
29 The Bootstrap

The bootstrap is a resampling mechanism designed to provide information about

the sampling distribution of a functional T (X1, X2, ..., Xn, F ) where X1, X2, ..., Xn

are sample observations and F is the CDF from which X1, X2, ..., Xn are inde-

pendent observations. The bootstrap is not limited to the iid situation. It has

been studied for various kinds of dependent data and complex situations. In fact,

this versatile nature of the bootstrap is the principal reason for its popularity.

There are numerous texts and reviews of bootstrap theory and methodology, at

varied technical levels. We recommend Efron and Tibshirani(1993) and Davison

and Hinkley(1997) for applications oriented broad expositions, and Hall(1992), and

Shao and Tu(1995) for detailed theoretical development. Modern reviews include

Hall(2003),Beran(2003),Bickel(2003),and Efron(2003). Bose and Politis(1992) is a

well written nontechnical account and Lahiri(2003) is a rigorous treatment of the

bootstrap for various kinds of dependent data.

Suppose X1, X2, . . . , Xn
iid∼ F and T (X1, X2, ..., Xn, F ) is a functional, e.g.,

T (X1, X2, ..., Xn, F ) =
√

n(X̄−µ)
σ

, where µ = EF (X1) and σ2 = V arF (X1). In sta-

tistical problems, we frequently need to know something about the sampling distri-

bution of T , e.g., PF (T (X1, X2, ..., Xn, F ) ≤ t). If we had replicated samples from

the population, resulting in a series of values for the statistic T , then we could form

estimates of PF (T ≤ t) by counting how many of the Ti’s are ≤ t. But statistical

sampling is not done that way. We do not usually obtain replicated samples; we

obtain just one set of data of some size n. However, let us think for a moment of

a finite population. A large sample from a finite population should be well rep-

resentative of the full population itself. So replicated samples (with replacement)

from the original sample, which would just be an iid sample from the empirical

CDF Fn, could be regarded as proxies for replicated samples from the population

itself, provided n is large. Suppose for some number B, we draw B resamples of

size n from the original sample. Denoting the resamples from the original sample

as (X∗
11, X

∗
12, ..., X

∗
1n), (X∗

21, X
∗
22, ..., X

∗
2n), ..., (X∗

B1, X
∗
B2, ..., X

∗
Bn), with corresponding

values T ∗
1 , T ∗

2 , ..., T ∗
B for the functional T , one can use simple frequency based esti-

mates such as
#{j:T ∗

j ≤t}
B

to estimate PF (T ≤ t). This is the basic idea of the boot-

strap. Over time, the bootstrap has found its use in estimating other quantities,

e.g., V arF (T ) or quantiles of T . The bootstrap is thus an omnibus mechanism

for approximating sampling distributions or functionals of sampling distributions
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of statistics. Since frequentist inference is mostly about sampling distributions of

suitable statistics, the bootstrap is viewed as an immensely useful and versatile

tool, further popularized by its automatic nature. However, it is also frequently

misused in situations where it should not be used. In this chapter, we give a broad

methodological introduction to various types of bootstrap, explain their theoretical

underpinnings, discuss their successes and limitations, and try them out in some

trial cases.

29.1 Bootstrap Distribution and Meaning of Consistency

The formal definition of the bootstrap distribution of a functional is the following.

Definition 29.1. Let X1, X2, . . . , Xn
iid∼ F and T (X1, X2, ..., Xn, F ) a given func-

tional. The ordinary bootstrap distribution of T is defined as

HBoot(x) = PFn(T (X∗
1 , ..., X

∗
n, Fn) ≤ x),

where (X∗
1 , ..., X

∗
n) is an iid sample of size n from the empirical CDF Fn.

It is common to use the notation P∗ to denote probabilities under the bootstrap

distribution.

Remark: PFn(·) corresponds to probability statements corresponding to all the nn

possible with replacement resamples from the original sample (X1, . . . , Xn). Since

recalculating T from all nn resamples is basically impossible unless n is very small,

one uses a smaller number of B resamples and recalculates T only B times. Thus

HBoot(x) is itself estimated by a Monte Carlo, known as Bootstrap Monte Carlo. So

the final estimate for PF (T (X1, X2, ..., Xn, Fn) ≤ x) absorbs errors from two sources:

i) pretending (X∗
i1, X

∗
i2, ..., X

∗
in) to be bona fide resamples from F ; ii) estimating the

true HBoot(x) by a Monte Carlo. By choosing B adequately large, the Monte Carlo

error is generally ignored. The choice of B which would let one ignore the Monte

Carlo error is a hard mathematical problem; Hall (1986,1989) are two key references.

It is customary to choose B ≈ 300 for variance estimation and a somewhat larger

value for estimating quantiles. It is hard to give any general reliable prescriptions

on B.

It is important to note that the resampled data need not necessarily be obtained

from the empirical CDF Fn. Indeed, it is a natural question whether resampling from

a smoothed nonparametric distribution estimator can result in better performance.

Examples of such smoothed distribution estimators are integrated kernel density
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estimates. It turns out that in some problems, smoothing does lead to greater

accuracy, typically in the second order. See Silverman and Young (1987) and Hall

et al. (1989) for practical questions and theoretical analysis of the benefits of using

a smoothed bootstrap. Meanwhile, bootstrapping from Fn is often called the naive

or orthodox bootstrap and we will sometimes use this terminology.

Remark: At first glance, the idea appears to be a bit too simple to actually work.

But one has to have a definition for what one means by the bootstrap working in a

given situation. It depends on what one wants the bootstrap to do. For estimating

the CDF of a statistic, one should want HBoot(x) to be numerically close to the

true CDF Hn(x) of T . This would require consideration of metrics on CDFs. For a

general metric ρ, the definition of “the bootstrap working” is the following.

Definition 29.2. Let F,G be two CDFs on a sample space X . Let ρ(F,G) be a

metric on the space of CDFs on X . For X1, X2, . . . , Xn
iid∼ F , and a given functional

T (X1, X2, ..., Xn, F ), let

Hn(x) = PF (T (X1, X2, ..., Xn, F ) ≤ x),

HBoot(x) = P∗(T (X∗
1 , X

∗
2 , ..., X

∗
n, Fn) ≤ x).

We say that the bootstrap is weakly consistent under ρ for T if ρ(Hn, HBoot)
P⇒ 0

as n → ∞. We say that the bootstrap is strongly consistent under ρ for T if

ρ(Hn, HBoot)
a.s.⇒ 0.

Remark: Note that the need for mentioning convergence to zero in probability

or a.s. in this definition is due to the fact that the bootstrap distribution HBoot is

a random CDF. That HBoot is a random CDF has nothing to do with bootstrap

Monte Carlo; it is a random CDF because as a function it depends on the original

sample (X1, X2, ..., Xn). Thus, the bootstrap uses a random CDF to approximate a

deterministic but unknown CDF, namely the true CDF Hn of the functional T .

Example 29.1. How does one apply the bootstrap in practice? Suppose for exam-

ple, T (X1, . . . , Xn, F ) =
√

n(X̄−µ)
σ

. In the orthodox bootstrap scheme, we take iid

samples from Fn. The mean and the variance of the empirical distribution Fn are

X̄ and s2 = 1
n

∑n
i=1(Xi − X̄)2 (note the n rather than n − 1 in the denominator).

The bootstrap is a device for estimating PF (
√

n(X̄−µ(F ))
σ

≤ x) by PFn(
√

n(X̄∗
n−X̄)
s

≤ x).

We will further approximate PFn(
√

n(X̄∗
n−X̄)
s

≤ x) by resampling only B times from

the original sample set {X1, . . . , Xn}. In other words, finally we will report as our

estimate for PF (
√

n(X̄−µ)
σ

≤ x) the number #{j :
√

n(X̄∗
n,j−X̄)

s
≤ x}/B.
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29.2 Consistency in the Kolmogorov and Wasserstein Met-

ric

We start with the case of the sample mean of iid random variables. If X1, . . . , Xn
iid∼ F and if V arF (Xi) < ∞, then

√
n(X̄−µ) has a limiting normal distribution by the

CLT. So a probability like PF (
√

n(X̄−µ) ≤ x) could be approximated by, e.g., Φ(x
s
),

where s is the sample standard deviation. An interesting property of the bootstrap

approximation is that even when the CLT approximation Φ(x
s
) is available, the

bootstrap approximation may be more accurate. We will later describe theoretical

results to this regard. But first we present two consistency results corresponding to

two specific metrics that have earned a special status in this literature. The two

metrics are

(i) Kolmogorov metric

K(F,G) = sup
−∞<x<∞

|F (x) − G(x)|;

(ii) Mallows-Wasserstein metric

`2(F,G) = inf
Γ2,F,G

(E|Y − X|2) 1
2 ,

where X ∼ F , Y ∼ G and Γ2,F,G is the class of all joint distributions of (X,Y )

with marginals F and G, each with a finite second moment.

`2 is a special case of the more general metric

`p(F,G) = inf
Γp,F,G

(E|Y − X|p) 1
p ,

with the infimum being taken over the class of joint distributions with marginals as

F,G, and the pth moment of F,G being finite.

Of these, the Kolmogorov metric is universally regarded as a natural one. But

how about `2? `2 is a natural metric for many statistical problems because of its

interesting property that `2(Fn, F ) → 0 iff Fn
L⇒ F and EFn(X i) → EF (X i) for

i = 1, 2. Since one might want to use the bootstrap primarily for estimating the

CDF, mean and variance of a statistic, consistency in `2 is just the right result for

that purpose.

Theorem 29.1. Suppose X1, X2, . . . , Xn
iid∼ F and suppose EF (X2

1 ) < ∞. Let

T (X1, . . . , Xn, F ) =
√

n(X̄ − µ). Then K(Hn, HBoot) and `2(Hn, HBoot)
a.s−→ 0 as
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n → ∞.

