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4 The Problems of Inference: A Nontechnical First Glimpse

Before we embark on a detailed theoretical development of key inference problems in the
next chapter, we give a nontechnical and gentle introduction to the theme of inference
in this chapter. The treatment is motivational and descriptive, aided by a few examples.
This chapter can be read quickly, but should not be skipped. For instructive and inspiring
nontechnical expositions to the topic of inference, we recommend Fisher(1922); Lehmann
(1985, 1995), Rao (1997), Brown (2000), Bickel and Lehmann (2001), Cox and Hinkley
(1979), and Cox (2006). Provoking and entertaining challenges to conventional wisdom in

statistical inference are chronicled in Savage (1972) and Basu (1975).

4.1 The Meaning of Inference

Statistical inference is about making conclusions intelligently and systematically regarding
things that we do not know on the basis of things that we do know. The things we do know,
or perhaps assume, are a model and data values coming from a survey or an experiment.
The things that we do not know are aspects of the model that we left unspecified. In the
theory of inference, these unspecified aspects of a model are called parameters. So, in a
very broad brush, we can characterize statistical inference as making systematic deductions
about parameters on the basis of statistical data. At some point, there will have to be
some assessment of the accuracy of our inferences, to satisfy our own curiosities, and also
to be honest to the client who brought us the problem.

The problems that we are asked to solve as part of statistical inference are numerous, and
growing. Some are very classic, others of recent origin. The purpose of this chapter is
to get an idea of the sorts of things we do as part of statistical inference. Nontechnical
examples will be a good platform for acquiring a feeling about the nature of statistical

inference.

4.2 Nontechnical Examples of Inference Problems
4.2.1 Simple Parametric Problems

The simplest problems are those in which we choose a standard parametric model with one
parameter, and then use our data to make inferences about that single parameter. Perhaps
the most classic example of this kind is inference about the mean p of a univariate normal
distribution with a known variance, say N(u,1).

Point and interval estimation Inference on p does not mean any one thing. Generally,

the starting point is to find a point estimate for p. For instance, it is very common to
estimate p by the mean of the data values, namely the sample mean X. Usually, you

would not want to stop there. If your sample mean equals 10, and so you estimate p to be
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10, you should want to know if that means that the real true value of 4 is close to 10. How
close? So, now, you have just automatically come to a need for providing margins of error;
for instance, after examination, you may tell your client that you are quite confident that
the real true value of u is between 10+ 1. There are various approaches to providing such
margins of error and to associate confidences with the margins of errors you gave. One
way to do it is to calculate a confidence interval, there are many other ways. So, point
and interval estimation are among the most basic forms of statistical inference.

Testing hypotheses Sometimes, a particular value of 1 may be a special value. For

example, you may know that one year ago i used to be equal to 5; is it still 57 Obviously,
you do not know for sure if u is still 5. So, you may want to test the proposition H : pp =5
as a hypothesis. This will require you to specify rules for deciding whether you do believe
that p is still 5, or you believe that p is not 5. Such rules are called tests. Once again,
there are various approaches to constructing tests of hypotheses, and then to assess how
reliable is your test. Generally, estimation and testing are considered the two main arms
of a first course on classic inference.

Prediction There would be occasions when more than parameter estimation, you would
be curious to predict a future value of an as yet unobserved random variable. For example,
you may know the closing values of a particular stock for the last sixty days, and you may
want to predict what the closing value will be tomorrow, or during the next seven days,
or the next one month. These are called prediction problems. You have to understand the
nature of dependence among the successive values really well to make accurate predictions.
Just like estimation, rather than a point predictor, you may want to calculate a prediction
interval. A prediction interval is different as an inference from a confidence interval.

