3 Exponential Families as a Unifier in Inference

Parametric inference is quite routinely used in relatively simple problems. Also, some
problems are inherently parametric; for example, experiments that resemble iid sequences
of a coin toss are automatically binomial experiments. The normal distribution is widely
used in statistical practice; so is the Poisson. The Exponential family is a practically con-
venient unified family of distributions on finite dimensional Euclidean spaces that includes
a large number of these standard parametric distributions as special cases. Specialized
to the case of the real line, the Exponential family contains as special cases the normal,
Poisson, Binomial, exponential, Gamma, negative binomial, etc.

However, there is much more to the Exponential family than just the fact that it includes
many standard distributions as special cases. A number of important and useful calcu-
lations in statistical inference can be done in exact closed form all at one stroke within
the framework of the Exponential family. As a matter of fact, if a parametric model is
not in the Exponential family, we usually have to resort to asymptotic theory, because
basic calculations would not be feasible in closed form for a given sample size n. Also,
the Exponential family is the usual testing ground for the large spectrum of results in
parametric statistical theory that require notions of reqularity. Another attraction is that
the unified calculations in the Exponential family setup have an element of mathematical
neatness.

Distributions in the Exponential family have been used in classical statistics for decades.
Recently, it has regained its historic importance in some novel inference problems that
involve many parameters and a lot of data; the reason is that such problems are difficult
to attack nonparametrically. A fundamental treatment of the general Exponential family
is provided in this chapter. This unified treatment will save us repetitive and boring cal-
culations for special distributions on a case by case basis. Classic expositions are available
in Barndorff-Nielsen (1978), Brown (1986), and Lehmann and Casella (1998). Two other
beautiful treatments are Bickel and Doksum (2006) and LeTac (1992). Liese and Miescke

(2008) gives a rigorous modern treatment of Exponential families.

3.1 One Parameter Regular Exponential Family

Exponential families can have any finite number of parameters. For instance, as we will
see, a normal distribution with a known mean is in the one parameter Exponential family,
while a normal distribution with both parameters unknown is in the two parameter Ex-
ponential family. A bivariate normal distribution with all parameters unknown is in the
five parameter Exponential family. As another example, if we take a normal distribution
in which the mean and the variance are functionally related, e.g., the N (u, u?) distribu-

tion, then the distribution will be neither in the one parameter nor in the two parameter
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Exponential family, but in a family called a curved Exponential family. We start with the

one parameter regular Exponential family.

3.1.1 First Examples

Let us revisit an old example for simple illustration.

Example 3.1. (Normal Distribution with a Known Mean). Suppose X ~ N(0,0?).

Then the density of X is
1 z?

e 20° [per.

f(zlo) =

oV 2

This density is parametrized by a single parameter o. Writing

1

n(0) = =55, T(x) = 2%,%(0) = logo, h(z) =

1
\/T—ﬂfmeR,

we can represent the density in the form
flxlo) = 677(0)T(96)—¢(U)h(%)7

for any 0 € R.
Next, suppose that we have an iid sample X1, Xo, -+, X,, ~ N(0,02). Then the joint
density of X1, Xo,---, X, is

2
1 _ X

f(9017$27"',93n|0):W6 20 Iy o, wn€R-

Now writing
n

592 T(l‘l,SUQ,“',l'n) = Zl‘?,d}(a) = TLlOgO'7
=1

and
1

h(.’L‘l, €T, ,l’n) = WI1'171'27"'1$71€R’

once again we can represent the joint density in the same general form
f(ml’ $27 RN Tn ’0-) — eﬁ(U)T(SEl,CCQ,“',SEn)—Qﬁ(O')h(xl’ x27 . ,mn)_

We notice that in this representation of the joint density f(x1,x2,:--, 2y |0), the statis-
tic T(X1, Xo, -+, X,,) is still a one dimensional statistic, namely, T'(Xy, Xo, -+, X,,) =
S XiQ. Using the fact that the sum of squares of n independent standard normal
variables is a chi square variable with n degrees of freedom, we have that the density of
T(Xy,Xo, -, Xp) is

fr(tlo) =

e_ﬁt%_ 7
o o s 11>0-
o 2" (%)
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This time, writing
1 1

5927 S(t) = tﬂﬁ(a) = nloga,h(t) = 7)It>0a

77(0) = _20_ - 2n/2r‘(%

once again we are able to write even the density of T'(X1, X2, -+, X,) = > iy X2 in that

same general form
fritlo) = en(U)S(t)—w(U)h(t).

Clearly, something very interesting is going on. We started with a basic density in a specific
form, namely, f(z|o) = e"@T@)=¥(@)p(z), and then we found that the joint density and
the density of the relevant one dimensional statistic Y ;" ; Xi2 in that joint density, are once
again densities of exactly that same general form. It turns out that all of these phenomena
are true of the entire family of densities which can be written in that general form, which
is the one parameter Exponential family. Let us formally define it and we will then extend

the definition to distributions with more than one parameter.

3.1.2 Definitions and Additional Examples

Definition 3.1. Let X = (X, -, Xy) be a d-dimensional random vector with a distri-
bution Py,0 € © CR.

