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Abstract

We define a notion of approximate sufficiency and approximate ancillarity and show that such statistics are approximately
independent pointwise under each value of the parameter. We do so without mentioning the somewhat nonintuitive concept of
completeness, thus providing a more transparent version of Basu’s theorem. Two total variation inequalities are given, which we
call approximate Basu theorems.

We also show some new types of applications of Basu’s theorem in the theory of probability. The applications are to showing
that large classes of random variables are infinitely divisible (id), and that others admit a decomposition in the form YZ, where Y is
infinitely divisible, Z is not, both are nondegenerate, and Y and Z are independent.

These applications indicate that the possible spectrum of applications of Basu’s theorem is much broader than has been realized.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It has now been half a century since Basu (1955) proved what has turned out to be one of the most fundamental
theorems of basic statistical theory. Popularly known as Basu’s theorem, his result says that a boundedly complete and
sufficient statistic is independent of an ancillary statistic under all values of the parameter. Although Basu’s theorem is
discussed in many texts, a particularly comprehensive and delightful review with many types of applications is given
in Ghosh (2002). The purpose of this article is to obtain certain extensions to Basu’s theorem and to offer a collection
of new and probably even surprising applications of Basu’s theorem.

The statistical intuition in Basu’s theorem is that a statistic which captures all the information in a sample on an
unknown parameter and another which captures none should provide no information about each other, and thus should
be independent. The condition of completeness is in a way a necessary technical evil; one fails to see the intuition of
requiring completeness; see, however, Lehmann (1981) and Ghosh (2002). It therefore seems natural to ask whether a
sufficient statistic and an ancillary statistic would be ‘nearly’ independent anyway, in some well formulated sense. We
ask, in fact, a slightly more general question: is it the case that an approximately sufficient statistic and an approximately
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ancillary statistic are approximately independent under all values of the parameter? Of course, approximate sufficiency
and ancillarity would have to be defined. In Section 2, we give two total variation inequalities that imply such a result.
We like to call such results approximate Basu theorems. Viewed in this manner, we think, the real intuition of Basu’s
theorem comes through in a more satisfactory manner because we can establish the ‘near independence’ without the
somewhat abstract condition of completeness.

It is well known that although Basu’s theorem is a theorem in statistical inference, it can be used to find easy solutions
of distributional questions in probability. Ghosh (2002) gives many examples of applications of Basu’s theorem in
deriving joint distributions of random variables bypassing heavy calculations that would be needed in a direct attack.
However, we give some entirely new types of applications. We show that a wide variety of random variables are
infinitely divisible (id) by simultaneous use of Basu’s theorem and an extended version of the Goldie–Steutel law of
infinite divisibility (Goldie, 1967; Bose et al., 2002). The results do not follow from just the extended Goldie–Steutel
law; Basu’s theorem is also used. To our knowledge, Basu’s theorem has never been applied prior to this in proving
infinite divisibility. These results are presented in Section 3. The wide collection of explicit id densities obtained can
be used for statistical modeling and as examples in classroom instruction.

In Section 4, we present another new type of application of Basu’s theorem. We apply Basu’s theorem in factorization
of random variables, a topic of some interest in probability theory. The typical result we show says that a certain random
variable X can be factorized as X = YZ, where Y is id, but Z is not, and Y and Z are independent.

In summary, the intention of this article is to give what we believe is a more transparent and more intuitive inter-
pretation of Basu’s theorem by avoiding the mention of completeness, and to demonstrate that the possible horizon of
applications of Basu’s theorem is probably much wider than has been understood so far.

It is a profound regret that this paper was not finished before Dev Basu passed away in the March of 2001. I offer
these results as my homage to a remarkable scholar who imparted an ineffable influence on my life.