Remark: Strong consistency in K is proved in Singh (1981) and that for `2 is

proved in Bickel and Freedman (1981). Notice that EF (X2
1 ) < ∞ guarantees that√

n(X̄−µ) admits a CLT. And the theorem above says that the bootstrap is strongly

consistent (wrt K and `2) under that assumption. This is in fact a very good rule of

thumb: if a functional T (X1, X2, ..., Xn, F ) admits a CLT, then the bootstrap would

be at least weakly consistent for T . Strong consistency might require a little more

assumption.

We sketch a proof of the strong consistency in K. The proof requires use of the

Berry-Esseen inequality, Polya’s theorem ( see Chapter 1 or Chapter 2), and a

strong law known as the Zygmund-Marcinkiewicz strong law, which we state below.

Lemma .(Zygmund-Marcinkiewicz SLLN) Let Y1, Y2, . . . be iid random

variables with cdf F and suppose, for some 0 < δ < 1, EF |Y1|δ < ∞. Then

n−1/δ
∑n

i=1 Yi
a.s.⇒ 0.

We are now ready to sketch the proof of strong consistency of HBoot under K.

Using the definition of K, we can write K(Hn, HBoot) = supx |PF {Tn ≤ x} − P∗ {T ∗
n ≤ x}|

= supx

∣∣∣PF

{
Tn

σ
≤ x

σ

} − P∗
{

T ∗
n

s
≤ x

s

}∣∣∣
= supx

∣∣∣PF

{
Tn

σ
≤ x

σ

} − Φ
(

x
σ

)
+ Φ

(
x
σ

) − Φ
(

x
s

)
+ Φ

(
x
s

) − P∗
{

T ∗
n

s
≤ x

s

}∣∣∣
≤ supx

∣∣PF

{
Tn

σ
≤ x

σ

} − Φ
(

x
σ

)∣∣ + supx

∣∣Φ (
x
σ

) − Φ
(

x
s

)∣∣
+ supx

∣∣∣Φ (
x
s

) − P∗
{

T ∗
n

s
≤ x

s

}∣∣∣
= An + Bn + Cn, say.

That An → 0 is a direct consequence of Polya’s Theorem. Also, s2 converges

almost surely to σ2 and so, by the Continuous Mapping Theorem, s converges almost

surely to σ. Then Bn ⇒ 0 almost surely by the fact that Φ(·) is a uniformly

continuous function . Finally, we can apply the Berry-Esseen Theorem to show that

Cn goes to zero:

Cn ≤ 4

5
√

n
· EFn|X∗

1 − Xn|3
[VarFn(X∗

1 )]3/2

=
4

5
√

n
·
∑n

i=1 |Xi − Xn|3
ns3

≤ 4

5n3/2s3
· 23

[
n∑

i=1

|Xi − µ|3 + n|µ − Xn|3
]

=
M

s3

[
1

n3/2

n∑
i=1

|Xi − µ|3 +
|Xn − µ|3√

n

]
,
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where M = 32
5
.

Since s ⇒ σ > 0 and Xn ⇒ µ, it is clear that |Xn − µ|3/(√ns3) ⇒ 0 almost

surely. As regards the first term, let Yi = |Xi − µ|3 and δ = 2/3. Then the {Yi} are

iid and

E|Yi|δ = EF |Xi − µ|3·2/3 = VarF (X1) < ∞.

It now follows from the Zygmund-Marcinkiewicz SLLN that

1

n3/2

n∑
i=1

|Xi − µ|3 = n−1/δ

n∑
i=1

Yi ⇒ 0, a.s., as n → ∞.

Thus, An + Bn + Cn ⇒ 0 almost surely, and hence K(Hn, HBoot) ⇒ 0.

We now proceed to a proof of convergence under the Wasserstein-Kantorovich

-Mallows metric `2. Recall that convergence in `2 allows us to conclude more than

weak convergence. We start with a sequence of results that enumerate useful prop-

erties of the `2 metric.

These facts (see Bickel and Doksum (1981)) are needed to prove consistency of

HBoot in the `2 metric.

Lemma. Let Gn, G ∈ Γ2. Then `2(Gn, G) → 0 if and only if

Gn
L⇒ G and lim

n→∞

∫
xkdGn(x) =

∫
xk dG(x), k = 1, 2.

Lemma. Let G,H ∈ Γ2 and suppose Y1, . . . , Yn are iid G and Z1, . . . , Zn are

iid H. If G(n) is the cdf of
√

n(Ȳ − µG) and H(n) is the cdf of
√

n(Z̄ − µH), then

`2(G
(n), H(n)) ≤ `2(G,H), ∀ n ≥ 1.

Lemma. (Glivenko-Cantelli) Let X1, X2, . . . , Xn be iid F and let Fn be the

empirical cdf. Then Fn(x) → F (x) almost surely, uniformly in x.

Lemma. Let X1, X2, . . . , Xn be iid F and let Fn be the empirical cdf. Then

`2(Fn, F ) ⇒ 0 almost surely.

The proof that `2(Hn, HBoot) converges to zero almost surely follows on simply

putting together the above lemmas. We omit this easy verification.

It is natural to ask if the bootstrap is consistent for
√

n(X̄ − µ) even when

EF (X2
1 ) = ∞. If we insist on strong consistency, then the answer is negative. The

point is that the sequence of bootstrap distributions is a sequence of random CDFs

and so it cannot be apriori expected that it will converge to a fixed CDF. It may very
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well converge to a random CDF, depending on the particular realization X1, X2, . . . .

One runs into this problem if EF (X2
1 ) does not exist. We state the result below.

Theorem 29.2. Suppose X1, X2, . . . are iid random variables. There exist µn(X1, X2,

..., Xn), an increasing sequence cn and a fixed CDF G(x) such that

P∗




n∑
i=1

(X∗
i − µ(X1, . . . , Xn))

cn

≤ x


 a.s.−→ G(x),

if and only if EF (X2
1 ) < ∞, in which case cn√

n
−→1.

Remark: The moral of this theorem is that the existence of a nonrandom limit

itself would be a problem if EF (X2
1 ) = ∞. See Athreya (1987), Giné and Zinn

(1989) and Hall (1990) for proofs and additional examples.

The consistency of the bootstrap for the sample mean under finite second mo-

ments is also true for the multivariate case. We record consistency under the Kol-

mogorov metric next; see Shao and Tu (1995) for a proof.

Theorem 29.3. Let X1
∼

, · · · , Xn
∼

, · · · be iid F , with CovF (X1
∼

) = Σ, Σ finite. Let

T (X1
∼

, X2
∼

, ..., Xn
∼

, F ) =
√

n(X̄
∼
−µ

∼
). Then K(HBoot, Hn)

a.s.−→ 0 as n → ∞.

29.3 Delta Theorem for the Bootstrap

We know from the ordinary delta theorem that if T admits a CLT and g(·) is a

smooth transformation, then g(T ) also admits a CLT. If we were to believe in our

rule of thumb, then this would suggest that the bootstrap should be consistent for

g(T ) if it is already consistent for T . For the case of sample mean vectors, the

following result holds; again, see Shao and Tu (1995) for a proof.

Theorem 29.4. Let X1
∼

, X2
∼

, ..., Xn
∼

iid∼ F , and let Σp×p = CovF (X1
∼

) be finite. Let

T (X1
∼

, X2
∼

, ..., Xn
∼

, F ) =
√

n(X̄
∼
−µ

∼
) and for some m ≥ 1, let g : Rp → Rm. If ∇g(·)

exists in a neighborhood of µ
∼
,∇g(µ

∼
) 6= 0

∼
, and if ∇g(·) is continuous at µ

∼
, then the

bootstrap is strongly consistent wrt K for
√

n(g(X̄
∼

) − g(µ
∼
)).

Example 29.2. Let X1, X2, . . . , Xn
iid∼ F and suppose EF (X4

1 ) < ∞. Let Yi
∼

=

( Xi

X2
i
). Then with p = 2, Y1

∼
, Y2
∼

, ..., Yn
∼

are iid p-dimensional vectors with Cov(Y1
∼

)
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finite. Note that Ȳ
∼

=
( X̄

1
n

n∑
i=1

X2
i

)
. Consider the transformation g : R2 → R1 defined

as g(u, v) = v − u2. Then 1
n

n∑
i=1

(Xi − X̄)2 = 1
n

n∑
i=1

X2
i − (X̄)2 = g(Ȳ

∼
). If we let

µ
∼

= E(Y1
∼

), then g(µ
∼
) = σ2 = V ar(X1). Since g(·) satisties the conditions of

the above theorem, it follows that the bootstrap is strongly consistent wrt K for
√

n( 1
n

n∑
i=1

(Xi − X̄)2 − σ2).

29.4 Second Order Accuracy of Bootstrap

One philosophical question about the use of the bootstrap is whether the boot-

strap has any advantages at all when a CLT is already available. To be spe-

cific, suppose T (X1, . . . , Xn, F ) =
√

n(X̄ − µ). If σ2 = V arF (X) < ∞, then√
n(X̄ −µ)

L⇒ N(0, σ2) and K(HBoot, Hn)
a.s.→ 0. So two competitive approximations

to PF (T (X1, . . . , Xn, F ) ≤ x) are Φ(x
σ̂
) and PFn(

√
n(X̄∗ − X̄) ≤ x). It turns out

that for certain types of statistics, the bootstrap approximation is (theoretically)

more accurate than the approximation provided by the CLT. The CLT, because any

normal distribution is symmetric, cannot capture information about the skewness

in the finite sample distribution of T . The bootstrap approximation does so. So

the bootstrap succeeds in correcting for skewness, just as an Edgeworth expansion

would do. This is called Edgeworth correction by the bootstrap and the property

is called second order accuracy of the bootstrap. It is important to remember that

second order accuracy is not automatic; it holds for certain types of T but not for

others. It is also important to understand that practical accuracy and theoretical

higher order accuracy can be different things.The following heuristic calculation will

illustrate when second order accuracy can be anticipated. The first result on higher

order accuracy of the bootstrap is due to Singh(1981). In addition to the references

we provided in the beginning, Lehmann (1999) gives a very readable treatment of

higher order accuracy of the bootstrap.

