
3 Exponential Families as a Unifier in Inference

Parametric inference is quite routinely used in relatively simple problems. Also, some

problems are inherently parametric; for example, experiments that resemble iid sequences

of a coin toss are automatically binomial experiments. The normal distribution is widely

used in statistical practice; so is the Poisson. The Exponential family is a practically con-

venient unified family of distributions on finite dimensional Euclidean spaces that includes

a large number of these standard parametric distributions as special cases. Specialized

to the case of the real line, the Exponential family contains as special cases the normal,

Poisson, Binomial, exponential, Gamma, negative binomial, etc.

However, there is much more to the Exponential family than just the fact that it includes

many standard distributions as special cases. A number of important and useful calcu-

lations in statistical inference can be done in exact closed form all at one stroke within

the framework of the Exponential family. As a matter of fact, if a parametric model is

not in the Exponential family, we usually have to resort to asymptotic theory, because

basic calculations would not be feasible in closed form for a given sample size n. Also,

the Exponential family is the usual testing ground for the large spectrum of results in

parametric statistical theory that require notions of regularity. Another attraction is that

the unified calculations in the Exponential family setup have an element of mathematical

neatness.

Distributions in the Exponential family have been used in classical statistics for decades.

Recently, it has regained its historic importance in some novel inference problems that

involve many parameters and a lot of data; the reason is that such problems are difficult

to attack nonparametrically. A fundamental treatment of the general Exponential family

is provided in this chapter. This unified treatment will save us repetitive and boring cal-

culations for special distributions on a case by case basis. Classic expositions are available

in Barndorff-Nielsen (1978), Brown (1986), and Lehmann and Casella (1998). Two other

beautiful treatments are Bickel and Doksum (2006) and LeTac (1992). Liese and Miescke

(2008) gives a rigorous modern treatment of Exponential families.

3.1 One Parameter Regular Exponential Family

Exponential families can have any finite number of parameters. For instance, as we will

see, a normal distribution with a known mean is in the one parameter Exponential family,

while a normal distribution with both parameters unknown is in the two parameter Ex-

ponential family. A bivariate normal distribution with all parameters unknown is in the

five parameter Exponential family. As another example, if we take a normal distribution

in which the mean and the variance are functionally related, e.g., the N(µ, µ2) distribu-

tion, then the distribution will be neither in the one parameter nor in the two parameter
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Exponential family, but in a family called a curved Exponential family. We start with the

one parameter regular Exponential family.

3.1.1 First Examples

Let us revisit an old example for simple illustration.

Example 3.1. (Normal Distribution with a Known Mean). Suppose X ∼ N(0, σ2).

Then the density of X is

f(x |σ) =
1

σ
√

2π
e
− x2

2σ2 Ix∈R.

This density is parametrized by a single parameter σ. Writing

η(σ) = − 1

2σ2
, T (x) = x2, ψ(σ) = log σ, h(x) =

1√
2π

Ix∈R,

we can represent the density in the form

f(x |σ) = eη(σ)T (x)−ψ(σ)h(x),

for any σ ∈ R+.

Next, suppose that we have an iid sample X1, X2, · · · , Xn ∼ N(0, σ2). Then the joint

density of X1, X2, · · · , Xn is

f(x1, x2, · · · , xn |σ) =
1

σn(2π)n/2
e
−

Pn
i=1 x2

i
2σ2 Ix1,x2,···,xn∈R.

Now writing

η(σ) = − 1

2σ2
, T (x1, x2, · · · , xn) =

n
∑

i=1

x2
i , ψ(σ) = n log σ,

and

h(x1, x2, · · · , xn) =
1

(2π)n/2
Ix1,x2,···,xn∈R,

once again we can represent the joint density in the same general form

f(x1, x2, · · · , xn |σ) = eη(σ)T (x1,x2,···,xn)−ψ(σ)h(x1, x2, · · · , xn).

We notice that in this representation of the joint density f(x1, x2, · · · , xn |σ), the statis-

tic T (X1, X2, · · · , Xn) is still a one dimensional statistic, namely, T (X1, X2, · · · , Xn) =
∑n

i=1 X2
i . Using the fact that the sum of squares of n independent standard normal

variables is a chi square variable with n degrees of freedom, we have that the density of

T (X1, X2, · · · , Xn) is

fT (t |σ) =
e
− t

2σ2 t
n
2
−1

σn2n/2Γ(n
2 )

It>0.
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This time, writing

η(σ) = − 1

2σ2
, S(t) = t, ψ(σ) = n log σ, h(t) =

1

2n/2Γ(n
2 )

It>0,

once again we are able to write even the density of T (X1, X2, · · · , Xn) =
∑n

i=1 X2
i in that

same general form

fT (t |σ) = eη(σ)S(t)−ψ(σ)h(t).

Clearly, something very interesting is going on. We started with a basic density in a specific

form, namely, f(x |σ) = eη(σ)T (x)−ψ(σ)h(x), and then we found that the joint density and

the density of the relevant one dimensional statistic
∑n

i=1 X2
i in that joint density, are once

again densities of exactly that same general form. It turns out that all of these phenomena

are true of the entire family of densities which can be written in that general form, which

is the one parameter Exponential family. Let us formally define it and we will then extend

the definition to distributions with more than one parameter.

3.1.2 Definitions and Additional Examples

Definition 3.1. Let X = (X1, · · · , Xd) be a d-dimensional random vector with a distri-

bution Pθ, θ ∈ Θ ⊆ R.

Suppose X1, · · · , Xd are jointly continuous. The family of distributions {Pθ, θ ∈ Θ} is said

to belong to the one parameter Exponential family if the density of X = (X1, · · · , Xd) may

be represented in the form

f(x |θ) = eη(θ)T (x)−ψ(θ)h(x),

for some real valued functions T (x), ψ(θ) and h(x) ≥ 0.

If X1, · · · , Xd are jointly discrete, then {Pθ, θ ∈ Θ} is said to belong to the one parameter

Exponential family if the joint pmf p(x |θ) = Pθ(X1 = x1, · · · , Xd = xd) may be written in

the form

p(x |θ) = eη(θ)T (x)−ψ(θ)h(x),

for some real valued functions T (x), ψ(θ) and h(x) ≥ 0.