Suppose X1, -+, Xg4 are jointly continuous. The family of distributions { Py, 0 € ©} is said
to belong to the one parameter Exponential family if the density of X = (X, .-, X3) may

be represented in the form
f(x]0) = e"OT@=¥O)p(4),

for some real valued functions 7'(x),(0) and h(x) > 0.
If Xq,---, Xy are jointly discrete, then {Fy, 6 € O} is said to belong to the one parameter
Exponential family if the joint pmf p(z |#) = Py(X1 = z1,- - -, Xq = x4) may be written in
the form

p(x0) = en(9)T(x)—w(9)h(x)’

for some real valued functions 7'(x),(#) and h(x) > 0.
Note that the functions 7, T and h are not unique. For example, in the product nT', we can
multiply T" by some constant ¢ and divide n by it. Similarly, we can play with constants

in the function h.

Definition 3.2. Suppose X = (X1, -, Xy) has a distribution Py, 0 € ©, belonging to the
one parameter Exponential family. Then the statistic T'(X) is called the natural sufficient
statistic for the family {Py}.

The notion of a sufficient statistic is a fundamental one in statistical theory and its appli-

cations. A sufficient statistic is supposed to contain by itself all of the information about
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the unknown parameters of the underlying distribution that the entire sample could have
provided. Reduction by sufficiency in widely used models usually makes just simple com-
mon sense. We will come back to the issue of sufficiency once again in Chapter 7.

We will now see examples of a few more common distributions that belong to the one

parameter Exponential family.

Example 3.2. (Binomial Distribution). Let X ~ Bin(n,p), with n > 1 considered
as known, and 0 < p < 1 a parameter. We represent the pmf of X in the one parameter
Exponential family form.

ny z n—x n p ‘ n
flzlp) = (:C)p (1 =p)" “Lzefo,1,n}} = < ><1 — > (1 =p)" Izefo,1,n}}

Z p

_ <n> ex log ﬁ+n log(1—p) I{x€{071,"'7n}}.

x
Writing 7(p) = log 125, T(z) = z,9(p) = —nlog(l —p), and h(z) = () Izecfo.1,-n})s
we have represented the pmf f(z|p) in the one parameter Exponential family form, as
long as p € (0,1). For p = 0 or 1, the distribution becomes a one point distribution.
Consequently, the family of distributions {f(x|p),0 < p < 1} forms a one parameter
Exponential family, but if either of the boundary values p = 0, 1 is included, the family is

not in the Exponential family.

Example 3.3. (Normal Distribution with a Known Variance). Suppose X ~
N(u,0?), where o is considered known, and y € R a parameter. Then,
J(@ ) = e ity
T|p) = me 2 7 Izer,
which can be written in the one parameter Exponential family form by witing n(u) =
w,T(x) =x,(u) = %2, and h(z) = efg zeR- S0, the family of distributions {f(x |u), u €

R} forms a one parameter Exponential family.

Example 3.4. (Gamma Distribution). Suppose X has the Gamma density %wa.
As such, it has two parameters A\, . If we assume that « is known, then we may write

the density in the one parameter Exponential family form:

- xafl
flx|)\) = e xolosA Iz>o0,

I(a)
and recognize it as a density in the Exponential family with n(\) = —3,T(z) = z,9(\) =
alog\, h(z) = %IQDO.

If we assume that A is known, once again, by writing the density as
f(.I |Oé) — @ log z—a(log )\)710g11(04)67§1z>07

we recognize it as a density in the Exponential family with n(a) = a, T'(z) = log x, ¥ (a) =
a(log\) +logD(a), h(x) = €™ I~o.
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Example 3.5. (An Unusual Gamma Distribution). Suppose we have a Gamma
density in which the mean is known, say, F(X) = 1. This means that aA =1 = \ = é

Parametrizing the density with «, we have

a® 1
flx|a) = e ortelar —__—1

INa)x

@ |:10g :E:E:| — |:10g I'(a)—alog a:| 1
=€ ;Ix>07

which is once again in the one parameter Exponential family form with n(a) = o, T(z) =

logz — z,¥(a) =logT'(a) — alog o, h(x) = % z>0-

Example 3.6. (A Normal Distribution Truncated to a Set). Suppose a certain
random variable W has a normal distribution with mean p and variance one. We saw in
Example 18.3 that this is in the one parameter Exponential family. Suppose now that
the variable W can be physically observed only when its value is inside some set A. For
instance, if W > 2, then our measuring instruments cannot tell what the value of W is.
In such a case, the variable X that is truly observed has a normal distribution truncated
to the set A. For simplicity, take A to be A = [a, b], an interval. Then, the density of X is

_(z—p)?
e

f|n) = V2r[®(b— p) — ®(a — p)]

Iagmgb-
This can be written as

1 uz—é—log [é(b—u)—@(a—u)} 22
\/%6 € 2 lg<z<b,

and we recognize this to be in the Exponential family form with n(u) = p, T'(z) = z,¢¥(u) =
“72 + log[®(b — u) — ®(a — )], and h(x) = e‘g a<az<b- Thus, the distribution of W

truncated to A = [a, b] is still in the one parameter Exponential family. This phenomenon

f|p) =

is in fact more general. Ex (Some Distributions not in the Exponential Family).
It is clear from the definition of a one parameter Exponential family that if a certain
family of distributions { Py, 0 € O} belongs to the one parameter Exponential family, then
each Py has exactly the same support. Precisely, for any fixed 6, Py(A) > 0 if and only
if [,h(z)dz > 0, and in the discrete case, Py(A) > 0 if and only if AN X # 0, where
X is the countable set X = {x : h(x) > 0}. As a consequence of this common support
fact, the so called irreqular distributions whose support depends on the parameter cannot
be members of the Exponential family. Examples would be the family of U[0, 6], U[—#6, 0]
distributions, etc. Likewise, the shifted Exponential density f(z|0) = e’~*I,~¢ cannot be
in the Exponential family.