Suppose X1, X2, . . . , Xn
iid∼ F and T (X1, . . . , Xn, F ) =

√
n(X̄−µ)

σ
; here σ2 = V arF (X1) <
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∞. We know that T admits the Edgeworth expansion:

PF (T ≤ x) = Φ(x) +
p1(x|F )√

n
ϕ(x) +

p2(x|F )

n
ϕ(x)

+smaller order terms,

P∗(T ∗ ≤ x) = Φ(x) +
p1(x|Fn)√

n
ϕ(x) +

p2(x|Fn)

n
ϕ(x)

+smaller order terms,

Hn(x) − HBoot(x) =
p1(x|F ) − p1(x|Fn)√

n
+

p2(x|F ) − p2(x|Fn)

n

+smaller order terms.

Recall now that the polynomials p1, p2 are given as

p1(x|F ) =
γ

6
(1 − x2),

p2(x|F ) = x

[
κ − 3

24
(3 − x2) − κ2

72
(x4 − 10x2 + 15)

]
,

where γ = EF (X1−µ)3

σ3 and κ = EF (X1−µ)4

σ4 . Since γ
Fn

− γ = Op(
1√
n
) and κ

Fn
− κ =

Op(
1√
n
), just from the CLT for γ

Fn
and κ

Fn
under finiteness of four moments, one

obtains Hn(x) − HBoot(x) = Op(
1
n
). If we contrast this to the CLT approximation,

in general, the error in the CLT is is O( 1√
n
), as is known from the Berry Esseen

theorem. The 1√
n

rate cannot be improved in general even if there are four moments.

Thus, by looking at the standardized statistic
√

n(X̄−µ)
σ

, we have succeeded in making

the bootstrap one order more accurate than the CLT. This is called second order

accuracy of the bootstrap. If one does not standardize, then

PF (
√

n(X̄ − µ) ≤ x) = PF (

√
n(X̄ − µ)

σ
≤ x

σ
) → Φ(

x

σ
)

and the leading term in the bootstrap approximation in this unstandardized case

would be Φ(x
σ̂
). So the bootstrap approximates the true CDF Hn(x) also at the rate

1√
n
, i.e., if one does not standardize, then Hn(x)−HBoot(x) = Op(

1√
n
). We have now

lost the second order accuracy. The following second rule of thumb often applies.

Rule of Thumb Let X1, X2, . . . , Xn
iid∼ F and T (X1, . . . , Xn, F ) a functional. If

T (X1, . . . , Xn, F )
L⇒ N(0, τ 2) where τ is independent of F , then second order accu-

racy is likely. Proving it will depend on the availability of an Edgeworth expansion

for T . If τ depends on F , i.e., τ = τ(F ), then the bootstrap should be just first

order accurate.
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Thus, as we will now see, orthodox bootstrap is second order accurate for the stan-

dardized mean
√

n(X̄−µ)
σ

, although from an inferential point of view, it is not par-

ticularly useful to have an accurate approximation to the distribution of
√

n(X̄−µ)
σ

,

because σ would usually be unknown, and the accurate approximation could not re-

ally be used to construct a confidence interval for µ. Still, the second order accuracy

result is theoretically insightful.

We state a specific result below for the case of standardized and non-standardized

sample means. Let Hn(x) = PF (
√

n(X̄ − µ) ≤ x), Hn,0(x) = PF (
√

n(X̄−µ)
σ

≤ x),

HBoot(x) = P∗(
√

n(X̄∗ − X̄) ≤ x), HBoot,0(x) = PFn(
√

n(X̄∗−X̄)
s

≤ x).

Theorem 29.5. Let X1, X2, . . . , Xn
iid∼ F .

a) If EF |X1|3 < ∞, and F is non-lattice, then K(Hn,0, HBoot,0) = op(
1√
n
);

b) If EF |X1|3 < ∞, and F is lattice, then
√

nK(Hn,0, HBoot,0)
P−→ c, 0 < c < ∞.

Remark: See Lahiri (2003) for a proof. The constant c in the lattice case equals
h

σ
√

2π
, where h is the span of the lattice {a + kh, k = 0,±1,±2, ...} on which the

Xi are supported. Note also that part a) says that higher order accuracy for the

standardized case obtains with three moments; Hall (1988) showed that finiteness

of three absolute moments is in fact necessary and sufficient for higher order accu-

racy of the bootstrap in the standardized case. Bose and Babu (1991) investigate

the unconditional probability that the Kolmogorov distance between HBoot and Hn

exceeds a quantity of the order o(n− 1
2 ) for a variety of statistics and show that with

various assumptions, this probability goes to zero at a rate faster than O(n−1).

Example 29.3. How does the bootstrap compare with the CLT approximation in

actual applications? The question can only be answered by case by case simulation.

The results are mixed in the following numerical table. The Xi are iid Exp(1) in

this example and T =
√

n(X̄ − 1), with n = 20. For the bootstrap approximation,

B = 250 was used.

t Hn(t) CLT approximation HBoot(t)

-2 0.0098 0.0228 0.0080

-1 0.1563 0.1587 0.1160

0 0.5297 0.5000 0.4840

-1 0.8431 0.8413 0.8760

-2 0.9667 0.9772 0.9700
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29.5 Other Statistics

The ordinary bootstrap which resamples with replacement from the empirical CDF

Fn is consistent for many other natural statistics besides the sample mean and even

higher order accurate for some, but under additional conditions. We mention a few

such results below; see Shao and Tu (1995) for further details on the theorems in

this section.

Theorem 29.6. (Sample percentiles)

Let X1, . . . , Xn be
iid∼ F and let 0 < p < 1, Let ξp = F−1(p) and suppose F has

a positive derivative f(ξp) at ξp. Let Tn = T (X1, . . . , Xn, F ) =
√

n(F−1
n (p) − ξp)

and T ∗
n = T (X∗

1 , . . . , X∗
n, Fn) =

√
n(F ∗−1

n (p) − F−1
n (p)) where F ∗

n is the empirical

CDF of X∗
1 , . . . , X∗

n. Let Hn(x) = PF (Tn ≤ x) and HBoot(x) = P∗(T ∗
n ≤ x). Then,

K(HBoot, Hn) = O(n−1/4
√

log log n) almost surely.

Remark: So again, we see that under certain conditions that ensure the existence

of a CLT, the bootstrap is consistent.

Next we consider the class of one-sample U-statistics.

Theorem 29.7. (U-statistics)

Let Un = Un(X1, . . . , Xn) be a U-statistic with a kernel h of order 2. Let θ =

EF (Un) = EF [h(X1, X2)], where X1, X2
iid∼ F . Assume:

(i) EF (h2(X1, X2)) < ∞
(ii) τ 2 = V arF

(
h̃(X)

)
> 0, where h̃(x) = EF [h(X1, X2)|X2 = x]

(iii) EF |h(X1, X1)| < ∞

Let Tn =
√

n(Un − θ) and T ∗
n =

√
n(U∗

n − Un), where U∗
n = Un(X∗

1 , . . . , X∗
n),

Hn(x) = PF (Tn ≤ x) and HBoot(x) = P∗(T ∗
n ≤ x). Then K(Hn, HBoot)

a.s−→ 0.

Remark: Under conditions (i) and (ii),
√

n(Un − θ) has a limiting normal distribu-

tion. Condition (iii) is a new additional condition and actually, it cannot be relaxed.

Condition (iii) is vacuous if the kernel h is bounded or a function of |X1−X2|. Under

additional moment conditions on the kernel h, there is also a higher order accuracy

result; see Helmers (1991).

Previously, we observed that the bootstrap is consistent for smooth functions of a

sample mean vector. That lets us handle statistics such as the sample variance.
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Under some more conditions, even higher order accuracy obtains. Here is a result

in that direction.

Theorem 29.8. (Higher Order Accuracy for Functions of Means)

Let X1, . . . , Xn
iid∼ F with EF (X1) = µ and CovF (X1) = Σp×p. Let g : Rp → R be

such that g(·) is twice continuously differentiable in some neighborhood of µ and

Og(µ) 6= 0. Assume also:

(i) EF ||X1 − µ||3 < ∞
(ii) lim sup

||t||→∞

∣∣EF

(
eit ′X1

)∣∣ < 1.

Let Tn =
√

n(g(X̄)−g(µ))√
(Og(µ))′Σ(Og(µ))

and T ∗
n =

√
n(g(X̄∗)−g(X̄))√

(Og(X̄))′S(Og(X̄))
where S = S(X1, . . . , Xn) is the

sample variance-covariance matrix. Let also Hn(x) = PF (Tn ≤ x) and HBoot(x) =

P∗(T ∗
n ≤ x). Then

√
nK(Hn, HBoot)

a.s−→ 0.

Finally, let us describe the case of the t-statistic. By our previous rule of thumb, we

would expect the bootstrap to be higher order accurate simply because the t-statistic

is already studentized, and has an asymptotic variance function independent of the

underlying F .

Theorem 29.9. (Higher Order Accuracy for the t-statistic)

Let X1, . . . , Xn
iid∼ F . Suppose F is non-lattice and that EF (X6) < ∞. Let

Tn =
√

n(X̄−µ)
s

and T ∗
n =

√
n(X̄∗−X̄)

s∗ , where s∗ is the standard deviation of X∗
1 , . . . , X∗

n.

Let Hn(x) = PF (Tn ≤ x) and HBoot(x) = P∗(T ∗
n ≤ x). Then

√
nK(Hn, HBoot)

a.s−→ 0.

29.6 Some Numerical Examples

The bootstrap is used in practice for a variety of purposes. It is used to estimate

a CDF, or a percentile, or the bias or variance of a statistic Tn. For example, if

Tn is an estimate for some parameter θ, and if EF (Tn − θ) is the bias of Tn, the

bootstrap estimate EFn(T ∗
n−Tn) can be used to estimate the bias. Likewise, variance

estimates can be formed by estimating V arF (Tn) by V arFn(T ∗
n). How accurate are

the bootstrap based estimates in reality?