Note that the functions η, T and h are not unique. For example, in the product ηT , we can

multiply T by some constant c and divide η by it. Similarly, we can play with constants

in the function h.

Definition 3.2. Suppose X = (X1, · · · , Xd) has a distribution Pθ, θ ∈ Θ, belonging to the

one parameter Exponential family. Then the statistic T (X) is called the natural sufficient

statistic for the family {Pθ}.
The notion of a sufficient statistic is a fundamental one in statistical theory and its appli-

cations. A sufficient statistic is supposed to contain by itself all of the information about
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the unknown parameters of the underlying distribution that the entire sample could have

provided. Reduction by sufficiency in widely used models usually makes just simple com-

mon sense. We will come back to the issue of sufficiency once again in Chapter 7.

We will now see examples of a few more common distributions that belong to the one

parameter Exponential family.

Example 3.2. (Binomial Distribution). Let X ∼ Bin(n, p), with n ≥ 1 considered

as known, and 0 < p < 1 a parameter. We represent the pmf of X in the one parameter

Exponential family form.

f(x |p) =

(

n

x

)

px(1 − p)n−xI{x∈{0,1,···,n}} =

(

n

x

)(

p

1 − p

)x

(1 − p)nI{x∈{0,1,···,n}}

=

(

n

x

)

e
x log p

1−p
+n log(1−p)

I{x∈{0,1,···,n}}.

Writing η(p) = log p
1−p , T (x) = x, ψ(p) = −n log(1 − p), and h(x) =

(

n
x

)

I{x∈{0,1,···,n}},

we have represented the pmf f(x |p) in the one parameter Exponential family form, as

long as p ∈ (0, 1). For p = 0 or 1, the distribution becomes a one point distribution.

Consequently, the family of distributions {f(x |p), 0 < p < 1} forms a one parameter

Exponential family, but if either of the boundary values p = 0, 1 is included, the family is

not in the Exponential family.

Example 3.3. (Normal Distribution with a Known Variance). Suppose X ∼
N(µ, σ2), where σ is considered known, and µ ∈ R a parameter. Then,

f(x |µ) =
1√
2π

e−
x2

2
+µx−µ2

2 Ix∈R,

which can be written in the one parameter Exponential family form by witing η(µ) =

µ, T (x) = x, ψ(µ) = µ2

2 , and h(x) = e−
x2

2 Ix∈R. So, the family of distributions {f(x |µ), µ ∈
R} forms a one parameter Exponential family.

Example 3.4. (Gamma Distribution). Suppose X has the Gamma density e−
x
λ xα−1

λαΓ(α) Ix>0.

As such, it has two parameters λ, α. If we assume that α is known, then we may write

the density in the one parameter Exponential family form:

f(x |λ) = e−
x
λ
−α log λ xα−1

Γ(α)
Ix>0,

and recognize it as a density in the Exponential family with η(λ) = − 1
λ , T (x) = x, ψ(λ) =

α log λ, h(x) = xα−1

Γ(α) Ix>0.

If we assume that λ is known, once again, by writing the density as

f(x |α) = eα log x−α(log λ)−log Γ(α)e−
x
λ Ix>0,

we recognize it as a density in the Exponential family with η(α) = α, T (x) = log x, ψ(α) =

α(log λ) + log Γ(α), h(x) = e−
x
λ Ix>0.
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Example 3.5. (An Unusual Gamma Distribution). Suppose we have a Gamma

density in which the mean is known, say, E(X) = 1. This means that αλ = 1 ⇒ λ = 1
α .

Parametrizing the density with α, we have

f(x |α) = e−αx+α log x αα

Γ(α)

1

x
Ix>0

= e
α

[

log x−x

]

−
[

log Γ(α)−α log α

]

1

x
Ix>0,

which is once again in the one parameter Exponential family form with η(α) = α, T (x) =

log x − x, ψ(α) = log Γ(α) − α log α, h(x) = 1
xIx>0.

Example 3.6. (A Normal Distribution Truncated to a Set). Suppose a certain

random variable W has a normal distribution with mean µ and variance one. We saw in

Example 18.3 that this is in the one parameter Exponential family. Suppose now that

the variable W can be physically observed only when its value is inside some set A. For

instance, if W > 2, then our measuring instruments cannot tell what the value of W is.

In such a case, the variable X that is truly observed has a normal distribution truncated

to the set A. For simplicity, take A to be A = [a, b], an interval. Then, the density of X is

f(x |µ) =
e−

(x−µ)2

2√
2π[Φ(b − µ) − Φ(a − µ)]

Ia≤x≤b.

This can be written as

f(x |µ) =
1√
2π

e
µx−µ2

2
−log

[

Φ(b−µ)−Φ(a−µ)

]

e−
x2

2 Ia≤x≤b,

and we recognize this to be in the Exponential family form with η(µ) = µ, T (x) = x, ψ(µ) =
µ2

2 + log[Φ(b − µ) − Φ(a − µ)], and h(x) = e−
x2

2 Ia≤x≤b. Thus, the distribution of W

truncated to A = [a, b] is still in the one parameter Exponential family. This phenomenon

is in fact more general. Ex (Some Distributions not in the Exponential Family).

It is clear from the definition of a one parameter Exponential family that if a certain

family of distributions {Pθ, θ ∈ Θ} belongs to the one parameter Exponential family, then

each Pθ has exactly the same support. Precisely, for any fixed θ, Pθ(A) > 0 if and only

if
∫

A h(x)dx > 0, and in the discrete case, Pθ(A) > 0 if and only if A ∩ X 6= ∅, where

X is the countable set X = {x : h(x) > 0}. As a consequence of this common support

fact, the so called irregular distributions whose support depends on the parameter cannot

be members of the Exponential family. Examples would be the family of U [0, θ], U [−θ, θ]

distributions, etc. Likewise, the shifted Exponential density f(x |θ) = eθ−xIx>θ cannot be

in the Exponential family.