Some other common distributions are also not in the Exponential family, but for other
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reasons. An important example is the family of Cauchy distributions given by the location

parameter form f(z |u) = I.cr. Suppose that it is. Then, we can find functions

1
m[1+(z—p)?]
n(w), T(x) such that for all z, p,

NITE) = H(;_W = ()T () = —log(1 + (& — 1)?)

= n(0)T(x) = —log(1 + 2%) = T(x) = —clog(1 + z?)

for some constant c.

Plugging this back, we get, for all z, u,

(0 xr — 2
—cn(p)log(1+2%) = —log(1 + (z — p)?) = n(p) = %1 glfgfl& gczl;) :

log(1+(z—p)?)
log(1+z2)

The choice of ;4 = 0 as the special value of p is not important.

This means that must be a constant function of x, which is a contradiction.

3.1.3 Canonical Form and General Properties

Suppose {Fy,0 € ©} is a family belonging to the one parameter Exponential family, with
density (or pmf) of the form f(z|0) = e"T@=vEn(z). If n(6) is a one-to-one function
of 8, then we can drop 6 altogether, and parametrize the distribution in terms of 7 itself.
If we do that, we get a reparametrized density g in the form €7@ =¢"(Mp(z). By a slight

abuse of notation, we will again use the notation f for g and v for ¢*.

Definition 3.3. Let X = (X1, -+, Xy) have a distribution P,;,n € 7 C R. The family
of distributions {P,,n € 7} is said to belong to the canonical one parameter Exponential

family if the density (pmf) of P, may be written in the form
fwln) = MO Dn(z),

where

neT ={n:e = / MO h(z)dz < oo},
Rd

in the continuous case, and

T ={n:e!™ = Z " @h(z) < oo},
TeX
in the discrete case, with X’ being the countable set on which h(z) > 0.
For a distribution in the canonical one parameter Exponential family, the parameter 7 is
called the natural parameter, and 7T is called the natural parameter space. Note that T
describes the largest set of values of 1 for which the density (pmf) can be defined. In a

particular application, we may have extraneous knowledge that n belongs to some proper

239



subset of 7. hus, {P,} with n € 7 is called the full canonical one parameter Exponential
family. We generally refer to the full family, unless otherwise stated.

The canonical Exponential family is called reqular if 7 is an open set in R, and it is called
nonsingular if Var,(T'(X)) > 0 for all n € 7°, the interior of the natural parameter space
7.

It is analytically convenient to work with an Fxponential family distribution in its canonical
form. Once a result has been derived for the canonical form, if desired we can rewrite the
answer in terms of the original parameter 0. Doing this retransformation at the end is
algebraically and notationally simpler than carrying the original function n(0) and often
its higher derivatives with us throughout a calculation. Most of our formulae and theorems

below will be given for the canonical form.

Example 3.7. (Binomial Distribution in Canonical Form). Let X ~ Bin(n,p)
with the pmf (;)p‘”(l —p)" ¥ Iye0,1,..n}- In Example 18.2, we represented this pmf in the

Exponential family form
log —2— —nl — n
fa|p) = el oot (m) Iyef0,1,m}-

If we write log 1%9 =, then lfép = e, and hence, p = and 1 —p = ﬁ Therefore,

el
T+em?

the canonical Exponential family form of the binomial distribution is

-n e’ n
fla ) = eneriosli=e?) (96) Locqo,1,-n}s

and the natural parameter space is 7 = R.

3.2 Multiparameter Exponential Family

Similar to the case of distributions with only one parameter, several common distributions
with multiple parameters also belong to a general multiparameter Exponential family. An
example is the normal distribution on R with both parameters unknown. Another example
is a multivariate normal distribution. Analytic techniques and properties of multiparame-
ter Exponential families are very similar to those of the one parameter Exponential family.

Because of that reason, most of our presentation in this section dwells on examples.

Definition 3.4. Let X = (X1, --, X4) have a distribution Py, € © C R*. The family
of distributions { Py, € ©} is said to belong to the k-parameter Exponential family if its

density (pmf) may be represented in the form

F(]0) = X mOT@ O b,

Again, obviously, the choice of the relevant functions 7;,7;, h is not unique. As in the

one parameter case, the vector of statistics (7%,---,T) is called the natural sufficient
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statistic, and if we reparametrize by using n; = n;(0),i = 1,2,---, k, the family is called
the k-parameter canonical Exponential family.

There is an implicit assumption in this definition that the number of freely varying €’s is
the same as the number of freely varying n’s, and that these are both equal to the specific
k in the context. The formal way to say this is to assume the following:

Assumption The dimension of © as well as the dimension of the image of © under
the map (61,02, --,0k) — (n1(01,02,---,0k),m2(01,02,---,0k),- -+, nk (61,02, -, 0k)) are
equal to k.

There are some important examples where this assumption does not hold. They will not be
counted as members of a k-parameter Exponential family. The name curved Exponential
family is commonly used for them, and this will be discussed in the supplementary section
of this chapter.