This can only be answered on the basis of case by case simulation. Some overall

qualitative phenomena have emerged from these simulations. They are:

(a) The bootstrap captures information about skewness that the CLT will miss;
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(b) The bootstrap tends to underestimate the variance of a statistic Tn.

Here are a few numerical examples:

Example 29.4. Let X1, . . . , Xn
iid∼ Cauchy(µ, 1). Let Mn be the sample median

and Tn =
√

n(Mn − µ). If n is odd, say n = 2k + 1, then there is an exact variance

formula for Mn. Indeed

V ar(Mn) =
2n!

(k!)2πn

π/2∫
0

xk(π − x)k(cot x)2dx

See David (1981). Because of this exact formula, we can easily gauge the accuracy of

the bootstrap variance estimate. In this example, n=21 and B=200. For comparison,

the CLT based variance estimate is also used which is

̂V ar(Mn) =
π2

4n
.

The exact variance, the CLT based estimate and the bootstrap estimate for the

specific simulation are 0.1367, 0.1175 and 0.0517 respectively. Note the obvious

underestimation of variance by the bootstrap. Of course one cannot be sure if it is

the idiosyncrasy of the specific simulation.

A general useful result on consistency of the bootstrap variance estimate for

medians under very mild conditions is Ghosh et al. (1984).

Example 29.5. Suppose X1, . . . , Xn are iid Poi(µ) and let Tn be the t-statistic

Tn =
√

n(X̄ −µ)/s. In this example n = 20 and B = 200 and for the actual data, µ

was chosen to be 1. Apart from the bias and the variance of Tn, in this example we

also report percentile estimates for Tn. The bootstrap percentile estimates are found

by calculating T ∗
n for the B resamples and calculating the corresponding percentile

value of the B values of T ∗
n . The bias and the variance are estimated to be −0.18

and 1.614 respectively. The estimated percentiles are reported in the table.

α Estimated 100α Percentile

0.05 -2.45

0.10 -1.73

0.25 -0.76

0.50 -0.17

0.75 0.49

0.90 1.25

0.95 1.58
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On observing the 100(1−α)% estimated percentiles, it is clear that there seems

to be substantial skewness in the distribution of T . Whether the skewness is truly

as serious can be assessed by a large scale simulation.

Example 29.6. Suppose (Xi, Yi), i = 1, 2, · · · , n are iid BV N(0, 0, 1, 1, ρ) and let

r be the sample correlation coefficient. Let Tn =
√

n(r − ρ). We know that Tn
L⇒

N(0, (1− ρ2)2); see Chapter 3. Convergence to normality is very slow. There is also

an exact formula for the density of r. For n ≥ 4, the exact density is,

f(r|ρ) =
2n−3(1 − ρ2)(n−1)/2

π(n − 3)!
(1 − r2)(n−4)/2

∞∑
k=0

Γ

(
n + k − 1

2

)2
(2ρr)k

k!
;

see Tong (1990). In the table above, we give simulation averages of the estimated

standard deviation of r by using the bootstrap. We used n = 20, and B = 200.

The bootstrap estimate was calculated for 1,000 independent simulations; the table

reports the average of the standard deviation estimates over the 1,000 simulations.

n True ρ True s.d. of r CLT estimate Bootstrap Estimate

0.0 0.230 0.232 0.217

20 0.5 0.182 0.175 0.160

0.9 0.053 0.046 0.046

Again, except when ρ is large the bootstrap underestimates the variance and the

CLT estimate is better.

29.7 Failure of Bootstrap

Inspite of the many consistency theorems in the previous sections, there are instances

where the ordinary bootstrap based on with replacement sampling from Fn actually

does not work. Typically, these are instances where the functional Tn fails to admit

a CLT. Before seeing a few examples we list a few situations where the ordinary

bootstrap fails to estimate the CDF of Tn consistently:

(a) Tn =
√

n(X̄ − µ), when V arF (X1) = ∞.

(b) Tn =
√

n(g(X̄) − g(µ)) and ∇g(µ) = 0.

(c) Tn =
√

n(g(X̄) − g(µ)) and g is not differentiable at µ.

(d) Tn =
√

n(F−1
n (p) − F−1(p)) and f(F−1(p)) = 0, or, F has unequal right and

left derivatives at F−1(p).
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(e) The underlying population Fθ is indexed by a parameter θ and the support of

Fθ depends on the value of θ.

(f) The underlying population Fθ is indexed by a parameter θ and the true value

θ0 belongs to the boundary of the parameter space Θ.

Example 29.7. Let X1, X2, . . . , Xn
iid∼ F and σ2 = V arF (X) = 1. Let g(x) = |x|

and Tn =
√

n(g(X̄) − g(µ)). If the true value of µ = 0, then by CLT for X̄ and

the continuous mapping theorem, Tn
L⇒ |Z| with Z ∼ N(0, σ2). To show that the

bootstrap does not work in this case, we first need to observe a few subsidiary facts.

(a) For almost all sequences {X1, X2, · · · }, the conditional distribution of
√

n(X
∗
n−

Xn) given Xn, converges in law to N(0, σ2) by use of the triangular array CLT

(see van der Vaart, 1998);

(b) The joint asymptotic distribution of (
√

n(Xn − µ),
√

n(X
∗
n −Xn))

L⇒ (Z1, Z2)

where Z1, Z2 are iid N(0, σ2).

In fact a more general version of part (b) is true. Suppose (Xn, Yn) is a sequence of

random vectors such that Xn
L⇒ Z ∼ H (some Z) and Yn|Xn

L⇒ Z (the same Z)

almost surely. Then (Xn, Yn)
L⇒ (Z1, Z2) where Z1, Z2 are iid ∼ H .

Therefore, returning to the example, when the true µ = 0,

T ∗
n =

√
n(|X∗

n| − |Xn|)
= |√n(X

∗
n − Xn) +

√
n Xn| − |√n Xn|

L⇒ |Z1 + Z2| − |Z1| (29.1)

where Z1, Z2 are iid N(0, σ2). But this is not distributed as the absolute value of

N(0, σ2). The sequence of bootstrap CDFs is therefore not consistent when µ = 0.

Example 29.8. Let X1, X2, . . . , Xn
iid∼ U(0, θ) and let Tn = n(θ − X(n)), T ∗

n =

n(X(n) − X∗
(n)). The ordinary bootstrap will fail in this example in the sense that

the conditional distribution of T ∗
n given X(n) does not converge to the Exp(θ) a.s..

Let us assume θ = 1. Then for t ≥ 0,

PFn(T ∗
n ≤ t) ≥ PFn(T ∗

n = 0)

= PFn(X∗
(n) = X(n))

= 1 − PFn(X∗
(n) < X(n))

= 1 −
(

n − 1

n

)n

n→∞−→ 1 − e−1
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For example, take t = 0.0001; then limn PFn(T ∗
n ≤ t) ≥ 1 − e−1 while limn PF (Tn ≤

t) = 1 − e−0.0001 ≈ 0. So PFn(T ∗
n ≤ t) 6→ PF (Tn ≤ t).

The phenomenon of this example can be generalized essentially to any CDF F

with a compact support [ω(F ), ω(F )] with some conditions on F , such as existence

of a smooth and positive density. This is one of earliest examples of the failure of

the ordinary bootstrap. We will revisit this issue in the next section.

29.8 m out of n Bootstrap

In the particular problems presented above and several other problems where the

ordinary bootstrap fails to be consistent, resampling fewer than n observations from

Fn, say m observations, cures the inconsistency problem. This is called m out of

n bootstrap. Typically, consistency will be regained if m = o(n); in some general

theorems to this regard, one requires m2 = o(n) or some similar stronger condition

than m = o(n). If the n out of n ordinary bootstrap is already consistent, then

there can still be m out of n schemes with m going to ∞ slower than n which too

are consistent, but the m out of n scheme will perform somewhat worse than the n

out of n. See Bickel et al. (1997) for an overall review.

We will now present a collection of results which show that the m out of n bootstrap,

written as m/n bootstrap, solves the orthodox bootstrap’s inconsistency problem

in a number of cases; see Shao and Tu (1995) for proofs and details on all of the

theorems in this section.

Theorem 29.10. Let X1, X2, . . . be iid F where F is a cdf on Rd, d ≥ 1. Suppose

µ = EF (X1) and Σ = CovF (X1) exist, and suppose Σ is positive definite. Let

g : Rd → R be such that Og(µ) = 0 and the Hessian matrix O2g(µ) is not the zero

matrix. Let Tn = n(g(X̄n) − g(µ)) and T ∗
m,n = m(g(X̄m

∗
) − g(X̄n)) and define

Hn(x) = PF{Tn ≤ x} and HBoot,m,n(x) = P∗{T ∗
m,n ≤ x}. Here X̄m

∗
denotes the

mean of an iid sample of size m = m(n) from Fn, where m → ∞ with n.

(a) If m = o(n), then K(HBoot,m,n, Hn)
P⇒ 0.

(b) If m = o( n
log log n

), then K(HBoot,m,n, Hn)
a.s.⇒ 0.
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Theorem 29.11. Let X1, X2, . . . be iid F where F is a cdf on R. For 0 < p <

1, let ξp = F−1(p). Suppose F has finite and positive left and right derivatives

f(ξp+), f(ξp−) and that f(ξp+) 6= f(ξp−). Let Tn =
√

n(F−1
n (p) − ξp) and T ∗

m,n =√
m(F ∗−1

m (p) − F−1
n (p)) and define Hn(x) = PF{Tn ≤ x} and HBoot,m,n(x) =

P∗{T ∗
m,n ≤ x}. Here, F ∗−1

m (p) denotes the pth quantile of an iid sample of size m

from Fn.

(a) If m = o(n), then K(HBoot,m,n, Hn)
P⇒ 0.

(b) If m = o( n
log log n

), then K(HBoot,m,n, Hn)
a.s.⇒ 0.