Some other common distributions are also not in the Exponential family, but for other
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reasons. An important example is the family of Cauchy distributions given by the location

parameter form f(x |µ) = 1
π[1+(x−µ)2]

Ix∈R. Suppose that it is. Then, we can find functions

η(µ), T (x) such that for all x, µ,

eη(µ)T (x) =
1

1 + (x − µ)2
⇒ η(µ)T (x) = − log(1 + (x − µ)2)

⇒ η(0)T (x) = − log(1 + x2) ⇒ T (x) = −c log(1 + x2)

for some constant c.

Plugging this back, we get, for all x, µ,

−cη(µ) log(1 + x2) = − log(1 + (x − µ)2) ⇒ η(µ) =
1

c

log(1 + (x − µ)2)

log(1 + x2)
.

This means that log(1+(x−µ)2)
log(1+x2)

must be a constant function of x, which is a contradiction.

The choice of µ = 0 as the special value of µ is not important.

3.1.3 Canonical Form and General Properties

Suppose {Pθ, θ ∈ Θ} is a family belonging to the one parameter Exponential family, with

density (or pmf) of the form f(x |θ) = eη(θ)T (x)−ψ(θh(x). If η(θ) is a one-to-one function

of θ, then we can drop θ altogether, and parametrize the distribution in terms of η itself.

If we do that, we get a reparametrized density g in the form eηT (x)−ψ∗(η)h(x). By a slight

abuse of notation, we will again use the notation f for g and ψ for ψ∗.

Definition 3.3. Let X = (X1, · · · , Xd) have a distribution Pη, η ∈ T ⊆ R. The family

of distributions {Pη, η ∈ T } is said to belong to the canonical one parameter Exponential

family if the density (pmf) of Pη may be written in the form

f(x |η) = eηT (x)−ψ(η)h(x),

where

η ∈ T = {η : eψ(η) =

∫

Rd

eηT (x)h(x)dx < ∞},

in the continuous case, and

T = {η : eψ(η) =
∑

x∈X
eηT (x)h(x) < ∞},

in the discrete case, with X being the countable set on which h(x) > 0.

For a distribution in the canonical one parameter Exponential family, the parameter η is

called the natural parameter, and T is called the natural parameter space. Note that T
describes the largest set of values of η for which the density (pmf) can be defined. In a

particular application, we may have extraneous knowledge that η belongs to some proper
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subset of T . hus, {Pη} with η ∈ T is called the full canonical one parameter Exponential

family. We generally refer to the full family, unless otherwise stated.

The canonical Exponential family is called regular if T is an open set in R, and it is called

nonsingular if Varη(T (X)) > 0 for all η ∈ T 0, the interior of the natural parameter space

T .

It is analytically convenient to work with an Exponential family distribution in its canonical

form. Once a result has been derived for the canonical form, if desired we can rewrite the

answer in terms of the original parameter θ. Doing this retransformation at the end is

algebraically and notationally simpler than carrying the original function η(θ) and often

its higher derivatives with us throughout a calculation. Most of our formulae and theorems

below will be given for the canonical form.

Example 3.7. (Binomial Distribution in Canonical Form). Let X ∼ Bin(n, p)

with the pmf
(

n
x

)

px(1−p)n−xIx∈{0,1,···,n}. In Example 18.2, we represented this pmf in the

Exponential family form

f(x |p) = e
x log p

1−p
−nlog(1−p)

(

n

x

)

Ix∈{0,1,···,n}.

If we write log p
1−p = η, then p

1−p = eη, and hence, p = eη

1+eη , and 1− p = 1
1+eη . Therefore,

the canonical Exponential family form of the binomial distribution is

f(x |η) = eηx−n log(1+eη)

(

n

x

)

Ix∈{0,1,···,n},

and the natural parameter space is T = R.

3.2 Multiparameter Exponential Family

Similar to the case of distributions with only one parameter, several common distributions

with multiple parameters also belong to a general multiparameter Exponential family. An

example is the normal distribution on R with both parameters unknown. Another example

is a multivariate normal distribution. Analytic techniques and properties of multiparame-

ter Exponential families are very similar to those of the one parameter Exponential family.

Because of that reason, most of our presentation in this section dwells on examples.

Definition 3.4. Let X = (X1, · · · , Xd) have a distribution Pθ, θ ∈ Θ ⊆ Rk. The family

of distributions {Pθ, θ ∈ Θ} is said to belong to the k-parameter Exponential family if its

density (pmf) may be represented in the form

f(x |θ) = e
Pk

i=1 ηi(θ)Ti(x)−ψ(θ)h(x).

Again, obviously, the choice of the relevant functions ηi, Ti, h is not unique. As in the

one parameter case, the vector of statistics (T1, · · · , Tk) is called the natural sufficient

240



statistic, and if we reparametrize by using ηi = ηi(θ), i = 1, 2, · · · , k, the family is called

the k-parameter canonical Exponential family.

There is an implicit assumption in this definition that the number of freely varying θ’s is

the same as the number of freely varying η’s, and that these are both equal to the specific

k in the context. The formal way to say this is to assume the following:

Assumption The dimension of Θ as well as the dimension of the image of Θ under

the map (θ1, θ2, · · · , θk) −→ (η1(θ1, θ2, · · · , θk), η2(θ1, θ2, · · · , θk), · · · , ηk(θ1, θ2, · · · , θk)) are

equal to k.

There are some important examples where this assumption does not hold. They will not be

counted as members of a k-parameter Exponential family. The name curved Exponential

family is commonly used for them, and this will be discussed in the supplementary section

of this chapter.

The terms canonical form, natural parameter, and natural parameter space will mean the

same things as in the one parameter case. Thus, if we parametrize the distributions by

using η1, η2, · · · , ηk as the k parameters, then the vector η = (η1, η2, · · · , ηk) is called the

natural parameter vector, the parametrization f(x |η) = e
Pk

i=1 ηiTi(x)−ψ(η)h(x) is called

the canonical form, and the set of all vectors η for which f(x |η) is a valid density (pmf)

is called the natural parameter space. The main theorems for the case k = 1 hold for a

general k.

Theorem 3.1. The results of Theorem 5.1 and 5.5 hold for the k-parameter Exponential

family.

The proofs are almost verbatim the same. The moment formulas differ somewhat due to

the presence of more than one parameter in the current context.