The terms canonical form, natural parameter, and natural parameter space will mean the
same things as in the one parameter case. Thus, if we parametrize the distributions by
using n1,m2, -+, N, as the k parameters, then the vector n = (1,72, -+, M) is called the
natural parameter vector, the parametrization f(x|n) = eXi1 n (@) =vMp () is called
the canonical form, and the set of all vectors n for which f(z|n) is a valid density (pmf)
is called the natural parameter space. The main theorems for the case £ = 1 hold for a

general k.

Theorem 3.1. The results of Theorem 5.1 and 5.5 hold for the k-parameter Exponential
family.
The proofs are almost verbatim the same. The moment formulas differ somewhat due to

the presence of more than one parameter in the current context.

Theorem 3.2. Suppose X = (X7, -+, Xy) has a distribution Pn,n € 7, belonging to the

canonical k-parameter Exponential family, with a density (pmf)
Fz|n) = eZimmTi@—vm (),

where

T={ne RE . / erzlmTi(m)h(x)dx < oo}
Rd

(and the integral being replaced by a sum in the discrete case).
(a) At any n € 79,
eV = [ X Ti@ g (1) da
R
is infinitely partially differentiable with respect to each 7;, nd the partial derivatives of
any order can be obtained by differentiating inside the integral sign.

0 0?

() BTi(X)] = g 20(0); Covg(Ti(X), T5(X) = 5o ).

1<i,j<k.
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(c) If m,t are such that n,n+t € 7, then the joint mgf of (T1(X), -, Tk(X)) exists and

equals
M, (t) = e (n+t)=(n)

An important new terminology is that of a full rank.

Definition 3.5. A family of distributions {Pn,n € 7} belonging to the canonical k-

parameter Exponential family is called full rank if at every n € 79, the k x k covariance

matrix ((ﬁ;mw(n)>> is nonsingular.

Definition 3.6. (Fisher Information Matrix). Suppose a family of distributions in

the canonical k-parameter Exponential family is nonsingular. Then, for n € 7°, the matrix

<<6n‘?;7j1/1(n)>> is called the Fisher information matrix (at n).
The Fisher information matrix is of paramount importance in parametric statistical theory
and lies at the heart of finite and large sample optimality theory in statistical inference
problems for general regular parametric families.

We will now see some examples of distributions in k-parameter Exponential families where

k> 1.

Example 3.8. (Two Parameter Normal Distribution). Suppose X ~ N(u,o?),
and we consider both u,o to be parameters. If we denote (u,0) = (61,02) = 6, then

parametrized by 6, the density of X is

—0y)2 22 6%
1 _(==01) 1 _= e 9
f(x |(9) 2 e 205 05 2057 R

= [ 2 I:E =
vV 27‘1’92 R vV 271‘92

This is in the two parameter Exponential family with

1 0
M) =~ 5. m(0) = 4. Ti(x) = 2% To(x) = .
2 2

62 1
0) = =L +1log by, h(z) = — Ler.

The parameter space in the  parametrization is
O = (—00,00) ® (0,00).

2
If we want the canonical form, we let n; = —#, m2 = 2%7 and ¥(n) = — 2 — Llog(—ny).
2 2
The natural parameter space for (11, 72) is (—00,0) ® (—o0, 00).
Example 3.9. (Two Parameter Gamma). It was seen in Example 5.4 that if we fix
one of the two parameters of a Gamma distribution, then it becomes a member of the

one parameter Exponential family. We show in this example that the general Gamma
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distribution is a member of the two parameter Exponential family. To show this, just
observe that with 0 = (o, \) = (61, 62),

F(]0) = o~ T01logz—61 log b —log F(Gl)%Ix>0-
This is in the two parameter Exponential family with 7;(0) = —%,172(9) =01, Ti(x) =
z,To(z) = logz,¥(#) = 61 log s + logT'(61), and h(z) = 1I,~0. The parameter space in
the @-parametrization is (0,00) ® (0,00). For the canonical form, use 17, = —é,?]g = 04,
and so, the natural parameter space is (—o00,0) ® (0,00). The natural sufficient statistic
is (X,log X).

Example 3.10. (The General Multivariate Normal Distribution). Suppose X ~
Ng(p, X)), where p is arbitrary and X is positive definite (and of course, symmetric).

Writing 6 = (p, 2), we can think of 6 as a subset in an Euclidean space of dimension

k=d+d+ - d — gy 2D _ dld+3)
2 2 2
The density of X is
1 1 rs—1
G DR G
f(x10) (27r)d/2|2]1/2e 2 Iera
= 1 _%‘”/E_11"‘“/2_1"”_%”/2_1#13067%

(Qﬁ)d/2|2|1/26
1
(Zﬂ)d/gmme
71 6_% Yot N om0 () oM pr)zi—g 'S
(27r)d/2 ‘2|1/2

We have thus represented the density of X in the k-parameter Exponential family form

L g . Lo
=5 2000w+, (30, o )i — 5 'S lulxeRd

"
IxeRd .

with the k-dimensional natural sufficient statistic
T(X)= (le"'7XdaX127"'7X37X1X2>"'7Xd—1Xd),
and the natural parameters defined by

1 1
Zaklﬂkv - wZde/Mm _5011’ . _§O,dd7 e
k k
Example 3.11. (Multinomial Distribution). Consider the £+ 1 cell multinomial dis-
tribution with cell probabilities p1, pa, - - -, Pr, Pkr1 = 1—2?21 pi. Writing 6 = (p1,p2, -, Dk)s
the joint pmf of X = (X3, Xo,---, X), the cell frequencies of the first k cells, is

k k
. _ ]-C, ]
Zk . l’i)' ]i[pfl(l - sz)n 2171 $1Ix1’...7mk20’2§:1 z;<n
i= C =

=1

n!
z|0) =
Jelo) (T, 2 (n —
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— nt eiz1 (logpi)zi—log(1=32F 1 pi) (o4, @i)+nlog(1-31 pi)

k .
([T i) (n — 20 2)! PO
n! Zle(log ﬁ)ﬂvi+n10g(1_2f:1 pi)
= € =171 k .
(I @) (n = 30 ) TRt

This is in the k-parameter Exponential family form with the natural sufficient statistic

and natural parameters
P
k
1- Zi:1 Dbi

Example 3.12. (Two Parameter Inverse Gaussian Distribution). The general

1<i<k.