2. Approximate Basu theorems

The extensions to Basu’s theorem are presented in this section. Each is given in terms of the total variation distance
between a true joint distribution and the distribution that is the product of the corresponding marginals. For example,
for specificity, suppose T is a sufficient statistic, and U an ancillary and � is an unknown parameter. Let P� denote the
joint distribution of T and U and Q� the product measure. Since T and U are independent under each � if T is also
boundedly complete, in such a case the total variation distance between P� and Q� would be zero.We ask what kinds
of bounds can we establish on the total variation distance between P� and Q� without requiring completeness of T. For
some of the results, we ask the same question, only taking T to be ‘approximately sufficient’ and U to be ‘approximately
ancillary’. Choice of total variation was a conscious choice as it seems very natural, but of course similar results should
be possible with other distances, such as Kullback–Leibler or Hellinger.

First, we introduce some notation to be used for the rest of the article.
With respect to some common dominating measure �⊗�, let p�(t, u)= joint density of (T , U); f�(u|t)=conditional

density of U given T = t ; g�(t) = marginal density of T; h�(u) = marginal density of U; P� = true joint distribution of
(T , U); Q� = product measure corresponding to the marginals of T and U; d� = total variation distance between P�
and Q�.

The exact choice of T and U will be given in the specific context.
Note that if T is sufficient and U is ancillary, then for a.a. (t, u)(� ⊗ �), f�(u|t) is independent of �; i.e., there is a

function f (u, t) which acts as the conditional density under each �. For the sake of notational simplicity, we will use
the Lebesgue measure for each of � and �.

Theorem 1. Let T , U be general statistics. Then

d� �
∫ √

Var�(f�(u|T )) du.

Proof. By definition,

2d� =
∫

|p�(t, u) − g�(t)h�(u)| dt du =
∫

|f�(u|t) − h�(u)|g�(t) dt du;
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now observe that ET |�(f�(u|T )) = h�(u), and hence,
∫ |f�(u|t) − h�(u)|g�(t)�

√
Var�(f�(u|T )); integrating this

inequality over u gives the inequality of the theorem. �

Remark. If T is complete and sufficient and U is ancillary, then Var�(f�(u|T )) = 0 for almost all u, forcing d� = 0,
which is Basu’s theorem. In this sense, the result above is an extension to Basu’s theorem.

We illustrate Theorem 1 by an example.

Example 1. Suppose X1, X2, . . . , Xn are iid U [0, �]. Let T = X(n) and U = X(1). Note that T is sufficient (and even
complete), but U is not ancillary. But intuitively, U has almost no information about �, and so almost an ancillary. One
might expect that T and U are almost independent. Let us see how Theorem 1 works out in this example.

Since T is sufficient, the conditional density of U given T is free of �; denoting it by f (u|t), by a direct calculation,

f (u|t) = (n − 1)(t − u)n−2/tn−1It>u.

On the other hand, the density of T under � of course is g�(t) = ntn−1/�nI0<t<�. Then on a few lines of algebra,

E�(f (u|T )) = n(� − u)n−1/�n.

Similarly, E�(f (u|T )2)=n(n− 1)2/�n[(−1)n
(

2n−4
n−2

)
un−2(log �− log u)+∑

j �=n−2 (−1)j
(

2n−4
j

)
uj (�n−2−j −

un−2−j )/(n − 2 − j)].
These expressions provide Var�(f (u|T )). The bound of Theorem 1 is obtained by integrating the square root over

u ∈ (0, �). This integral can be very easily done numerically, but not in a closed form. We provide below a few
illustrative values; the bound is for � = 1.

n Bound of Theorem 1 on d�

5 .174
10 .079
15 .051
20 .040

The bounds are consistent with the intuition that X(n) and X(1) should be nearly independent for large n.
Next we give a result that shows that an approximately sufficient statistic and an approximately ancillary statistic are

approximately independent. There is no mention of completeness in this result. First we specify a notion of approximate
sufficiency and approximate ancillarity. We should mention that classic notions of approximate sufficiency have been
around for a long time; see, e.g., Le Cam (1964, 1974, 1986), Reiss (1978), and Brown and Low (1996). It would be
interesting if these notions of approximate sufficiency can be tied to the sort of approximate Basu theorems we want
to establish. We have not attempted it.

Definition 1. A statistic T is called �-sufficient with respect to another statistic U if |�f�(u|t)/��|�� for a.a. (u, t)
under each �.