Theorem 3.2. Suppose X = (X1, · · · , Xd) has a distribution Pη, η ∈ T , belonging to the

canonical k-parameter Exponential family, with a density (pmf)

f(x |η) = e
Pk

i=1 ηiTi(x)−ψ(η)h(x),

where

T = {η ∈ Rk :

∫

Rd

e
Pk

i=1 ηiTi(x)h(x)dx < ∞}

(and the integral being replaced by a sum in the discrete case).

(a) At any η ∈ T 0,

eψ(η) =

∫

Rd

e
Pk

i=1 ηiTi(x)h(x)dx

is infinitely partially differentiable with respect to each ηi, nd the partial derivatives of

any order can be obtained by differentiating inside the integral sign.

(b)Eη[Ti(X)] =
∂

∂ηi
ψ(η); Covη(Ti(X), Tj(X)) =

∂2

∂ηi∂ηj
ψ(η), 1 ≤ i, j ≤ k.
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(c) If η, t are such that η, η + t ∈ T , then the joint mgf of (T1(X), · · · , Tk(X)) exists and

equals

Mη(t) = eψ(η+t)−ψ(η).

An important new terminology is that of a full rank.

Definition 3.5. A family of distributions {Pη, η ∈ T } belonging to the canonical k-

parameter Exponential family is called full rank if at every η ∈ T 0, the k × k covariance

matrix

((

∂2

∂ηi∂ηj
ψ(η)

))

is nonsingular.

Definition 3.6. (Fisher Information Matrix). Suppose a family of distributions in

the canonical k-parameter Exponential family is nonsingular. Then, for η ∈ T 0, the matrix
((

∂2

∂ηi∂ηj
ψ(η)

))

is called the Fisher information matrix (at η).

The Fisher information matrix is of paramount importance in parametric statistical theory

and lies at the heart of finite and large sample optimality theory in statistical inference

problems for general regular parametric families.

We will now see some examples of distributions in k-parameter Exponential families where

k > 1.

Example 3.8. (Two Parameter Normal Distribution). Suppose X ∼ N(µ, σ2),

and we consider both µ, σ to be parameters. If we denote (µ, σ) = (θ1, θ2) = θ, then

parametrized by θ, the density of X is

f(x |θ) =
1√

2πθ2

e
− (x−θ1)2

2θ2
2 Ix∈R =

1√
2πθ2

e
− x2

2θ2
2
+

θ1x

θ2
2
− θ2

1
2θ2

2 Ix∈R.

This is in the two parameter Exponential family with

η1(θ) = − 1

2θ2
2

, η2(θ) =
θ1

θ2
2

, T1(x) = x2, T2(x) = x,

ψ(θ) =
θ2
1

2θ2
2

+ log θ2, h(x) =
1√
2π

Ix∈R.

The parameter space in the θ parametrization is

Θ = (−∞,∞) ⊗ (0,∞).

If we want the canonical form, we let η1 = − 1
2θ2

2
, η2 = θ1

θ2
2
, and ψ(η) = − η2

2
4η1

− 1
2 log(−η1).

The natural parameter space for (η1, η2) is (−∞, 0) ⊗ (−∞,∞).

Example 3.9. (Two Parameter Gamma). It was seen in Example 5.4 that if we fix

one of the two parameters of a Gamma distribution, then it becomes a member of the

one parameter Exponential family. We show in this example that the general Gamma
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distribution is a member of the two parameter Exponential family. To show this, just

observe that with θ = (α, λ) = (θ1, θ2),

f(x |θ) = e
− x

θ2
+θ1 log x−θ1 log θ2−log Γ(θ1) 1

x
Ix>0.

This is in the two parameter Exponential family with η1(θ) = − 1
θ2

, η2(θ) = θ1, T1(x) =

x, T2(x) = log x, ψ(θ) = θ1 log θ2 + log Γ(θ1), and h(x) = 1
xIx>0. The parameter space in

the θ-parametrization is (0,∞) ⊗ (0,∞). For the canonical form, use η1 = − 1
θ2

, η2 = θ1,

and so, the natural parameter space is (−∞, 0) ⊗ (0,∞). The natural sufficient statistic

is (X, log X).

Example 3.10. (The General Multivariate Normal Distribution). Suppose X ∼
Nd(µ,Σ), where µ is arbitrary and Σ is positive definite (and of course, symmetric).

Writing θ = (µ,Σ), we can think of θ as a subset in an Euclidean space of dimension

k = d + d +
d2 − d

2
= d +

d(d + 1)

2
=

d(d + 3)

2
.

The density of X is

f(x |θ) =
1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)′Σ−1(x−µ)Ix∈Rd .

=
1

(2π)d/2|Σ|1/2
e−

1
2
x′Σ−1x+µ′Σ−1x− 1

2
µ′Σ−1µIx∈Rd

=
1

(2π)d/2|Σ|1/2
e−

1
2

P P

i,j σijxixj+
P

i(
P

k σkiµk)xi− 1
2
µ′Σ−1µIx∈Rd

=
1

(2π)d/2|Σ|1/2
e−

1
2

P

i σiix2
i−

P P

i<j σijxixj+
P

i(
P

k σkiµk)xi− 1
2
µ′Σ−1µIx∈Rd .

We have thus represented the density of X in the k-parameter Exponential family form

with the k-dimensional natural sufficient statistic

T (X) = (X1, · · · , Xd, X
2
1 , · · · , X2

d , X1X2, · · · , Xd−1Xd),

and the natural parameters defined by

∑

k

σk1µk, · · · ,
∑

k

σkdµk,−
1

2
σ11, · · · ,−1

2
σdd,−σ12, · · · ,−σd−1,d.

Example 3.11. (Multinomial Distribution). Consider the k +1 cell multinomial dis-

tribution with cell probabilities p1, p2, · · · , pk, pk+1 = 1−∑k
i=1 pi. Writing θ = (p1, p2, · · · , pk),

the joint pmf of X = (X1, X2, · · · , Xk), the cell frequencies of the first k cells, is

f(x |θ) =
n!

(
∏k

i=1 xi!)(n − ∑k
i=1 xi)!

k
∏

i=1

pxi

i (1 −
k

∑

i=1

pi)
n−Pk

i=1 xiIx1,···,xk≥0,
Pk

i=1 xi≤n
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=
n!