Theorem 29.12. Suppose F is a cdf on R and let X1, X2, . . . be iid F . Suppose

θ = θ(F ) is such that F (θ) = 1 and F (x) < 1 for all x < θ. Suppose for some

δ > 0, PF

{
n1/δ(θ − X(n)) > x

} −→ e−(x/θ)δ
, ∀ x. Let Tn = n1/δ(θ − X(n)) and

T ∗
m,n = m1/δ(X(n) − X∗

(m)) and define Hn(x) = PF{Tn ≤ x} and HBoot,m,n(x) =

P∗{T ∗
m,n ≤ x}.

(a) If m = o(n), then K(HBoot,m,n, Hn)
P⇒ 0.

(b) If m = o( n
log log n

), then K(HBoot,m,n, Hn)
a.s.⇒ 0.

Remark: Clearly an important practical question is the choice of the bootstrap

resample size m. This is a difficult question to answer, and no precise prescriptions

that have any sort of general optimality are possible. A rule of thumb is to take

m ≈ 2
√

n.

29.9 Bootstrap Confidence Intervals

The standard method to find a confidence interval for a parameter θ is to find a

studentized statistic, sometimes called a pivot, say Tn = θ̂n−θ
σ̂n

, such that Tn
L⇒ T ,

with T having some known CDF G. An equal tailed confidence interval for θ,

asymptotically correct, is constructed as

θ̂n − G−1(1 − α/2)σ̂n ≤ θ ≤ θ̂n − G−1(α/2)σ̂n

This agenda requires the use of a standard deviation estimate σ̂n for the standard

deviation of θ̂n and the knowledge of the function G(x). Furthermore, in many

cases, the limiting CDF G may depend on some unknown parameters too, which

will have to be estimated in turn to construct the confidence interval. The bootstrap
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methodology offers an omnibus, sometimes easy to implement, and often a more

accurate method of constructing confidence intervals.

Bootstrap confidence intervals and lower and upper one sided confidence limits

of various types have been proposed in great generality. Although, as a matter of

methodology, they can be used in an automatic manner, a theoretical evaluation of

their performance requires specific structural assumptions. The theoretical evalua-

tion involves an Edgeworth expansion for the relevant statistic and an expansion for

their quantiles, called Cornish- Fisher expansions. Necessarily, we are limited to the

cases where the underlying statistic admits a known Edgeworth and Cornish-Fisher

expansion. The main reference is Hall (1988). See also Göetze (1989), Hall and

Martin (1989), Bickel (1992), Konishi (1991), DiCiccio and Efron (1996 ) and Lee

(1999), of which the article by DiCiccio and Efron is a survey article and Lee (1999)

discusses m/n bootstrap confidence intervals. There are also confidence intervals

based on more general subsampling methods, which work asymptotically under the

mildest conditions. These intervals and their extensions to higher dimensions are

discussed in Politis, Romano, and Wolf (1999).

Over time, various boostrap confidence limits have been proposed. Generally, the

evolution is from the algebraically simplest to progressively more complicated and

computer-intensive formulae for the limits. Many of these limits have, however, now

been incorporated into standard statistical software. We present below a selection

of these different bootstrap confidence limits and bounds. Let θ̂n = θ̂n(X1, . . . , Xn)

be a specific estimate of the underlying parameter of interest θ.

(A) The Bootstrap Percentile Lower Bound (BP ). Let G(x) = Gn(x) = PF{θ̂n ≤
x} be the exact distribution and let Ĝ(x) = P∗{θ̂∗n ≤ x} be the bootstrap

distribution. The lower 1−α bootstrap percentile confidence bound would be

Ĝ−1(α). So the reported interval would be [Ĝ−1(α),∞). This was present in

Efron (1979) itself, but it is seldom used because it tends to have a significant

coverage bias.

(B) Transformation-based Bootstrap Percentile Confidence Bound . Suppose there

is a suitable 1-1 transformation ϕ = ϕn of θ̂n such that PF{ϕ(θ̂n)−ϕ(θ) ≤ x} =

ψ(x), with ψ being a known continuous, strictly increasing and symmetric CDF

(e.g., the N(0, 1) CDF). Then a transformation-based bootstrap percentile

lower confidence bound for θ is ϕ−1(ϕ̂n + zα), where ϕ̂n = ϕ(θ̂n) and zα =

ψ−1(α). Transforming may enhance the quality of the confidence bound in
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some problems. But, on the other hand, it is rare that one can find such a 1-1

transformation with a known ψ.

(C) Bootstrap t (BT ). Let tn = θ̂n−θ
σ̂n

, where σ̂n is an estimate of the standard error

of θ̂n, and let t∗n = θ̂∗n−θ̂n

σ̂∗
n

be its bootstrap counterpart. As usual, let HBoot(x) =

P∗{t∗n ≤ x}. The bootstrap t lower bound is θ̂n−H−1
Boot(1−α)σ̂n, and the two-

sided BT confidence limits are θ̂n −H−1
Boot(1−α1)σ̂n and θ̂n −H−1

Boot(α2)σ̂n,

where α1 + α2 = α, the nominal confidence level.

(D) Bias-corrected Bootstrap Percentile Bound (BC). The derivation of the BC

bound involves quite a lot of calculation; see Efron (1981) and Shao and Tu

(1995). The BC lower confidence bound is given by θBC = Ĝ−1[ψ(zα +

2ψ−1(Ĝ(θ̂n)))], where Ĝ is the bootstrap distribution of θ̂∗n, ψ is as above,

and zα = ψ−1(α).

(E) Hybrid Bootstrap Confidence Bound (BH). Suppose for some deterministic

sequence {cn}, cn(θ̂n − θ) ∼ Hn and let HBoot be the bootstrap distribution;

i.e. the distribution of cn(θ̂∗n − θ̂n) under Fn. We know that PF{cn(θ̂n − θ) ≤
H−1

n (1 − α)} = 1 − α.

If we knew Hn, the we could turn this into a 100(1 − α)% lower confidence

bound, θ ≥ θ̂n − 1
cn

H−1
n (1 − α). But Hn is, in general, not known; so we

approximate it by HBoot. That is, the hybrid bootstrap lower confidence bound

is defined as θBH = θ̂n − 1
cn

H−1
Boot(1 − α)

(F) Accelerated Bias-corrected Bootstrap Percentile Bound (BCa). The ordinary

bias-corrected bootstrap bound is based on the assumption that we can find

z0 = z0(F, n) and ψ (for known ψ), such that

PF{ϕ̂n − ϕ + z0 ≤ x} = ψ(x).

The accelerated bias-corrected bound comes from the modified assumption

that there exists a constant a = a(F, n) such that PF

{
ϕ̂n−ϕ
1+aϕ

+ z0 ≤ x
}

= ψ(x).

In applications, it is rare that even this modification holds exactly for any given

F and n. Manipulation of this probability statement results in a lower bound:

θBCa
= Ĝ−1

(
ψ

(
z0 + zα+z0

1−a(zα−z0)

))
, where zα = ψ−1(α), a is the acceleration

parameter, and Ĝ is as before. We repeat that, of these, z0 and a both depend

on F and n. They will have to be estimated. Moreover, the cdf ψ will generally

have to be replaced by an asymptotic version; e.g. an asymptotic normal cdf
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of (ϕ̂n−ϕ)/(1+aϕ). The exact manner in which z0 and a depend on F and n

is a function of the specific problem. For example, suppose that the problem

to begin with is a parametric problem, F = Fθ. In such a case, z0 = z0(θ, n)

and a = a(θ, n). The exact form of z0(θ, n) and a(θ, n) depend on Fθ, θ̂n and

ϕ.

Remark: As regards computational simplicity, BP , BT and BH are the sim-

plest to apply; BC and BCa are harder to apply and, in addition, are based on

assumptions that will rarely exactly hold for finite n. Furthermore, BCa involves

estimation of a very problem-specific acceleration constant a. The bootstrap t inter-

vals are popular in practice, provided an estimate σ̂n is readily available. The BP

method usually suffers from large bias in coverage and is seldom used.

Remark: If the model is parametric, F = Fθ, and θ̂n is the MLE , then one can

show the following general and useful formula: a = z0 = 1
6
×skewness coefficient of

˙̀(θ) where ˙̀(θ) is the score function, ˙̀(θ) = d
dθ

log f(x1, . . . , xn|θ). This expression

allows for estimation of a and z0 by plug-in estimates. Nonparametric estimates of

a and z0 have also been suggested; see Efron (1987) and Loh and Wu ( 1987).

We now state the theoretical coverage properties of the various one-sided bounds

and two-sided intervals.

Definition 29.3. Let 0 < α < 1 and In = In(X1, . . . , Xn) be a confidence set for

the functional θ(F (n)), where F (n) is the joint distribution of (X1, . . . , Xn). Then

In is called kth order accurate if PF (n)

{
In 3 θ(F (n))

}
= 1 − α + O(n−k/2).

The theoretical coverage properties below are derived by using Edgeworth ex-

pansions as well as Cornish-Fisher expansions for the underlying estimate θ̂n. If

X1, X2, . . . are iid F on Rd, 1 ≤ d < ∞, and if θ = ϕ(µ), θ̂ = ϕ(X̄), for a sufficiently

smooth map ϕ : Rd → R, then such Edgeworth and Cornish -Fisher expansions are

available. In the results below, it is assumed that θ and θ̂ are the images of µ and X̄,

respectively, under such a smooth mapping ϕ. See Hall (1988) for the exact details.

Theorem 29.13. The CLT, BP, BH and the BC one-sided confidence bounds are

first-order accurate. The BT and BCa one-sided bounds are second-order accurate .

The CLT, BP , BH, BT and BCa two-sided intervals are all second -order accurate.