Definition 2. A statistic U is called �-ancillary if |�h�(u)/��|�� for a.a. u under each �.

Remark. Obviously, it is a part of the definitions that the stated partial derivatives exist. Clearly, sufficiency implies
�-sufficiency for any � > 0 and for any choice of U . Thus �-sufficiency is a notion of approximate sufficiency, but
only locally, in the sense it is with respect to the specified statistic U . Analogously, � ancillarity with � = 0 would
mean ancillarity. Thus, the notions of approximate sufficiency and ancillarity given above are weaker than their usual
meanings. However, we will see in the next theorem that one can obtain results in the spirit of Basu’s theorem with
these weaker notions.
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One more remark is in order. Note that �-sufficiency is invariant with respect to a one-to-one transformation on
the statistic T . It is not invariant with respect to a monotone reparametrization. If we permit � to depend on �, then
approximate sufficiency holds with a new value of �. However, ultimately, the bound given in Theorem 2 below remains
unchanged due to a cancellation with the Fisher information term under the reparametrization.

We now provide the theorem and its proof.

Theorem 2. Let U be �-ancillary and T �-sufficient with respect to U. Suppose U and � are bounded, taking val-
ues in, say, [0,1]. Assume f�(u|t), g�(t) and h�(u) are once continuously differentiable in � for a.a. (u, t) and that
lim�→0 [f�(u|t) − h�(u)]√g�(t) = 0 for a.a. (u, t). Assume also that ∃ constants k1, k2 such that f�(u|t)�k1, and
h�(u)�k2. Then,

d� �1/
√

2

√
2(�2 + �2) + (max(k1, k2))

2
∫

Ig(�) d�/4,

where Ig(�) denotes the Fisher information in T about �.

Remark. The interpretation of Theorem 2 is that if T is approximately sufficient and U approximately ancillary, then
provided that T and U are independent under a ‘degenerate’ value of �, they are approximately independent under all �.
There is no mention of completeness here. The conditions that U and � belong to [0,1] can be relaxed to the conditions
that they belong to bounded intervals.

Careful examination of the assumptions made in Theorem 2 reveals that collectively they imply that under some
special value (�= 0), U and T are independent, and away from the special value, the relevant densities are not allowed
to vary excessively. So a result of the sort of Theorem 2 would be expected. The interest in this kind of a result lies in
a formulation of approximate sufficiency and approximate ancillarity that precipitate an approximate Basu theorem.

Proof. By definition,

2d� =
∫ 1

0

∫
|f�(u|t) − h�(u)|g�(t) dt du

�

√∫ 1

0

(∫
|f�(u|t) − h�(u)|g�(t) dt

)2

du (by Schwartz’s inequality applied to u)

�

√∫ 1

0

∫
(f�(u|t) − h�(u))2g�(t) dt du (by Schwartz’s inequality applied to T ).

Consider now the function u = u(�) = (f�(u|t) − h�(u))
√

g�(t). By the fundamental theorem and Schwartz,

u(�)�

√∫ 1

0
(�/��u(�))2 d�;

but,

�/��u(�) = (�/��f� − �/��h�)
√

g� + (f� − h�)�/�� g�/(2
√

g�)

⇒ (�/��u(�))2 �2[2(�2 + �2)g� + [max(k1, k2)]2(�/�� g�)
2/(4g�)];

(by the simple Holder inequality (a + b)2 �2(a2 + b2) and by the hypotheses of �-sufficiency and �-ancillarity).
Thus, u2(�)�2

∫ 1
0 [2(�2 + �2)g� + (max(k1, k2))

2(�/�� g�)
2/(4g�)] d�; note the important point that this integral

bound on u2(�) is a uniform bound—it does not depend on �. �

Now, since we have already proved that 2d� �
√∫ 1

0

∫
u2 dt du, the theorem follows on integrating the above integral

bound we derived on u2 with respect to t, u and on performing the integrations in the order u, t, �. The algebra is
omitted.
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3. Basu’s theorem and infinite divisibility

In this section and the next, we show various applications of Basu’s theorem to infinite divisibility and factorization
of random variables. Some of the examples are known; but others are new. More than the new examples, the interesting
thing is that Basu’s theorem is useful in these kinds of problems. It should be pointed out that sampling distributional
results needed for our results can be derived by textbook methods involving Jacobians. However, use of Basu’s theorem
leads to these results in a quicker and (we think) more elegant way. Instances of such quick consequences of Basu’s
theorem are eloquently documented in Boos and Hughes-Oliver (1998) and Ghosh (2002).