(
∏k

i=1 xi!)(n − ∑k
i=1 xi)!

e
Pk

i=1(log pi)xi−log(1−Pk
i=1 pi)(

Pk
i=1 xi)+n log(1−Pk

i=1 pi)Ix1,···,xk≥0,
Pk

i=1 xi≤n

=
n!

(
∏k

i=1 xi!)(n − ∑k
i=1 xi)!

e

Pk
i=1(log

pi

1−
Pk

i=1
pi

)xi+n log(1−Pk
i=1 pi)

Ix1,···,xk≥0,
Pk

i=1 xi≤n.

This is in the k-parameter Exponential family form with the natural sufficient statistic

and natural parameters

T (X) = (X1, X2, · · · , Xk), ηi = log
pi

1 − ∑k
i=1 pi

, 1 ≤ i ≤ k.

Example 3.12. (Two Parameter Inverse Gaussian Distribution). The general

inverse Gaussian density (see Chapter 2) is given by

f(x |θ1, θ2) =

(

θ2

πx3

)1/2

e−θ1x− θ2
x

+2
√

θ1θ2Ix>0;

the parameter space for θ = (θ1, θ2) is [0,∞) ⊗ (0,∞). The general inverse Gaussian

density f(x |θ1, θ2) is used as a model for skewed densities, and interestingly, also arises in

some problems of random walks in probability in a fundamental way.

It is clear from the formula for f(x |θ1, θ2) that it is a member of the two parameter

Exponential family with the natural sufficient statistic T (X) = (X, 1
X ) and the natural

parameter space T = (−∞, 0] ⊗ (−∞, 0). Note that the natural parameter space is not

open.

3.3 At Instructor’s Discretion

3.3.1 Convexity Properties

Written in its canonical form, a density (pmf) in an Exponential family has some convexity

properties. These convexity properties are useful in manipulating with moments and other

functionals of T (X), the natural sufficient statistic appearing in the expression for the

density of the distribution.

Theorem 3.3. The natural parameter space T is convex, and ψ(η) is a convex function

on T .

Proof: We consider the continuous case only, as the discrete case admits basically the

same proof. Let η1, η2 be two members of T , and let 0 < α < 1. We need to show that

αη1 + (1 − α)η2 belongs to T , i.e.,

∫

Rd

e(αη1+(1−α)η2)T (x)h(x)dx < ∞.

But,
∫

Rd

e(αη1+(1−α)η2)T (x)h(x)dx =

∫

Rd

eαη1T (x) × e(1−α)η2T (x)h(x)dx
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=

∫

Rd

(

eη1T (x)

)α(

eη2T (x)

)1−α

h(x)dx

≤
(

∫

Rd

eη1T (x)h(x)dx

)α(
∫

Rd

eη2T (x)h(x)dx

)1−α

(by Holder’s inequality)

< ∞,

because, by hypothesis, η1, η2 ∈ T , and hence,
∫

Rd eη1T (x)h(x)dx, and
∫

Rd eη2T (x)h(x)dx

are both finite.

Note that in this argument, we have actually proved the inequality

eψ(αη1+(1−α)η2) ≤ eαψ(η1)+(1−α)ψ(η2).

But this is the same as saying

ψ(αη1 + (1 − α)η2) ≤ αψ(η1) + (1 − α)ψ(η2),

i.e., ψ(η) is a convex function on T . ♣

3.3.2 Moments and Moment Generating Function

The next result is a very special fact about the canonical Exponential family, and is the

source of a large number of closed form formulas valid for the entire canonical Exponential

family. The fact itself is actually a fact in mathematical analysis. Due to the special form

of Exponential family densities, the fact in analysis translates to results for the Exponential

family, an instance of interplay between mathematics and statistics and probability.

Theorem 3.4. (a) The function eψ(η) is infinitely differentiable at every η ∈ T 0. Further-

more, in the continuous case, eψ(η) =
∫

Rd eηT (x)h(x)dx can be differentiated any number

of times inside the integral sign, and in the discrete case, eψ(η) =
∑

x∈X eηT (x)h(x) can be

differentiated any number of times inside the sum.

(b) In the continuous case, for any k ≥ 1,

dk

dηk
eψ(η) =

∫

Rd

[T (x)]keηT (x)h(x)dx,

and in the discrete case,

dk

dηk
eψ(η) =

∑

x∈X
[T (x)]keηT (x)h(x).

Proof: Take k = 1. Then, by the definition of derivative of a function, d
dηeψ(η) exists if

and only if limδ→0[
eψ(η+δ)−eψ(η)

δ ] exists. But,

eψ(η+δ) − eψ(η)

δ
=

∫

Rd

e(η+δ)T (x) − eηT (x)

δ
h(x)dx,
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and by an application of the Dominated convergence theorem, limδ→0

∫

Rd
e(η+δ)T (x)−eηT (x)

δ h(x)dx

exists, and the limit can be carried inside the integral, to give

lim
δ→0

∫

Rd

e(η+δ)T (x) − eηT (x)

δ
h(x)dx =

∫

Rd

lim
δ→0

e(η+δ)T (x) − eηT (x)

δ
h(x)dx

=

∫

Rd

d

dη
eηT (x)h(x)dx =

∫

Rd

T (x)eηT (x)h(x)dx.

Now use induction on k by using the Dominated convergence theorem again. ♣
This compact formula for an arbitrary derivative of eψ(η) leads to the following important

moment formulas.

Theorem 3.5. At any η ∈ T 0,

(a)Eη[T (X)] = ψ′(η); Varη[T (X)] = ψ′′(η);

(b) The coefficients of skewness and kurtosis of T (X) equal

β(η) =
ψ(3)(η)

[ψ′′(η)]3/2
; and γ(η) =

ψ(4)(η)

[ψ′′(η)]2
;

(c) At any t such that η + t ∈ T , the mgf of T (X) exists and equals

Mη(t) = eψ(η+t)−ψ(η).

Proof: Again, we take just the continuous case. Consider the result of the previous theorem

that for any k ≥ 1, dk

dηk eψ(η) =
∫

Rd [T (x)]keηT (x)h(x)dx. Using this for k = 1, we get

ψ′(η)eψ(η) =

∫

Rd

T (x)eηT (x)h(x)dx ⇒
∫

Rd

T (x)eηT (x)−ψ(η)h(x)dx = ψ′(η),

which gives the result Eη[T (X)] = ψ′(η).