Remark: For two-sided intervals, the higher-order accuracy result is expected

because the coverage bias for the two tails cancel in the n−1/2 term, as can be seen

from the Edgeworth expansion. The striking part of the result is that the BT and

BCa can achieve higher-order accuracy, even for one- sided bounds.
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Discussion. The second order accuracy of the BT lower bound is driven by

an Edgeworth expansion for Hn and an analogous one for HBoot. One can invert

these expansions for the CDFs to get expansions for their quantiles , i.e., to obtain

Cornish-Fisher expansions. Under suitable conditions on F , H−1
n and H−1

Boot admit

expansions of the form:

H−1
n (t) = zt +

q11(zt, F )√
n

+
q12(zt, F )

n
+ o

(
1

n

)

and

H−1
Boot(t) = zt +

q11(zt, Fn)√
n

+
q12(zt, Fn)

n
+ o

(
1

n

)
(a.s.)

where q11(·, F ) and q12(·, F ) are polynomials with coefficients depending on the

moments of F . The exact polynomials depend on what the statistic θ̂n is. For

example, if θ̂n = X̄, and σ̂ =
√

1
n−1

∑
(Xi − X̄)2, then q11(x, F ) = −γ

6
(1+2x2), q12 =

x[x2+3
4

− κ(x2−3)
12

+ 5γ2

72
(4x2 − 1)], where γ = EF

(X−µ)3

σ3 and κ = EF
(X−µ)4

σ4 − 3. For

given t, 0 < t < 1, On subtraction,

H−1
n (t)−H−1

Boot(t) =
1√
n

[q11(zt, F )−q11(zt, Fn)]+
1

n
[q12(zt, F )−q12(zt, Fn)]+o

(
1

n

)
(a.s.)

=
1√
n

Op

(
1√
n

)
+

1

n
Op

(
1√
n

)
+ o

(
1

n

)
(a.s.) = Op

(
1

n

)
.

The actual confidence bounds obtained from Hn, HBoot are: θHn
= θ̂n−σ̂nH−1

n (1−α)

and θBT = θ̂n − σ̂nH−1
Boot(1 − α). On subtraction,

|θHn
− θBT | = σ̂nOp

(
1

n

)
typically

= Op(n
− 3

2 ).

Thus, the bootstrap-t lower bound is approximating the idealized lower bound with

third order accuracy. In addition, it can be shown that P (θ ≥ θBT ) = 1 − α +
p(zα)ϕ(zα)

n
+o

(
1
n

)
, where p(·) is again a polynomial depending on the specific statistic

and F . For the case of X̄, as an example, p(x) = x
6
(1 + 2x2)(κ − 3

2
γ2). Notice

the second order accuracy in this coverage statement, inspite of the fact that the

confidence bound is one sided. Again, see Hall (1988) for full details.

29.10 Some Numerical Examples

How accurate are the bootstrap confidence intervals in practice? Only case by case

numerical investigation can give an answer to that question. We report in a Table
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θ(F ) Type of CI F

N(0,1) t(5) Weibull

coverage length coverage length coverage length

µ Regular t .9 .76 .91 1.8 .75 2.8

BP .91 .71 .84 1.7 .73 2.6

BT .92 .77 .83 2.7 .83 5.5

σ2 BP .79 .86 .68 1.1 .65 1.3

BT .88 1.5 .85 3.2 .83 5.5

results of simulation averages of coverage and length in two problems. The sample

size in each case is n = 20, in each case B = 200, the simulation size is 500 and the

nominal coverage 1 − α = .9.

Discussion From the table, the bootstrap-t interval seems to buy more accuracy

(i.e., a smaller bias in coverage) with a larger length than the BP interval. But

the BP interval has such a serious bias in coverage that the bootstrap-t may be

preferable. To kill the bias, modifications of the BP method have been suggested:

some of these are the bias corrected BP and the accelerated bias corrected BP

intervals. Extensive numerical comparisons are reported in Shao and Tu(1995).

29.11 Bootstrap Confidence Intervals for Quantiles

Another interesting problem is the estimation of quantiles of a cdf F on R. We know,

for example, that if X1, X2, . . . are iid F , if 0 < p < 1 and if f = F ′ exists and is

strictly positive at ξp = F−1(p), then
√

n(F−1
n (p) − ξp)

L⇒ N(0, p(1 − p)[f(ξp)]
−2).

So, a standard CLT based interval is

F−1
n (p) ± zα/2√

n
·
√

p(1 − p)

f̂(ξp)
,

where f̂(ξp) is some estimate of the unknown f = F ′ at the unknown ξp.

For a bootstrap interval, let Hn be the cdf of
√

n(F−1(p) − ξp) and HBoot its

bootstrap counterpart. Using the terminology from before , a hybrid bootstrap

two-sided confidence interval for ξp is

[
F−1

n (p) − H−1
Boot(1 − α

2
)/
√

n, F−1
n (p) − H−1

Boot(
α
2
)/
√

n
]
.

It turns out that this interval is not only asymptotically correct, but also comes
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with a surprising asymptotic accuracy. The main references are Hall and Martin

(1988) and Falk and Kaufman (1991).

Theorem 29.14. Let X1, X2, . . . be iid F , a cdf on R. For 0 < p < 1, let ξp =

F−1(p) and suppose 0 < f(ξp) = F ′(ξp) < ∞. If In is the two-sided hybrid bootstrap

interval , then PF{In 3 ξp} = 1 − α + O(n−1/2).

Remark: Actually, the best result available is stronger and says that PF{In 3
ξp} = 1 − α + c(F,α,p)√

n
+ o(n−1/2), where c(F, α, p) has an explicit but complicated

formula. That the bias of the hybrid interval is O(n−1/2) is still a surprise in view of

the fact that the bootstrap distribution of F−1
n (p) is consistent at a very slow rate;

see Singh (1981).

29.12 Bootstrap in Regression

Regression models are among the key ones that differ from the iid set up and are

also among the most widely used. Bootstrap for regression cannot be model free;

the particular choice of the bootstrap scheme depends on whether the errors are iid

or not. We will only talk about the linear model with deterministic X and iid errors.

Additional moment conditions will be necessary depending on the specific problem

to which the bootstrap will be applied . The results here are available in Freedman

(1981). First let us introduce some notation.

Model: yi = β′xi + εi, where β is a p× 1 vector and so is xi and εi are iid with

mean 0 and variance σ2 < ∞.

X is the n×p design matrix with i-th row equal to x′
i; H = X(X ′X)−1X ′ and

hi = Hii = x′
i(X

′X)−1xi.

β̂ = β̂LS = (X ′X)−1X ′y is the least squares estimate of β, where y =

(y1, · · · , yn)′ and (X ′X)−1 is assumed nonsingular.

The bootstrap scheme is defined below.

29.13 Residual Bootstrap

Let e1, e2, · · · , en denote the residuals obtained from fitting the model, i.e., ei =

yi − x′
iβ̂; ē = 0 if xi = (1, xi1, · · · , xi,p−1)

′ but not otherwise . Define ẽi = ei − ē

and let e∗1, · · · , e∗n be a with-replacement sample of size n from {ẽ1, · · · , ẽn}. Let
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y∗
i = x′

iβ̂ + e∗i and let β∗ be the LSE of β computed from (xi, y
∗
i ), i = 1, · · · , n. This

is the bootstrapped version of β̂ and the scheme is called Residual Bootstrap (RB).

Remark: The more direct approach of resampling the pairs (xi, yi) is known

as the paired bootstrap and is necessary when the errors are not iid, for example,

the case when the errors are still independent, but their variances depend on the

corresponding covariate values (called the heteroscedastic case). In such a case, the

residual bootstrap scheme would not work.

By simple matrix algebra, it can be shown that,

E∗(β∗) = β̂

Cov∗(β∗) = σ̂2(X ′X)−1

where σ̂2 = (1/n)
∑n

i=1(ei − ē)2. Note that E(σ̂2) < σ2. So on an average the boot-

strap covariance matrix estimate will somewhat underestimate Cov(β̂). However,

Cov∗(β∗) is still consistent under some mild conditions. See Shao and Tu (1995) or

Freedman (1981) for the following result.

Theorem 29.15. Suppose |X ′X| → ∞ and max1≤i≤n hi → 0 as n → ∞. Then

[Cov∗(β∗)]−1Cov(β̂) ⇒ Ip×p, almost surely.

Example 29.9. The only question is when do the conditions |X ′X| → ∞, max1≤i≤n hi →
0 hold? As an example, take the basic regression model yi = β0+β1xi+εi with one co-

variate. Then, |X ′X| = n
∑

i(xi−x̄)2 and hi = (
∑

j x2
j−2xi

∑
j xj+nx2

i )/(n
∑

j(xj−
x̄)2).

∴ hi ≤ 4n maxj x2
j

n
∑

j(xj − x̄)2
=

4 maxj x2
j∑

j(xj − x̄)2
.

Therefore for the theorem to apply, it is enough to have max |xj|/
√∑

(xj − x̄)2 → 0

and n
∑

(xi − x̄)2 → ∞.

29.14 Confidence Intervals

We present some results on bootstrap confidence intervals for a linear combina-

tion θ = c′β1, where β′ = (β0, β
′
1), i.e., there is an intercept term in the model.

Correspondingly, x′
i = (1, t′i). The confidence interval for θ or confidence bounds

(lower or upper) are going to be in terms of the studentized version of the LSE

of θ, namely, θ̂ = c′β̂1. In fact, β̂1 = S−1
tt Sty, where Stt =

∑
i(ti − t̄)(ti − t̄)′
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and Sty =
∑

i(ti − t̄)(yi − ȳ)′. The bootstrapped version of θ̂ is θ∗ = c′β∗
1 , where

β∗′ = (β∗
0 , β

∗′
1 ), as before. Since the variance of θ̂ is σ2c′S−1

tt c, the bootstrapped

version of the studentized θ̂ is,

θ∗s =
θ∗ − θ̂√

1
n

∑
i(yi − x′

iβ
∗)2c′S−1

tt c

The bootstrap distribution is defined as HBoot(x) = P∗(θ∗s ≤ x). For given α, let

H−1
Boot(α) be the αth quantile of HBoot. We consider the bootstrap-t (BT) confidence

bounds and intervals for θ. They are obtained as

θ
(α)
BT = θ̂ − H−1

Boot(1 − α)

√
σ̂2c′S−1

tt c;

θ̄
(α)
BT = θ̂ − H−1

Boot(α)

√
σ̂2c′S−1

tt c.

and the intervals θL,BT = θ
(α/2)
BT and θU,BT = θ̄

(α/2)
BT .