) — —

T(X) - (X17X27"' 7Xk)7 i = log

inverse Gaussian density (see Chapter 2) is given by

mad

0 \'"* oo 2 i0ym0
f($\91792)=< ) O

the parameter space for § = (61,602) is [0,00) ® (0,00). The general inverse Gaussian
density f(x61,62) is used as a model for skewed densities, and interestingly, also arises in
some problems of random walks in probability in a fundamental way.

It is clear from the formula for f(z|01,602) that it is a member of the two parameter
Exponential family with the natural sufficient statistic T'(X) = (X, ) and the natural
parameter space 7 = (—00,0] ® (—00,0). Note that the natural parameter space is not

open.

3.3 At Instructor’s Discretion
3.3.1 Convexity Properties

Written in its canonical form, a density (pmf) in an Exponential family has some convexity
properties. These convexity properties are useful in manipulating with moments and other
functionals of T'(X), the natural sufficient statistic appearing in the expression for the

density of the distribution.

Theorem 3.3. The natural parameter space 7 is convex, and ¥ (n) is a convex function
on 7.

Proof: We consider the continuous case only, as the discrete case admits basically the
same proof. Let n1,7m2 be two members of 7, and let 0 < o < 1. We need to show that
an + (1 — a)ny belongs to 7, i.e.,

/ elem+1=m)T@ b (1) de < oco.
R

But,

/ elam+(1=)m)T@) py (1) 4 = / eomT@) s (A= T(@) b () dy
Rd R4
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« l1-a
:/ emT(x) 2T () h(z)dzx
R
« l1—a
< (/ emT(’”)h(w)dm) </ e”QT(x)h(x)d:L'>
R4 R4

(by Holder’s inequality)

< 00,

because, by hypothesis, 71,72 € 7, and hence, [5q enT@ p(x)dz, and Jra e T@) p(z)da
are both finite.

Note that in this argument, we have actually proved the inequality

eblam+(1-a)m) < gabnm)+(1-a)p(ms).

But this is the same as saying

Plam + (1 —a)nz) < ah(m) + (1 — a)ib(n2),

i.e., ¥(n) is a convex function on 7.

3.3.2 Moments and Moment Generating Function

The next result is a very special fact about the canonical Exponential family, and is the
source of a large number of closed form formulas valid for the entire canonical Exponential
family. The fact itself is actually a fact in mathematical analysis. Due to the special form
of Exponential family densities, the fact in analysis translates to results for the Exponential

family, an instance of interplay between mathematics and statistics and probability.

Theorem 3.4. (a) The function ¥ is infinitely differentiable at every n € 7°. Further-
more, in the continuous case, ¥ = Jra e @ (x)dx can be differentiated any number
of times inside the integral sign, and in the discrete case, e?(" = Y oex e"@ () can be
differentiated any number of times inside the sum.

(b) In the continuous case, for any k > 1,

dk:

e = [ @)@ h)d,
Ui R4

and in the discrete case,

d* .
ﬁew(") =) [T(@)]" e ().
N zeX

Proof: Take k = 1. Then, by the definition of derivative of a function, %ew”) exists if

[ ew(n+5) _e"/’("?) ]
)

and only if limg_q exists. But,

eb(+6) _ o¥(n) / e(+0)T(z) _ onT(x)
Rd

5 = 5 h(z)dx,
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. . . . (n+8)T (z) _enT (x)
and by an application of the Dominated convergence theorem, limg_.q fRd %h(m)dw

exists, and the limit can be carried inside the integral, to give

en+0)T(z) _ onT(z) e(mt0)T(z) _ onT(z)
lim h(z)dx = / lim h(z)dz
0—0 JRd 1) Rd 6—0 1)
d
= / — " @ h(z)dx = / T(2)e" @ h(z)da.
Ra d1) R
Now use induction on k£ by using the Dominated convergence theorem again. &

This compact formula for an arbitrary derivative of e?(" leads to the following important

moment formulas.
Theorem 3.5. At any n € 79,

(a) By[T(X)] = ¢'(n); Var,[T(X)] = ¢"(n);
(b) The coefficients of skewness and kurtosis of 7'(X) equal

WO )
P 40 = e

(c) At any ¢ such that n 4+t € 7, the mgf of T'(X) exists and equals

Bm) =

M, (t) = e (n+t)=(n)

Proof: Again, we take just the continuous case. Consider the result of the previous theorem
that for any k& > 1, kew(” Jra [T(z)]*e" @ h(x)dz. Using this for k = 1, we get

e = [ T @) = [ T O hw)ds = '),
R R
which gives the result E,[T(X)] = ¢'(n).
Similarly,

izew(n) _/ [T(x))2e" @ h(z)de = [ (n) + {¢' (n)}2]e¥ ™ = / [T(x)]2e" @ h(z)da
Rd R4

S )+ WY = [ 1P @)

which gives E,[T(X)]?> = " (n) + {¢'(n)}?. Combine this with the already obtained result
that E,[T(X)] = ¢'(n), and we get Var,[T(X)] = E,[T(X)]* — (E,[T(X)])?> = 4" (n).
The coefficient of skewness is defined as
E[T(X) - ET(X)]?