The results and the applications of the results depend on two facts. See Steutel (1970, 1979), and Bose et al. (2002).
First we state these two facts as lemmas.

Lemma 1. Let V ∼ Exp(1) and W independent of V. Then the product VW is id.

Remark. If W is nonnegative, then Lemma 1 is the Goldie–Steutel law which says that scale mixtures of Exponential
densities are id. Essentially the same proof handles the case of a general W as well.

Lemma 2. Let V ∼ Exp(1) and suppose � > 0. Then V � admits the representation V � = UW , where U ∼ Exp(1),
and W is independent of U.

We now state and prove our main theorems of this section.

Theorem 3. Let f be any homogeneous function of two variables, i.e., suppose f (cx, cy) = c2f (x, y) ∀x, y and
∀c > 0. Let Z1, Z2 be iid N(0, 1) random variables and Z3, Z4, . . . , Zm any other random variables such that
(Z3, Z4, . . . , Zm) is independent of (Z1, Z2). Then for any positive integer k, and an arbitrary measurable function
g, f k(Z1, Z2)g(Z3, Z4, . . . , Zm) is id.

Due to the fact that f can be any homogeneous function and k and g are completely arbitrary, in principle, Theorem
3 has a very broad range of applications. Before giving a proof of Theorem 3, we state a corollary of this theorem and
show a fairly large number of examples as applications of Theorem 3. The examples establish a large variety of random
variables as being id.

Corollary 1. (a) Let f (x, y) be any of the functions xy, x2 + y2, |x|�|y|� where �, ��0 and � + � = 2,
√

x4 + y4,

(xn + yn)/(xn−2 + yn−2) where n�2.
Then for iid N(0, 1) random variables Z1, Z2, and Z3, Z4, . . . , Zm any other random variables such that (Z3,

Z4, . . . , Zm) is independent of (Z1, Z2), any positive integer k, and an arbitrary measurable function g, f k(Z1, Z2)

g(Z3, Z4, . . . , Zm) is id.
(b) Let n�1 and X1, X2, . . . , Xn independent random variables, each a scale mixture of zero mean normal distri-

butions. Then for any k�1, (X1X2 . . . Xn)
k is id.

(c) Let m, n�1, m < n and X1, X2, . . . , Xn independent random variables, each a scale mixture of zero mean normal
distributions. Then for any p, q �1, the ratio R = (X1X2 . . . Xm)p/(Xm+1 . . . Xn)

q is id.

Proof of Corollary 1. We will first prove part (a); parts (b) and (c) essentially follow from part (a).
Observe that each function f mentioned in part (a) is a homogeneous function as is easily verified. Thus, directly

from Theorem 3, part (a) follows as a corollary.
To see the result of part (b), write X1X2 . . . Xn = (�1Z1)(�2Z2) . . . (�nZn), where the {Zi} are N(0, 1) random

variables and the {Zi} and the {�i} are all mutually independent. Therefore, X1X2 . . . Xn=Z1Z2(Z3 . . . Zn�1�2 . . . �n),
and so it follows from part (a) that X1X2 . . . Xn is id by taking f to be xy, k as 1, and g as the product function in the
corresponding space. The proof for a general k is the same.

Part (c) follows exactly similarly and so we omit the proof. �

We will now give, as specific illustrative examples, density functions that correspond to id distributions. It should
be remarked that some are known, and others new. Densities (i), (iii), (v) and (viii) in the example below are simple
functions and can be used as models in applications or as examples in classroom instruction.
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Example 2. Each of the following density functions on (−∞, ∞) correspond to id distributions.

