is W
n

. The minimax estimate is more elusive;

I think that compactness arguments and analyticity derived from the ex-

ponential family structure imply that it would be Bayes against a finitely

supported prior. I do not believe that the support or the masses can be

found except, perhaps, approximately. There is plenty of work in the similar

Gaussian problem, and there, Peter Kempthorne has written a program for

iterative computing of the required prior. A student in the class asked me

privately which of these numerous estimates should be used.

I had never consciously thought about the question. But the student led me

there. My first instincts told me to derive asymptotic expansions for their

bias, variance, and MSE, and after patient mathematical work, a crystalline

idealistic picture emerged. Differences would show up only in the n−2 term

, and comparison of the coefficients of the n−2 term shows that for λ ≤ 4
7
,

the Jeffrey-Bayes estimate has the smallest MSE, for 4
7

< λ < 4
5
, the MLE

has the smallest MSE, and surprisingly, otherwise, i.e., for all λ ≥ 4
5
, it is the

UMVUE. I later understood that the MLE rarely came out on top because
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I used it without a bias correction.

I was now quite curious what do the estimate values look like for practical

data. And so, I simulated some data and evaluated the estimates. For exam-

ple, for 30 Poisson values with a true λ = 2, so that e−λ = .1353, the UMV

was .1448, the MLE .1496, the Jeffrey-Bayes was .1543, and the EB .1542.

Since λ = 2 > 4
5
, the predicted winner is the UMV, and it did win! But,

frankly, I did not much care, because the various estimates differed by less

than .01.

What did I learn from my student’s question that I want to tell my future

students? I am gratified that the theorem predicted the correct winner; this

experience reinforced my immutable faith in the utility of a theorem, that a

theorem exposes the landscape, all at one shot. But, because of my student,

I am now also more conscious of the need to tell my students about bias cor-

rection of an MLE. I have never warned my students about that in the past. I

also learned that different foundational and mathematical approaches to the

same problem may at the end result in essentially the same conclusion, but

this does not diminish the aesthetic and educational importance of knowing

and understanding the different approaches.

I want to mention another anecdote that has educated me, this one related

to a student too. It was demonstrated in Brown, Cai, and DasGupta (2001,

02, 03) that operating characteristics of the score confidence interval for the

binomial p are significantly better than those of the usually prescribed Wald

interval. Lehmann and Romano (2004) and Bickel and Doksum (2003) have

implicitly recommended that the score interval be used in that problem. In

my own lectures, I have done the same for a few years now. When I asked

my students to compute the intervals for real data, a student said to me that

he noticed that when computed, the score and the Wald intervals are not

meaningfully different. The question inspired me to try to understand this

problem a little better. I found, by a theoretical calculation, that when the

Wald interval misses the correct p, it misses by just a hair. However, the

differences between the limits of the Wald and the score interval are such

that, when the Wald interval misses the true p, the score interval tends to

catch it by the skin of its teeth. Alan Agresti and I have looked at this more

comprehensively; as one example, for n = 50 and p = .1, the conditional
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probability that the score interval catches the true p when the Wald interval

misses it is (exactly) .880! However, the limits of the two intervals are phys-

ically close by; the upper limits are within .01 of each other on the average.

Here again, my student took me to a point where I feel the sense of an inter-

nal conundrum. Even if to a practitioner’s eyes, as intervals, the difference

between the two is of no practical importance, in operating characteristics,

the score interval comes out very much the better! And, thankfully, we can

understand this apparent paradox theoretically, as I explained above.

In small but significant ways, these two events were each an eye-opener for

me. In my narcissistic moments, when I thought that I knew something, a

young student showed me that I didn’t know it. How glad I am that I now

know that I never knew that I didn’t know it. I am glad that my parents

asked me to be a teacher.
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