(VarT(X))3/2

ﬁn =
To obtain
E[T(X) — ET(X)]? = E[T(X)]> = 3E[T(X)*E[T(X)] + 2[ET(X)]?,
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use the identity

d3
() — 3T ()
7736 /d[T(:U)] e h(z)dz.

Then use the fact that the third derivative of ¥ is ¥ |yB)(n) 4 3¢/ (n)y" (n) +

{¢/(n)}?|. As we did in our proofs for the mean and the variance above, transfer ¥ into

the integral on the right hand side and then simplify. This will give E[T(X) — ET(X)]? =
3 (1), and the skewness formula follows. The formula for kurtosis is proved by the same

argument, using k = 4 in the derivative identity
A ) _ kT(@)
e\ = [T(z)]"e h(zx)dx
Rd
Finally, for the mgf formula,

M) — BT — / KT(X) g ()~ () - / (t+m) T (x)
(1) nle ] Rde e h(z)dr =-e Rde h(zx)dx

— o~ %) gP(t+n) eUHMT @)=V (1) dg = e~V ) % 1
Rd
— ¥t+m—v(n)

An important consequence of the mean and the variance formulas is the following mono-

tonicity result.

Corollary 3.1. For a nonsingular canonical Exponential family, E,[T(X)] is strictly in-
creasing in 1 on 7°.

Proof: From part (a) of Theorem 18.3, the variance of T'(X) is the derivative of the ex-
pectation of T'(X), and by nonsingularity, the variance is strictly positive. This implies
that the expectation is strictly increasing.

As a consequence of this strict monotonicity of the mean of T(X) in the natural parameter,
nonsingular canonical Exponential families may be reparametrized by using the mean of T

itself as the parameter. This is useful for some purposes.

Example 3.13. (Binomial Distribution). From Example 18.9, in the canonical rep-

resentation of the binomial distribution, ¢(n) = nlog(1 + €"). By direct differentiation,

iy omet o el
¢(77)—1+€na (77)—(1+6n)27
o3 () = —ne(e — 1) 2@ () = ne’(e?" — 4e" + 1)
(14em)3 (14 em)t
Now recall from Example 5.7 that the success probability p and the natural parameter n

are related as p = 1en Using this, and our general formulas from Theorem 5.3, we can

+en’
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rewrite the mean, variance, skewness, and kurtosis of X as

1—2p s O
E(X) = np; Var(X) =np(1 - p); f = ———tey 7 = 22—

Vi-p) "7

For completeness, it is useful to have the mean and the variance formula in an original
parametrization, and they are stated below. The proof follows from an application of

Theorem 5.3 and the chain rule.

Theorem 3.6. Let {FPy,0 € ©} be a family of distributions in the one parameter Expo-
nential family with density (pmf)

flz|0) = en(9)T(w)—w(9)h($)‘

Then, at any 6 at which 1'(0) # 0,

Bor(x)] = YO, Vary((x)) = [;P(g])z _ w'[gzg;f]gm_

3.3.3 Closure Properties

The Exponential family satisfies a number of important closure properties. For instance,
if a d-dimensional random vector X = (X1, --, X4) has a distribution in the Exponential
family, then the conditional distribution of any subvector given the rest is also in the
Exponential family. There are a number of such closure properties, of which we will
discuss only four.

First, if X = (X3,---, Xy) has a distribution in the Exponential family, then the natural
sufficient statistic 7'(X) also has a distribution in the Exponential family. Verification of
this in the greatest generality cannot be done without using measure theory. However,
we can easily demonstrate this in some particular cases. Consider the continuous case
with d = 1 and suppose T'(X) is a differentiable one-to-one function of X. Then, by the
Jacobian formula (see Chapter 3), T'(X) has the density

_ R(T1(t))
fr(tln) =m0 s
T"(T—(2))]
This is once again in the one parameter Exponential family form, with the natural sufficient
statistic as T itself, and the ¢ function unchanged. The h function has changed to a new
. w(p) — PTH)
function h*(t) = EIOIE
Similarly, in the discrete case, the pmf of T'(X) will be given by

P(T(X)=1t)= Z "M@=V p () = =Y px(p),
x:T(x)=t

where P*(t) = 4. p(a)=¢ M(2)-
Next, suppose X = (X71,---, Xy) has a density (pmf) f(x |n) in the Exponential family and
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Y1,Ys, -+, Y, are n iid observations from this density f(z|n). Note that each individual
Y; is a d-dimensional vector. The joint density of Y = (Y7,Y5,---,Y},) is

n n

Fln) =] i) =] ™) "n(y:)

i=1 i=1
n
= e 2i=1 T(ys)—nyp(n) H h(y;).

i=1
We recognize this to be in the one parameter Exponential family form again, with the nat-
ural sufficient statistic as > ;- ; T'(Y;), the new 1 function as ni), and the new h function
as [[;_y h(yi)-
The joint density [, f(yi |n) is known as the likelihood function in statistics. So, like-
lihood functions obtained from an iid sample from a distribution in the one parameter
Exponential family are also members of the one parameter Exponential family.