(i) f (x) = 1/	K0(|x|), where K0 denotes the Bessel K0 function;
(ii) f (x) = − exp(x2/2)Ei(−x2/2)/(

√
2	3/2), where Ei(.) denotes the Exponential integral;

(iii) f (x) = K0(2
√|x|);

(iv) f (x) = [sin(|x|)(	 − 2si(|x|)) − 2 cos(x)ci(|x|)]/(2	), where si(.) and ci(.) stand for the sine and the cosine
integral;

(v) f (x) = 2 log(|x|)/(	2(x2 − 1));
(vi) f (x) = [|x| − √

2	 exp(1/(2x2))
(−1/|x|)]/(√2	|x|3), where 
(.) denotes the N(0, 1) CDF;
(vii) f (x) = (1 − √

2	|x| exp(x2/2)
(−|x|))/√2	;
(viii) f (x) = 1/(2(1 + |x|)2);

(ix) f (x) = exp(1/(2x2))�(0, 1/(2x2))/(
√

2	3/2),where �(., .) denotes the incomplete Gamma function;
(x) f (x) = [sin(1/|x|)(	 − 2si(1/|x|)) − 2 cos(1/|x|)ci(1/|x|)]/(2	x2).

Proof. It follows as a special case of parts (b) and (c) of Corollary 1 that the densities stated in Example 2 are
all id. For the purpose of this example, we will denote a standard normal, a standard double exponential, and a
standard Cauchy random variable as N, D, and C, respectively. Then the densities (i)–(x) are, respectively, the density
functions of NN, NC, DD, CD, CC, N/D, D/N, D/D, C/N and C/D, where the notation NN means the product of two
independent standard normals, etc. Therefore, the infinite divisibility of each one directly follows from parts (b) and (c) of
Corollary 1. �

Remark. Note that the density of N/C is the same as that of NC, and the density of D/C is the same as that of CD. Thus,
they are not separately mentioned in the example. And of course, N/N is the same as C, and therefore not mentioned
either.

Proof of Theorem 3. Let Z1, Z2 be iid N(0, 1) and (Z3, . . . , Zm) independent of (Z1, Z2). Consider any homoge-
neous function f (Z1, Z2) and write it as f (Z1, Z2) = (Z2

1 + Z2
2)f (Z1, Z2)/(Z

2
1 + Z2

2). Basu’s theorem will now be
used. Introduce, just for the sake of the proof, a parameter �2 and take the more general case where Z1, Z2 are iid
N(0, �2). Then Z2

1 + Z2
2 is complete and sufficient and f (Z1, Z2)/(Z

2
1 + Z2

2) is ancillary because f is homogeneous.
Therefore, f (Z1, Z2)/(Z

2
1 + Z2

2) and Z2
1 + Z2

2 are independent under any �, and so in particular, under � = 1. Thus,
f (Z1, Z2) can be written as VW, where V ∼ Exp(2) and W is independent of V .

Hence, f k(Z1, Z2)g(Z3, . . . , Zm) = V kWkg(Z3, . . . , Zm). Now apply Lemma 2. By Lemma 2, f k(Z1, Z2)g

(Z3, . . . , Zm) = V kWkg(Z3, . . . , Zm) = UW∗Wkg(Z3, . . . , Zm), where U ∼ Exp(1) and the rest are independent of
U , and therefore by the extended Goldie–Steutel Law (Lemma 1), f k(Z1, Z2)g(Z3, . . . , Zm) is id.

4. Factorization of random variables

In this final section, we will show that Basu’s theorem can be used to decompose various functions of iid N(0, 1)

random variables in the formYZ whereY is id, Z is not, both are nondegenerate, and Y and Z are independent. Although
they are all functions of iid N(0, 1) random variables, the class of functions that admit such a decomposition is large,
as we see in the following theorem.

Theorem 4. Let X1, X2, . . . , Xn be iid N(0, 1) random variables. Suppose hi(x1, x2, . . . , xn), 1� i�n, are scale
invariant functions, i.e., hi(cx1, cx2, . . . , cxn) = hi(x1, x2, . . . , xn) ∀c > 0, and f is any continuous homogeneous
function in the n-space, i.e., f (cx1, cx2, . . . , cxn) = cnf (x1, x2, . . . , xn) ∀c > 0.