Similarly,

d2

dη2
eψ(η) =

∫

Rd

[T (x)]2eηT (x)h(x)dx ⇒ [ψ′′(η) + {ψ′(η)}2]eψ(η) =

∫

Rd

[T (x)]2eηT (x)h(x)dx

⇒ ψ′′(η) + {ψ′(η)}2 =

∫

Rd

[T (x)]2eηT (x)−ψ(η)h(x)dx,

which gives Eη[T (X)]2 = ψ′′(η)+{ψ′(η)}2. Combine this with the already obtained result

that Eη[T (X)] = ψ′(η), and we get Varη[T (X)] = Eη[T (X)]2 − (Eη[T (X)])2 = ψ′′(η).

The coefficient of skewness is defined as

βη =
E[T (X) − ET (X)]3

(VarT (X))3/2
.

To obtain

E[T (X) − ET (X)]3 = E[T (X)]3 − 3E[T (X)]2E[T (X)] + 2[ET (X)]3,
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use the identity
d3

dη3
eψ(η) =

∫

Rd

[T (x)]3eηT (x)h(x)dx.

Then use the fact that the third derivative of eψ(η) is eψ(η)

[

ψ(3)(η) + 3ψ′(η)ψ′′(η) +

{ψ′(η)}3

]

. As we did in our proofs for the mean and the variance above, transfer eψ(η) into

the integral on the right hand side and then simplify. This will give E[T (X)−ET (X)]3 =

ψ(3)(η), and the skewness formula follows. The formula for kurtosis is proved by the same

argument, using k = 4 in the derivative identity

dk

dηk
eψ(η) =

∫

Rd

[T (x)]keηT (x)h(x)dx

Finally, for the mgf formula,

Mη(t) = Eη[e
tT (X)] =

∫

Rd

etT (X)eηT (x)−ψ(η)h(x)dx = e−ψ(η)

∫

Rd

e(t+η)T (x)h(x)dx

= e−ψ(η)eψ(t+η)

∫

Rd

e(t+η)T (x)−ψ(t+η)h(x)dx = e−ψ(η)eψ(t+η) × 1

= eψ(t+η)−ψ(η).

An important consequence of the mean and the variance formulas is the following mono- ♣
tonicity result.

Corollary 3.1. For a nonsingular canonical Exponential family, Eη[T (X)] is strictly in-

creasing in η on T 0.

Proof: From part (a) of Theorem 18.3, the variance of T (X) is the derivative of the ex-

pectation of T (X), and by nonsingularity, the variance is strictly positive. This implies

that the expectation is strictly increasing.

As a consequence of this strict monotonicity of the mean of T (X) in the natural parameter,

nonsingular canonical Exponential families may be reparametrized by using the mean of T

itself as the parameter. This is useful for some purposes.

Example 3.13. (Binomial Distribution). From Example 18.9, in the canonical rep-

resentation of the binomial distribution, ψ(η) = n log(1 + eη). By direct differentiation,

ψ′(η) =
neη

1 + eη
; ψ′′(η) =

neη

(1 + eη)2
;

ψ(3)(η) =
−neη(eη − 1)

(1 + eη)3
; ψ(4)(η) =

neη(e2η − 4eη + 1)

(1 + eη)4
.

Now recall from Example 5.7 that the success probability p and the natural parameter η

are related as p = eη

1+eη . Using this, and our general formulas from Theorem 5.3, we can
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rewrite the mean, variance, skewness, and kurtosis of X as

E(X) = np; Var(X) = np(1 − p); βp =
1 − 2p

√

np(1 − p)
; γp =

1
p(1−p) − 6

n
.

For completeness, it is useful to have the mean and the variance formula in an original

parametrization, and they are stated below. The proof follows from an application of

Theorem 5.3 and the chain rule.

Theorem 3.6. Let {Pθ, θ ∈ Θ} be a family of distributions in the one parameter Expo-

nential family with density (pmf)

f(x |θ) = eη(θ)T (x)−ψ(θ)h(x).

Then, at any θ at which η′(θ) 6= 0,

Eθ[T (X)] =
ψ′(θ)
η′(θ)

; Varθ(T (X)) =
ψ′′(θ)
[η′(θ)]2

− ψ′(θ)η′′(θ)
[η′(θ)]3

.

3.3.3 Closure Properties

The Exponential family satisfies a number of important closure properties. For instance,

if a d-dimensional random vector X = (X1, · · · , Xd) has a distribution in the Exponential

family, then the conditional distribution of any subvector given the rest is also in the

Exponential family. There are a number of such closure properties, of which we will

discuss only four.

First, if X = (X1, · · · , Xd) has a distribution in the Exponential family, then the natural

sufficient statistic T (X) also has a distribution in the Exponential family. Verification of

this in the greatest generality cannot be done without using measure theory. However,

we can easily demonstrate this in some particular cases. Consider the continuous case

with d = 1 and suppose T (X) is a differentiable one-to-one function of X. Then, by the

Jacobian formula (see Chapter 3), T (X) has the density

fT (t |η) = eηt−ψ(η) h(T−1(t))

|T ′(T−1(t))| .

This is once again in the one parameter Exponential family form, with the natural sufficient

statistic as T itself, and the ψ function unchanged. The h function has changed to a new

function h∗(t) = h(T−1(t))
|T ′(T−1(t))| .

Similarly, in the discrete case, the pmf of T (X) will be given by

Pη(T (X) = t) =
∑

x: T (x)=t

eηT (x)−ψ(η)h(x) = eηt−ψ(η)h∗(t),

where h∗(t) =
∑

x: T (x)=t h(x).

Next, suppose X = (X1, · · · , Xd) has a density (pmf) f(x |η) in the Exponential family and
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Y1, Y2, · · · , Yn are n iid observations from this density f(x |η). Note that each individual

Yi is a d-dimensional vector. The joint density of Y = (Y1, Y2, · · · , Yn) is

f(y |η) =
n

∏

i=1

f(yi |η) =
n

∏

i=1

eηT (yi)−ψ(η)h(yi)

= eη
Pn

i=1 T (yi)−nψ(η)
n

∏

i=1

h(yi).