The closure properties outlined in the above are formally stated in the next theorem.

Theorem 3.7. Suppose X = (Xi,---,Xy) has a distribution belonging to the one pa-
rameter Exponential family with the natural sufficient statistic 7'(X).

(a) T'=T(X) also has a distribution belonging to the one parameter Exponential family.
(b) Let Y = AX + u be a nonsingular linear transformation of X. Then Y also has a
distribution belonging to the one parameter Exponential family.

(c) Let Zp be any proper subset of Z = {1,2,---,d}. Then the joint conditional distri-
bution of X;,i € Zp given X;,5 € Z — I also belongs to the one parameter Exponential
family.

(d) For given n > 1, suppose Y7, - --,Y,, are iid with the same distribution as X. Then the

joint distribution of (Y7,---,Y,) also belongs to the one parameter Exponential family.

3.3.4 Curved Exponential Family

There are some important examples in which the density (pmf) has the basic Exponential
family form f(z|6) = eXiz1 ni(OT(X)=¥(O) p(x), but the assumption that the dimensions
of ©, and that of the range space of (7:(f),---,n,(0)) are the same is violated. More
precisely, the dimension of © is some positive integer ¢ strictly less than k. Let us start

with an example.

Example 3.14. Suppose X ~ N(u, ), pn # 0. Writing p = 6, the density of X is

| )t
z]0) = ———e 207 I
S0 = g e
1)2 €T
_ L e—gTerg—%—log\@IIIeR.

Ver
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Writing 71 (0) = —#,ng(ﬁ) = 1. Ti(z) = 2%, To(2) = z,9(0) = 2 +log|f], and h(z) =
\/%ngz, this is in the form f(x [0) = eXin ni(O)Ti(x)=vO) b (z), with k = 2, although 6 € R,
which is only one dimensional. The two functions 7;(0) = —ﬁ and n2(0) = 5 are related
to each other by the identity n; = —%, so that a plot of (n1,72) in the plane would be a
curve, not a straight line. Distributions of this kind go by the name of curved FExponential
family. The dimension of the natural sufficient statistic is more than the dimension of ©

for such distributions.

Definition 3.7. Let X = (X1, -+, Xy) have a distribution Fy,§ € © C RY%. Suppose P
has a density (pmf) of the form

F(a]8) = Xt mOT@ =% (O) py ()

where k > ¢. Then, the family {Py, 0 € O} is called a curved Exponential family.

Example 3.15. (A Specific Bivariate Normal). Suppose X = (X, X3) has a bi-
variate normal distribution with zero means, standard deviations equal to one, and a

correlation parameter p, —1 < p < 1. The density of X is

1 T {”{“ "”352”1“}

f(z]p) = me Iy woer

zl+12
e T p2)+ 21112

1
S S I R
9 /1 — o2 P z1,22€

Therefore, here we have a curved Exponential family with g = 1,k = 2,11(p) = —ﬁ, n2(p) =
27, Ti(z) = of + 23, Ta(2) = 2122, 9(p) = 5log(1 — p*), and h(w) = 5 In amer.

Example 3.16. (Poissons with Random Covariates). Suppose given Z; = z;,i =
1,2,---,n,X; are independent Poi(\z;) variables, and Z1, Zs, - - -, Z,, have some joint pmf
p(z1, 22, -+, 2zn). It is implicitly assumed that each Z; > 0 with probability one. Then,
the joint pmf of (X1, Xo, -+, Xp, Z1, 22, -+, Zy) is

n

e~ ( Az %
f($1, oy Tpy Rl R |)‘) = H Tp(zl’ 250y Zn)lxl7"’amn€N01217227"',Zn€N1
i=1 v

n T
A (O loAllzi
=e€ Ez_l ‘ (Zl_l i) log ,CL'" p(zl7 22yt Zn)I:m,---,anNoIzl,z2,---,zn€/\f17
X '

where N is the set of nonnegative integers, and A is the set of positive integers.

This is in the curved Exponential family with
n
g=1Lk=2m(\) ==X\ n2(\) =log A\, T1(z, z) Zzl,Tgx z 21:1"
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and

n Z;
z
h(z,z) = H : I p(z1, 22, -, Z”)le7"'71'nENOIZ17227"'7Zn€N1'
——
If we consider the covariates as fixed, the joint distribution of (X7, Xo,---, X,,) becomes

a regular one parameter Exponential family.

3.4 Exercises

Exercise 3.1. (Poisson Distribution). Show that the Poisson distribution belongs to
the one parameter Exponential family if A > 0. Write it in the canonical form and by

using the mean parametrization.

Exercise 3.2. (Negative Binomial Distribution). Show that the negative binomial
distribution with parameters » and p belongs to the one parameter Exponential family if
r is considered fixed and 0 < p < 1. Write it in the canonical form and by using the mean

parametrization.

Exercise 3.3. (Generalized Negative Binomial Distribution). Show that the gen-

eralized negative binomial distribution with the pmf f(z|p) = 1;((0; —i)rf!)po‘(l —p)r =
0,1,2,--- belongs to the one parameter Exponential family if o > 0 is considered fixed

and 0 < p < 1.

Exercise 3.4. (Generalized Negative Binomial Distribution). Show that the two

FF(&J;C!) p*(1—

parameter generalized negative binomial distribution with the pmf f(z |a, p) =

p)*,x =0,1,2,--- does not belong to the two parameter Exponential family.