Define W = g(X1, X2, . . . , Xn) = f (‖X‖h1(X1, X2, . . . , Xn), . . . , ‖X‖hn(X1, X2, . . . , Xn)), where ‖X‖ denotes
the Euclidean norm of the vector (X1, X2, . . . , Xn).

Then W admits the representation W = YZ, where Y is id, Z is not, both are nondegenerate, and Y and Z are
independent.
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Before giving a proof of Theorem 4, we give a few interesting examples of such a decomposition that would follow
from the theorem.

Example 3. Suppose X1, X2, . . . , Xn are iid N(0, 1); then each of the following random variables can be decomposed
as YZ, with Y and Z as in Theorem 4:

(i) W = X1X2 . . . Xn;
(ii) W = Xn

1 + Xn
2 + · · · + Xn

n;
(iii) W = X2

1X2
2 . . . X2

n/(X
2
1 + X2

2 + · · · + X2
n)

n/2;
(iv) W = (X2n

1 + X2n
2 + · · · + X2n

n )/(X2
1 + X2

2 + · · · + X2
n)

n/2.

Of these four specific examples, it is particularly nice that (i) and (ii) have the decomposition we are discussing
because they have a particular special form. That each of these four random variables has the stated decomposition can
be seen by proving two more general facts. Let us do that now.

Consider the scale invariant functions hi(x1, x2, . . . , xn) = xm
i /(x2

1 + x2
2 + · · · + x2

n)m/2, and the continuous homo-
geneous function f (x1, x2, . . . , xn) = xn

1 + xn
2 + · · · + xn

n .
Then,

f (‖x‖h1(x1, x2, . . . , xn), . . . , ‖x‖hn(x1, x2, . . . , xn)) = ‖x‖n
n∑

i=1

hn
i (x1, x2, . . . , xn)

= ‖x‖n
n∑

i=1

xmn
i /‖x‖mn

=
n∑

i=1

xmn
i /‖x‖n(m−1).

The special value m = 1 gives the random variable in (ii), and the special value m = 2 gives the random variable
in (iv).

For the other two examples, consider the same scale invariant functions hi , but change the function f to f (x1,

x2, . . . , xn) = x1x2 . . . xn.
Then, f (‖x‖h1(x1, x2, . . . , xn), . . . , ‖x‖hn(x1, x2, . . . , xn)) = ‖x‖n(x1x2 . . . xn)

m/(x2
1 + x2

2 + · · · + x2
n)(nm/2).

The special value m = 1 gives the random variable in (i), while m = 2 gives the random variable in (iii).
Of course, numerous other examples can be worked out by simply choosing other functions hi and f.
We will finish by giving a proof of Theorem 4.

Proof of Theorem 4. By definition of g, and from the homogeneity of f, we have that g(X1, X2, . . . , Xn) = ‖X‖nf

(h1(X1, X2, . . . , Xn), . . ., hn(X1, X2, . . . , Xn)).
Of these, ‖X‖n is a power of a chi-square and hence id (this is well known). As regards the second factor, if

we introduce as before an artificial parameter �2 and let X1, X2, . . . , Xn be iid N(0, �2), then ‖X‖ is complete and
sufficient, and the vector of functions U = (h1(X1, X2, . . . , Xn), . . . , hn(X1, X2, . . . , Xn)) is ancillary because by
hypothesis each hi is scale invariant. Hence, by Basu’s theorem ‖X‖ and U are independent, under any �, and so in
particular under �= 1. So if we let Y =‖X‖n, and Z = f (U), then Y and Z are independent. To see that Z cannot be id,
note that by its scale invariance, f is determined by its values on the unit disk and therefore must be bounded as f was
also assumed to be continuous. Since a bounded random variable cannot be id, it now follows that g(X1, X2, . . . , Xn)

has the decomposition stated in the theorem. �
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