We recognize this to be in the one parameter Exponential family form again, with the nat-

ural sufficient statistic as
∑n

i=1 T (Yi), the new ψ function as nψ, and the new h function

as
∏n

i=1 h(yi).

The joint density
∏n

i=1 f(yi |η) is known as the likelihood function in statistics. So, like-

lihood functions obtained from an iid sample from a distribution in the one parameter

Exponential family are also members of the one parameter Exponential family.

The closure properties outlined in the above are formally stated in the next theorem.

Theorem 3.7. Suppose X = (X1, · · · , Xd) has a distribution belonging to the one pa-

rameter Exponential family with the natural sufficient statistic T (X).

(a) T = T (X) also has a distribution belonging to the one parameter Exponential family.

(b) Let Y = AX + u be a nonsingular linear transformation of X. Then Y also has a

distribution belonging to the one parameter Exponential family.

(c) Let I0 be any proper subset of I = {1, 2, · · · , d}. Then the joint conditional distri-

bution of Xi, i ∈ I0 given Xj , j ∈ I − I0 also belongs to the one parameter Exponential

family.

(d) For given n ≥ 1, suppose Y1, · · · , Yn are iid with the same distribution as X. Then the

joint distribution of (Y1, · · · , Yn) also belongs to the one parameter Exponential family.

3.3.4 Curved Exponential Family

There are some important examples in which the density (pmf) has the basic Exponential

family form f(x |θ) = e
Pk

i=1 ηi(θ)Ti(X)−ψ(θ)h(x), but the assumption that the dimensions

of Θ, and that of the range space of (η1(θ), · · · , ηk(θ)) are the same is violated. More

precisely, the dimension of Θ is some positive integer q strictly less than k. Let us start

with an example.

Example 3.14. Suppose X ∼ N(µ, µ2), µ 6= 0. Writing µ = θ, the density of X is

f(x |θ) =
1√

2π|θ|
e
− 1

2θ2 (x−θ)2
Ix∈R

=
1√
2π

e
− x2

2θ2 +x
θ
− 1

2
−log |θ|

Ix∈R.
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Writing η1(θ) = − 1
2θ2 , η2(θ) = 1

θ , T1(x) = x2, T2(x) = x, ψ(θ) = 1
2 + log |θ|, and h(x) =

1√
2π

Ix∈R, this is in the form f(x |θ) = e
Pk

i=1 ηi(θ)Ti(x)−ψ(θ)h(x), with k = 2, although θ ∈ R,

which is only one dimensional. The two functions η1(θ) = − 1
2θ2 and η2(θ) = 1

θ are related

to each other by the identity η1 = −η2
2
2 , so that a plot of (η1, η2) in the plane would be a

curve, not a straight line. Distributions of this kind go by the name of curved Exponential

family. The dimension of the natural sufficient statistic is more than the dimension of Θ

for such distributions.

Definition 3.7. Let X = (X1, · · · , Xd) have a distribution Pθ, θ ∈ Θ ⊆ Rq. Suppose Pθ

has a density (pmf) of the form

f(x |θ) = e
Pk

i=1 ηi(θ)Ti(x)−ψ(θ)h(x),

where k > q. Then, the family {Pθ, θ ∈ Θ} is called a curved Exponential family.

Example 3.15. (A Specific Bivariate Normal). Suppose X = (X1, X2) has a bi-

variate normal distribution with zero means, standard deviations equal to one, and a

correlation parameter ρ,−1 < ρ < 1. The density of X is

f(x |ρ) =
1

2π
√

1 − ρ2
e
− 1

2(1−ρ2)

[

x2
1+x2

2−2ρx1x2

]

Ix1,x2∈R

=
1

2π
√

1 − ρ2
e
− x2

1+x2
2

2(1−ρ2)
+ ρ

1−ρ2 x1x2
Ix1,x2∈R.

Therefore, here we have a curved Exponential family with q = 1, k = 2, η1(ρ) = − 1
2(1−ρ2)

, η2(ρ) =
ρ

1−ρ2 , T1(x) = x2
1 + x2

2, T2(x) = x1x2, ψ(ρ) = 1
2 log(1 − ρ2), and h(x) = 1

2π Ix1,x2∈R.

Example 3.16. (Poissons with Random Covariates). Suppose given Zi = zi, i =

1, 2, · · · , n, Xi are independent Poi(λzi) variables, and Z1, Z2, · · · , Zn have some joint pmf

p(z1, z2, · · · , zn). It is implicitly assumed that each Zi > 0 with probability one. Then,

the joint pmf of (X1, X2, · · · , Xn, Z1, Z2, · · · , Zn) is

f(x1, · · · , xn, z1, · · · , zn |λ) =
n

∏

i=1

e−λzi(λzi)
xi

xi!
p(z1, z2, · · · , zn)Ix1,···,xn∈N0Iz1,z2,···,zn∈N1

= e−λ
Pn

i=1 zi+(
Pn

i=1 xi) log λ
n

∏

i=1

zxi

i

xi!
p(z1, z2, · · · , zn)Ix1,···,xn∈N0Iz1,z2,···,zn∈N1 ,

where N0 is the set of nonnegative integers, and N1 is the set of positive integers.

This is in the curved Exponential family with

q = 1, k = 2, η1(λ) = −λ, η2(λ) = log λ, T1(x, z) =

n
∑

i=1

zi, T2(x, z) =

n
∑

i=1

xi,
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and

h(x, z) =
n

∏

i=1

zxi

i

xi!
p(z1, z2, · · · , zn)Ix1,···,xn∈N0Iz1,z2,···,zn∈N1 .

If we consider the covariates as fixed, the joint distribution of (X1, X2, · · · , Xn) becomes

a regular one parameter Exponential family.

3.4 Exercises

Exercise 3.1. (Poisson Distribution). Show that the Poisson distribution belongs to

the one parameter Exponential family if λ > 0. Write it in the canonical form and by

using the mean parametrization.

Exercise 3.2. (Negative Binomial Distribution). Show that the negative binomial

distribution with parameters r and p belongs to the one parameter Exponential family if

r is considered fixed and 0 < p < 1. Write it in the canonical form and by using the mean

parametrization.