There are some remarkable results on the accuracy in coverage of the BT one

sided bounds and confidence intervals. We state one key result below.

Theorem 29.16. (a) P (θ ≥ θBT ) = (1 − α) + O(n−3/2)

(b) P (θ ≤ θ̄BT ) = (1 − α) + O(n−3/2)

(c) P (θL,BT ≤ θ ≤ θU,BT ) = (1 − α) + O(n−2)

These results are derived in Hall (1989).

Remark: It is remarkable that one already gets third order accuracy for the

one sided confidence bounds and fourth order accuracy for the two sided bounds.

There seems to be no intuitive explanation for this phenomenon. It just happens

that certain terms cancel in the Cornish-Fisher expansions used in the proof for the

regression case.

29.15 Distribution Estimates in Regression

The residual bootstrap is also consistent for estimating the distribution of the least

squares estimate β̂ of the full vector β. The metric chosen is the Mallows-Wasserstein

metric we used earlier for sample means of iid data. See Freedman (1981) for the

result below. We first state the model and the required assumptions below.

Let yi = x′
iβ + εi, where xi is the p-vector of covariates for the ith sample unit.

Write the design matrix as Xn. We assume that the εi’s are iid with mean 0 and
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variance σ2 < ∞ and that {Xn} is a sequence of non-stochastic matrices. We assume

that for every n (n > p), X ′
nXn is positive definite. Let hi = x′

i(X
′X)−1xi and let

hmax = max{hi}. We assume, for the consistency theorem below, that

(C1) Stability: 1
n
X ′

nXn → V where V is a p × p positive definite matrix.

(C2) Uniform Asymptotic Negligibility: hmax → 0.

Under these conditions we have the following theorem of Freedman (1981) for RB.

Theorem 29.17. Under conditions C1 and C2 above, we have the following:

(a)
√

n(β̂ − β)
L⇒ Np(0, σ

2V −1);

(b) For almost all {εi : i ≥ 1}, √n(β∗ − β̂)
L⇒ Np(0, σ

2V −1);

(c) 1
σ
(X ′

nXn)1/2(β̂ − β)
L⇒ Np(0, Ip);

(d) For almost all {εi : i ≥ 1}, 1
σ̂
(X ′

nXn)1/2(β∗ − β̂)
L⇒ Np(0, Ip);

(e) If Hn and HBoot are the true and bootstrap distributions of
√

n(β̂ − β) and√
n(β∗ − β̂), respectively, then for almost all {εi : i ≥ 1}, `2(Hn, HBoot) → 0.

Remark: This theorem gives a complete picture of the consistency issue for the

case of a nonstochastic design matrix and iid errors, using the residual bootstrap.

If the errors are iid, but the design matrices are random, the same results hold as

long as the conditions of stability and uniform asymptotic negligibility stated earlier

hold with probability one. See Shao and Tu (1995) for the case of independent but

not iid errors (for example, the heteroscedastic case).

29.16 Bootstrap for Dependent Data

The orthodox bootstrap does not work when the sample observations are dependent.

This was already pointed out in Singh (1981). It took some time before consistent

bootstrap schemes were offered for dependent data. There are consistent schemes

that are meant for specific dependence structures (e.g. stationary autoregression of a

known order) and there are also general bootstrap schemes that work for large classes

of stationary time series without requiring any particular dependence structure. The

model based schemes are better for the specific models, but can completely fall apart

if some assumption about the specific model does not hold.
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We start with examples of some standard short-range dependence time series

models. As opposed to these, there are models that have a long memory or long-

range dependence. Bootstrap runs into problems for long-memory data. See Lahiri

(2006).

Standard time series models for short-range dependent processes include:

(a) Autoregressive Processes. The observations yt are assumed to satisfy

yt = µ + θ1yt−1 + θ2yt−2 + . . . θpyt−p + εt,

where 1 ≤ p < ∞ and the εt’s are iid white noise with mean 0 and variance

σ2 < ∞. The {yt} process is stationary if the solutions of the polynomial

equation

1 + θ1z + θ2z
2 + . . . + θpz

p = 0

lie strictly outside the unit circle in the complex plane. This process is called

autoregression of order p and is denoted by AR(p).

(b) Moving Average Processes. Given a white noise process {εt} with mean 0 and

variance σ2 < ∞, the observations are assumed to satisfy

yt = µ + εt − ϕ1εt−1 − ϕ2εt−2 − . . . − ϕqεt−q,

where 1 ≤ q < ∞. The process {yt} is stationary if the roots of

1 − ϕ1z − ϕ2z
2 − . . . − ϕqz

q = 0

lie strictly outside the unit circle. This process is called a moving average

process of order q, and is denoted by MA(q).

(c) Autoregressive Moving Average Processes. This combines the two previously

mentioned models. The observations are assumed to satisfy

yt = µ + θ1yt−1 + . . . θpyt−p + εt − ϕ1εt−1 − . . . − ϕqεt−q.

The process {yt} is called an autoregressive moving average process of order

(p, q), and is denoted by ARMA(p, q).

For all of these processes, the autocorrelation sequence dies off quickly; in par-

ticular, if ρk is the autocorrelation of lag k, then
∑

k |ρk| < ∞.
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29.17 Consistent Bootstrap for Stationary Autoregression

A version of the residual bootstrap (RB) was offered in Bose (1988) and shown to

be consistent and even higher-order accurate for the least squares estimate (LSE)

of the vector of regression coefficients in the stationary AR(p) case. For ease of

presentation, we assume µ = 0 and σ = 1. In this case, the LSE of θ = (θ1, . . . , θp)
′

is defined as θ̂ = arg minθ

∑n
t=1

[
yt −

∑p
j=1 θjyt−j

]2

, where y1−p, . . . , y0, y1, . . . , yn

is the observed data sequence. There is a closed form expression of θ̂; specifically,

θ̂ = S−1
nn (

∑n
t=1 ytyt−1,

∑n
t=1 ytyt−2, . . . ,

∑n
t=1 ytyt−p) , where Snn = ((Sij

nn))p×p and

Sij
nn =

∑n
t=1 yt−iyt−j. Let σk = Cov(yi, yi+k) and let

Σ =

∣∣∣∣∣∣∣∣∣∣

σ0 σ1 . . . σp−1

σ1 σ0 . . . σp−2

...
. . .

σp−1 σp−2 . . . σ0

∣∣∣∣∣∣∣∣∣∣
.

Assume Σ is positive definite. It is known that under this condition
√

nΣ−1/2(θ̂−
θ)

L⇒ N(0, I). So we may expect that with a suitable bootstrap scheme,
√

nΣ̂−1/2(θ∗−
θ̂) converges a.s. in law to N(0, I). Here Σ̂ denotes the sample autocovariance ma-

trix. We now describe the bootstrap scheme given in Bose (1988).

Let ŷt =
∑p

j=1 θ̂jyt−j and let the residuals be et = yt − ŷt. To obtain the boot-

strap data, define {y∗
1−2p, y

∗
2−2p, . . . , y∗

−p} ≡ {y1−p, y2−p, . . . .y0}. Obtain bootstrap

residuals by taking a random sample with replacement from {et − ē}. Then obtain

the “starred” data by using the equation y∗
t =

∑p
j=1 θ̂jy

∗
t−j + e∗t . Then θ∗ is the LSE

obtained by using {y∗
t }. Bose (1988) proves the following result.

Theorem 29.18. Assume that ε1 has a density with respect to Lebesgue measure

and that E(ε8
1) < ∞. If Hn(x) = P{√nΣ−1/2(θ̂ − θ) ≤ x} and HBoot(x) =

P∗{
√

nΣ̂−1/2(θ∗ − θ̂) ≤ x}, then ‖Hn − HBoot‖∞ = o(n−1/2), almost surely.

Remark: This was the first result on higher order accuracy of a suitable form of

the bootstrap for dependent data. One possible criticism of the otherwise important

result is that it assumes a specific dependence structure and that it assumes the

order p to be known. More flexible consistent bootstrap schemes involve some form

of block resampling, which we describe next.
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29.18 Block Bootstrap Methods

The basic idea of the block bootstrap method is that if the underlying series is

a stationary process with short-range dependence, then blocks of observations of

suitable lengths should be approximately independent and the joint distribution of

the variables in different blocks would be (about) the same, due to stationarity.

So, if we resample blocks of observations, rather than observations one at a time,

then that should bring us back to the nearly iid situation, a situation in which the

bootstrap is known to succeed. Block bootstrap was first suggested in Carlstein

(1986) and Künsch ( 1989). Various block bootstrap schemes are now available. We

only present three such schemes, for which the block length is non-random. A small

problem with some of the blocking schemes is that the “starred” time series is not

stationary, although the original series is, by hypothesis, stationary. A version of

the block bootstrap which resamples blocks of random length allows the “starred”

series to be provably stationary. This is called the stationary bootstrap, proposed

in Politis and Romano (1994), and Politis et al. (1999). However, later theoretical

studies have established that the auxilliary randomization to determine the block

lengths can make the stationary bootstrap less accurate. For this reason, we only

discuss three blocking methods with non-random block lengths.

(a) Non-overlapping Block Bootstrap (NBB). In this scheme, one splits the ob-

served series {y1, . . . , yn} into non-overlapping blocks

B1 = {y1, . . . , yh}, B2 = {yh+1, . . . , y2h}, . . . , Bm = {y(m−1)h+1, . . . , ymh}
where it is assumed that n = mh. The common block length is h. One then

resamples B∗
1 , B

∗
2 , . . . , B∗

m at random, with replacement, from {B1, . . . , Bm}.
Finally, the B∗

i ’s are pasted together to obtain the “starred” series y∗
1, . . . , y∗

n.

(b) Moving Block Bootstrap (MBB). In this scheme, the blocks are

B1 = {y1, . . . , yh}, B2 = {y2, . . . , yh+1}, . . . , BN = {yn−h+1, . . . , yn}
where N = n−h+1. One then resamples B∗

1 , . . . , B∗
m from B1, . . . , BN , where

still n = mh.