Exercise 3.5. (Hardy-Weinberg Law). Suppose genotypes at a single locus with two
alleles are present in a population according to the relative frequencies p?,2pq, and ¢2,
where ¢ = 1 —p, and p is the relative frequency of the dominant allele. Show that the joint
distribution of the frequencies of the three genotypes in a random sample of n individuals
from this population belongs to a one parameter Exponential family if 0 < p < 1. Write

it in the canonical form and by using the mean parametrization.

Exercise 3.6. (Beta Distribution). Show that the two parameter Beta distribution
belongs to the two parameter Exponential family if the parameters a, 8 > 0. Write it in

the canonical form and by using the mean parametrization.

Exercise 3.7. (Beta Distribution). Show that symmetric Beta distributions belong to

the one parameter Exponential family if the single parameter o > 0.

Exercise 3.8. (Normal with Equal Mean and Variance). Show that the N(6,6)
distribution belongs to the one parameter Exponential family if 8 > 0. Write it in the

canonical form and by using the mean parametrization.
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Exercise 3.9. (Truncated Poisson). The number of fires reported in a week to a city

fire station is Poisson with some mean A. The city station is supposed to report the

number each week to the central state office. But they do not bother to report it if their

number of reports is less than 3. Suppose you are employed at the state central office.

Model the problem, and prove or disprove that the pmf you chose is in an Exponential

family.

Exercise 3.10. (Binomial with Both Parameters Unknown). Suppose X1, -+, X u
Bin((N,p), N > 1,0 < p < 1. Is this a two parameter Exponential family?

Exercise 3.11. (Beta-Binomial). Suppose given p, X ~ Bin(n,p), where n is known,
and that p ~ Beta(a, 3),a, 3 considered to be unknown. Is the marginal pmf of X an

Exponential family?

Exercise 3.12. (Identifiability of the Distribution). Show that distributions in the
nonsingular canonical one parameter Exponential family are identifiable, i.e., P, = P,
only if n; = ns.

Exercise 3.13. (Infinite Differentiability of Mean Functionals). Suppose Py, 0 € ©
is a one parameter Exponential family and ¢(x) is a general function. Show that at any
6 € ©Y at which Ep[|p(X)|] < oo, ue(0) = Epl¢(X)] is infinitely differentiable, and can be

differentiated any number of times inside the integral (sum).

Exercise 3.14. (Poisson Skewness and Kurtosis). Find the skewness and kurtosis

of a Poisson distribution by using Theorem 5.3.

Exercise 3.15. (Gamma Skewness and Kurtosis). Find the skewness and kurtosis

of a Gamma distribution, considering « as fixed, by using Theorem 5.3.

Exercise 3.16. (Multinomial Covariances). Calculate the covariances in a multino-

mial distribution by using Theorem 5.7.

Exercise 3.17. (Distributions with Zero Skewness). Show the remarkable result
that the only distributions in a canonical one parameter Exponential family such that the
natural sufficient statistic has a zero skewness are the normal distributions with a fixed

variance.

Exercise 3.18. (Dirichlet Distribution). Show that the Dirichlet distribution with
parameter vector o = (o, - -+, 1), > 0 for all ¢, is an (n + 1)-parameter Exponential
family.

Exercise 3.19. (Normal Linear Model). Suppose given an n X p nonrandom matrix
X, a parameter vector 3 € RP, and a variance parameter o2 > 0, Y = (Y1,Ys,---,Y,,) ~
N,(X3,0%I,), where I, is the n x n identity matrix. Show that the distribution of Y

belongs to a full rank multiparameter Exponential family.
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Exercise 3.20. (A Special Bivariate Normal). Consider the bivariate normal density

2 o2 and correlation p; p,0,p are considered

with equal means p, i, equal variances o
unknown parameters. Is this a regular Exponential family, or a curved Exponential family,

or neither?

Exercise 3.21. (Normal with an Integer Mean). Suppose X ~ N(u, 1), where pu is

known to be an integer. Is this a regular one parameter Exponential family?

Exercise 3.22. (Mixtures of Normal). Show that the mixture distribution .5N (u, 1)+
5N (1, 100) does not belong to the one parameter Exponential family. Generalize this

result to more general mixtures of normal distributions.

Exercise 3.23. (Double Exponential Distribution). (a) Show that the double expo-
nential distribution with a known ¢ value and an unknown mean does not belong to the
one parameter Exponential family, but the double exponential distribution with a known
mean and an unknown o belongs to the one parameter Exponential family.

(b) Show that the two parameter double exponential distribution does not belong to the

two parameter Exponential family.

Exercise 3.24. (A Curved Exponential Family). Suppose (Xi,Xo,---,X,,) are
jointly multivariate normal with general means u;, variances all one, and a common pair-
wise correlation p. Show that the distribution of (X7, Xo,- -+, X,,) is a curved Exponential

family.

Exercise 3.25. (Poissons with Covariates). Suppose Xi, X»,- -+, X, are independent
Poissons with E(X;) = Ae%%, A > 0,—0c0 < § < oo. The covariates zy, 2y, --,2, are
considered fixed. Show that the distribution of (X7, X9, --,X,,) is a curved Exponential
family.

Exercise 3.26. (Another Curved Exponential Family). Suppose X ~ Bin(n,p),Y ~
Bin(m,p?), and that X,Y are independent. Show that the joint distribution of (X,Y) is

a curved Exponential family.
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