Exercise 3.3. (Generalized Negative Binomial Distribution). Show that the gen-

eralized negative binomial distribution with the pmf f(x |p) = Γ(α+x)
Γ(α)x! pα(1 − p)x, x =

0, 1, 2, · · · belongs to the one parameter Exponential family if α > 0 is considered fixed

and 0 < p < 1.

Exercise 3.4. (Generalized Negative Binomial Distribution). Show that the two

parameter generalized negative binomial distribution with the pmf f(x |α, p) = Γ(α+x)
Γ(α)x! pα(1−

p)x, x = 0, 1, 2, · · · does not belong to the two parameter Exponential family.

Exercise 3.5. (Hardy-Weinberg Law). Suppose genotypes at a single locus with two

alleles are present in a population according to the relative frequencies p2, 2pq, and q2,

where q = 1−p, and p is the relative frequency of the dominant allele. Show that the joint

distribution of the frequencies of the three genotypes in a random sample of n individuals

from this population belongs to a one parameter Exponential family if 0 < p < 1. Write

it in the canonical form and by using the mean parametrization.

Exercise 3.6. (Beta Distribution). Show that the two parameter Beta distribution

belongs to the two parameter Exponential family if the parameters α, β > 0. Write it in

the canonical form and by using the mean parametrization.

Exercise 3.7. (Beta Distribution). Show that symmetric Beta distributions belong to

the one parameter Exponential family if the single parameter α > 0.

Exercise 3.8. (Normal with Equal Mean and Variance). Show that the N(θ, θ)

distribution belongs to the one parameter Exponential family if θ > 0. Write it in the

canonical form and by using the mean parametrization.
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Exercise 3.9. (Truncated Poisson). The number of fires reported in a week to a city

fire station is Poisson with some mean λ. The city station is supposed to report the

number each week to the central state office. But they do not bother to report it if their

number of reports is less than 3. Suppose you are employed at the state central office.

Model the problem, and prove or disprove that the pmf you chose is in an Exponential

family.

Exercise 3.10. (Binomial with Both Parameters Unknown). Suppose X1, · · · , Xk
iid∼

Bin((N, p), N ≥ 1, 0 < p < 1. Is this a two parameter Exponential family?

Exercise 3.11. (Beta-Binomial). Suppose given p, X ∼ Bin(n, p), where n is known,

and that p ∼ Beta(α, β), α, β considered to be unknown. Is the marginal pmf of X an

Exponential family?

Exercise 3.12. (Identifiability of the Distribution). Show that distributions in the

nonsingular canonical one parameter Exponential family are identifiable, i.e., Pη1 = Pη2

only if η1 = η2.

Exercise 3.13. (Infinite Differentiability of Mean Functionals). Suppose Pθ, θ ∈ Θ

is a one parameter Exponential family and φ(x) is a general function. Show that at any

θ ∈ Θ0 at which Eθ[|φ(X)|] < ∞, µφ(θ) = Eθ[φ(X)] is infinitely differentiable, and can be

differentiated any number of times inside the integral (sum).

Exercise 3.14. (Poisson Skewness and Kurtosis). Find the skewness and kurtosis

of a Poisson distribution by using Theorem 5.3.

Exercise 3.15. (Gamma Skewness and Kurtosis). Find the skewness and kurtosis

of a Gamma distribution, considering α as fixed, by using Theorem 5.3.

Exercise 3.16. (Multinomial Covariances). Calculate the covariances in a multino-

mial distribution by using Theorem 5.7.

Exercise 3.17. (Distributions with Zero Skewness). Show the remarkable result

that the only distributions in a canonical one parameter Exponential family such that the

natural sufficient statistic has a zero skewness are the normal distributions with a fixed

variance.

Exercise 3.18. (Dirichlet Distribution). Show that the Dirichlet distribution with

parameter vector α = (α1, · · · , αn+1), αi > 0 for all i, is an (n + 1)-parameter Exponential

family.

Exercise 3.19. (Normal Linear Model). Suppose given an n × p nonrandom matrix

X, a parameter vector β ∈ Rp, and a variance parameter σ2 > 0, Y = (Y1, Y2, · · · , Yn) ∼
Nn(Xβ, σ2In), where In is the n × n identity matrix. Show that the distribution of Y

belongs to a full rank multiparameter Exponential family.
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Exercise 3.20. (A Special Bivariate Normal). Consider the bivariate normal density

with equal means µ, µ, equal variances σ2, σ2 and correlation ρ; µ, σ, ρ are considered

unknown parameters. Is this a regular Exponential family, or a curved Exponential family,

or neither?

Exercise 3.21. (Normal with an Integer Mean). Suppose X ∼ N(µ, 1), where µ is

known to be an integer. Is this a regular one parameter Exponential family?

Exercise 3.22. (Mixtures of Normal). Show that the mixture distribution .5N(µ, 1)+

.5N(µ, 100) does not belong to the one parameter Exponential family. Generalize this

result to more general mixtures of normal distributions.

Exercise 3.23. (Double Exponential Distribution). (a) Show that the double expo-

nential distribution with a known σ value and an unknown mean does not belong to the

one parameter Exponential family, but the double exponential distribution with a known

mean and an unknown σ belongs to the one parameter Exponential family.

(b) Show that the two parameter double exponential distribution does not belong to the

two parameter Exponential family.

Exercise 3.24. (A Curved Exponential Family). Suppose (X1, X2, · · · , Xn) are

jointly multivariate normal with general means µi, variances all one, and a common pair-

wise correlation ρ. Show that the distribution of (X1, X2, · · · , Xn) is a curved Exponential

family.

Exercise 3.25. (Poissons with Covariates). Suppose X1, X2, · · · , Xn are independent

Poissons with E(Xi) = λeβzi , λ > 0,−∞ < β < ∞. The covariates z1, z2, · · · , zn are

considered fixed. Show that the distribution of (X1, X2, · · · , Xn) is a curved Exponential

family.

Exercise 3.26. (Another Curved Exponential Family). Suppose X ∼ Bin(n, p), Y ∼
Bin(m, p2), and that X, Y are independent. Show that the joint distribution of (X, Y ) is

a curved Exponential family.
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