(c) Circular Block Bootstrap (CBB). In this scheme, one periodically extends the

observed series as y1, y2, . . . , yn, y1, y2, . . . , yn, . . . . Suppose we let zi be the

members of this new series, i = 1, 2, . . . . The blocks are defined as

B1 = {z1, . . . , zh}, B2 = {zh+1, . . . , z2h}, . . . , Bn = {zn, . . . , zn+h−1}.
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One then resamples B∗
1 , . . . , B∗

m from B1, . . . , Bn.

Next we give some theoretical properties of the three block bootstrap methods

described above. The results below are due to Lahiri (1999).

Suppose {yi : −∞ < i < ∞} is a d-dimensional stationary process with a finite

mean µ and spectral density f . Let h : Rd → R1 be a sufficiently smooth function.

Let θ = h(µ) and θ̂n = h(ȳn), where ȳn is the mean of the realized series. We

propose to use the block bootstrap schemes to estimate the bias and variance of

θ̂n. Precisely, let bn = E(θ̂n − θ) be the bias and let σ2
n = var(θ̂n) be the variance.

We use the block bootstrap based estimates of bn and σ2
n, denoted by b̂n and σ̂2

n,

respectively.

Next, let Tn = θ̂n − θ = h(ȳn) − h(µ), and let T ∗
n = h(ȳ∗

n) − h(E∗ȳ∗
n). The

estimates b̂n and σ̂2
n are defined as b̂n = E∗T ∗

n and σ̂2
n = Var∗(T ∗

n). Then the

following asymptotic expansions hold; see Lahiri (1999).

Theorem 29.19. Let h : Rd → R1 be a sufficiently smooth function.

(a) For each of the NBB, MBB, and CBB, there exists c1 = c1(f) such that

Eb̂n = bn +
c1

nh
+ o((nh)−1), n → ∞.

(b) For the NBB, there exists c2 = c2(f) such that

Var(b̂n) =
2π2c2h

n3
+ o(hn−3), n → ∞,

and for the MBB and CBB,

Var(b̂n) =
4π2c2h

3n3
+ o(hn−3), n → ∞.

(c) For each of NBB, MBB and CBB, there exists c3 = c3(f) such that E(σ̂2
n) =

σ2
n + c3

nh
+ o((nh)−1), n → ∞.

(d) For NBB, there exists c4 = c4(f) such that var(σ̂2
n) = 2π2c4h

n3 + o(hn−3), n →
∞, and for the MBB and CBB, var(σ̂2

n) = 4π2c4h
3n3 + o(hn−3), n → ∞.

These expansions are used in the next section.
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29.19 Optimal Block Length

The asymptotic expansions for the bias and variance of the block bootstrap esti-

mates, given in the theorem above, can be combined to produce mse-optimal block

lengths. For example, for estimating bn by b̂n, the leading term in the expansion for

the mse is

m(h) =
4π2c2h

3n3
+

c2
1

n2h2
.

To minimize m(·), we solve m′(h) = 0 to get

hopt =

(
3c2

1

2π2c2

)1/3

n1/3.

Similarly, a mse-optimal block length can be derived for estimating σ2
n by σ̂2

n. We

state the following optimal block length result of Lahiri (1999) below .

Theorem 29.20. For the MBB and the CBB, the mse-optimal block length for

estimating bn by b̂n satisfies

hopt =

(
3c2

1

2π2c2

)1/3

n1/3(1 + o(1)),

and the mse-optimal block length for estimating σ2
n by σ̂2

n satisfies

hopt =

(
3c2

3

2π2c4

)1/3

n1/3(1 + o(1)).

Remark: Recall that the constants ci depend on the spectral density f of the

process. So, the optimal block lengths cannot be directly used. Plug-in estimates

for the ci may be substituted. Or, the formulae can be used to try block lengths

proportional to n1/3, with flexible proportionality constants. There are also other

methods in the literature on selection of block lengths; see Hall et al. (1995) and

Politis and White (2004).
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29.20 Exercises

Exercise 29.1. For n = 10, 20, 50 take a random sample from a N(0, 1) distribu-

tion, and bootstrap the sample mean X̄ using a bootstrap Monte Carlo size B = 200.

Construct a histogram and superimpose on it the exact density of X̄. Compare.

Exercise 29.2. For n = 5, 25, 50, take a random sample from an Exp(1) density,

and bootstrap the sample mean X̄ using a bootstrap Monte Carlo size B = 200.

Construct a histogram and superimpose on it the exact density of X̄ and the CLT

approximation. Compare, and discuss if the bootstrap is doing something that the

CLT answer does not.

Exercise 29.3. * By using combinatorial coefficient matching cleverly, derive a

formula for the number of distinct orthodox bootstrap samples with a general value

of n.

Exercise 29.4. * For which, if any, of the sample mean, the sample median, and

the sample variance, is it possible to explicitly obtain the bootstrap distribution

HBoot(x) ?

Exercise 29.5. * For n = 3, write an expression for the exact Kolomogorov distance

between Hn and HBoot when the statistic is X̄ and F = N(0, 1).

Exercise 29.6. For n = 5, 25, 50, take a random sample from an Exp(1) density,

and bootstrap the sample mean X̄ using a bootstrap Monte Carlo size B = 200,

using both the canonical bootstrap and the natural parametric bootstrap. Construct

the corresponding histograms and superimpose them on the exact density. Is the

parametric bootstrap more accurate ?

Exercise 29.7. * Prove that under appropriate moment conditions, the bootstrap

is consistent for the sample correlation coefficient r between two jointly distributed

variables X,Y .

Exercise 29.8. * Give examples of three statistics for which the condition in the

rule of thumb on second order accuracy of the bootstrap does not hold.

Exercise 29.9. * By gradually increasing the value of n, numerically approximate

the constant c in the limit theorem for the Kolomogorov distance for the Poisson(1)

case (see the Text for the definition of c).
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Exercise 29.10. * For samples from a uniform distribution, is the bootstrap con-

sistent for the second largest order statistic ? Prove your assertion.

Exercise 29.11. For n = 5, 25, 50, take a random sample from an Exp(1) den-

sity, and compute the bootstrap-t, bootstrap-percentile, and the usual t 95% lower

confidence bounds on the population mean. Use B = 300. Compare meaningfully.

Exercise 29.12. * Give an example of

a) a density such that the bootstrap is not consistent for the median;

b) a density such that the bootstrap is not consistent for the mean;

c) a density such that the bootstrap is consistent, but not second order accurate

for the mean.

Exercise 29.13. For simulated independent samples from the U [0, θ) density, let

Tn = n(θ − X(n)). For n = 20, 40, 60, numerically approximate K(HBoot,m,n, Hn)

with varying choices of m and investigate the choice of an optimal m.

Exercise 29.14. * Suppose (Xi, Yi) are iid samples from a bivariate normal distri-

bution. Simulate n = 25 observations taking ρ = .5, and compute

a. The usual 95% confidence interval;

b. The interval based on the variance stabilizing transformation (Fisher’s z) (see

Chapter 4);

c. The bootstrap percentile interval;

d. The bootstrap hybrid percentile interval;

e. The bootstrap t interval with σ̂n as the usual estimate;

f. The accelerated bias-corrected bootstrap interval using ϕ as Fisher’s z, z0 =
r

2
√

n
(the choice coming from theory), and three different values of a near zero.

Write a discussion on your findings.

Exercise 29.15. * In which of the following cases, the results in Hall (1988) are

not applicable, and why ?

a. estimating the 80th percentile of a density on R;

b. estimating the variance of a Gamma density with known scale and unknown

shape parameter;
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c. estimating θ in the U [0, θ] density;

d. estimating P (X > 0) in a location parameter Cauchy density;

e. estimating the variance of the t-statistic for Weibull data;

f. estimating a Binomial success probability.

Exercise 29.16. Using simulated data, compute a standard CLT based 95% con-

fidence interval and the hybrid bootstrap interval for the 90th percentile of a i)

standard Cauchy distribution; ii) a Gamma distribution with scale parameter 1 and

shape parameter 3. Compare and comment. Use n = 20, 40.

Exercise 29.17. * Are the centers of the CLT based interval and the hybrid boot-

strap interval for a population quantile always the same ? Sometimes the same

?

Exercise 29.18. * Simulate a series of length 50 from a stationary AR(p) process

with p = 2 and then obtain the starred series by using the scheme in Bose (1988).

Exercise 29.19. * For the simulated data in the problem above, obtain the actual

blocks in the NBB and the MBB scheme, with h = 5. Hence, generate the starred

series by pasting the resampled blocks.

Exercise 29.20. For n = 25, take a random sample from a bivariate normal distri-

bution with zero means, unit variances, and correlation .6. Implement the residual

bootstrap using B = 150. Compute a bootstrap estimate of the variance of the LSE

of the regression slope parameter. Comment on the accuracy of this estimate.

Exercise 29.21. For n = 25, take a random sample from a bivariate normal distri

bution with zero means, unit variances, and correlation .6. Implement the paired

bootstrap using B = 150. Compute a bootstrap estimate of the variance of the LSE

of the regression slope parameter. Compare with the preceding exercise.

Exercise 29.22. * Give an example of two design matrices that do not satisfy the

conditions C1 and C2 in text.

Exercise 29.23. * Suppose the values of the covariates are xi = 1
i
, i = 1, 2, · · · , n

in a simple linear regression set up. Prove or disprove that the residual bootstrap

consistently estimates the distribution of the LSE of the slope parameter if the errors

are i) iid N(0, σ2), ii) iid t(m, 0, σ2), where m denotes the degree of freedom.
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Exercise 29.24. * Suppose X̄n is the sample mean of an iid sample from a CDF

F with a finite variance, and X̄n
∗

is the mean of a bootstrap sample. Consistency

of the bootstrap is a statement about the bootstrap distribution, conditional on

the observed data. What can you say about the unconditional limit distribution of√
n(X̄n

∗ − µ), where µ is the mean of F ?
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