Nuisance parameters You cannot imagine an inference problem which is simpler than a

one parameter problem for a standard distribution. If one parameter alone does not make
your model safe enough, you would want to add more parameters, e.g., N (i, 0?) instead
of N(u,1). If your primary interest is still in p, you would call o a nuisance parameter.
The nuisance parameter would need to be dealt with. For example, without estimating
o, you cannot give useful confidence intervals for u, because you will have no idea what
margin of error you should provide. There could be more than one nuisance parameter. For
example, you may have data on several normal variables, N(u,07), N(u,03), -+, N(p, 012,);
each distribution has the same mean p, but the variances need not be equal. Now you
have gotten many nuisance parameters, 01,09, +,0p, and you will have to deal with
all of them. This sort of a problem also tells you that we can very quickly ascend to
high dimensional inference problems, problems that have many parameters. Statistical
inference is a lot more about high dimensional problems now, than it was thirty or even

twenty vears ago.
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4.2.2 Harder Parametric Problems

In Section 2.2, we had a discussion on the dangers of making automatic normality assump-
tions, just because we know how to deal with that case. We saw there that distributions
that arise in practical problems can depart from normality in various ways, such as tail,
presence of skewness, or lack of unimodality. Choice of your inference procedure must
depend on your model. For example, if our sample data Xj,-:-,X, are iid from some
Cauchy distribution, but we thought that they were normal, and used the sample mean
X as our estimate of y, there will be a series of disasters. The estimate X itself would be
a horrible estimate. Moreover, the accuracy measures that you would calculate thinking
that your data were normal would give meaningless measures of accuracy. Furthermore,
follow up inference, such as confidence intervals and tests would all either be inefficient,
or simply wrong.

Is there anything we can do when the model is not a simple model, like a one or two
parameter normal? Fortunately, there are a lot of things that we can do. One possibility
is to embed a simple parametric model into a model with more parameters. We equip the
model with more parameters to make the model more flexible in important ways. Typi-
cally, the additional parameters will let you include skewed distributions and distributions
with different tails in your model, instead of a rigid unique type of distribution, such as
normal. A classic example of such an effort is the Pearson family of continuous distribu-
tions, introduced by Karl Pearson in 1895. The four parameters of a density belonging
to the Pearson family are mathematically related to the mean, variance, skewness, and
kurtosis of the underlying random variable. To name a few, the Pearson family includes
in it the normal, gamma, ¢, F', and Beta densities.

Why then everyone just does not work with only the Pearson family, and never use a
normal model at all? While the extra parameters give us flexibility in our model, at the
same time, estimating the parameters and doing follow up inference will involve much
more computing. And, to a large extent, because you cannot do exact calculations in this
setup, you will be dependent on asymptotic theory, or case specific simulations.

To summarize, parametric models with a small number of parameters are certainly useful
in some problems. But in some other problems, we must look at more flexible models.
More flexibility will come with more complexity, and we must know theory to do the right

kind of inference when the model is more complex.

4.2.3 Examples of Nonparametric Inference

The so called nonparametric models give us the maximum amount of flexibility. When
the model is nonparametric, typically the nature of the problem we wish to solve changes.

Let us see a few examples of such nonparametric inference problems.
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Estimating a CDF. Perhaps the easiest example of a nonparametric inference problem
is estimation of an unknown CDF on the real line. Thus, you have Xy, -, X, ad F,

where we only assume that F' is a continuous function (colloquially, the X; are continuous
random variables). The problem is to estimate I'. The parameter in this problem is F'
itsell.

The most standard estimate of F' is the empirical CDF,| F,,(z), which equals the proportion
of sample observations which are less than or equal to z (see Section 3.25). The empirical
CDF F, will be very close to F for large n. So, we can get a very good idea of what the

true F is by looking at a graph of Fy(z).

One slightly disturbing fact is that while we know the true F' to be continuous as a
function on the real line, the empirical CDF F,, is a jump function; it jumps at the data
values. Sometimes, the empirical CDF F;, is smoothed in order to turn it into a continuous
function. The empirical CDF as well as its smoother versions are examples of nonpara-
metric estimates in a nonparametric inference problem.

Deconvolution Deconvolution is a fascinating nonparametric inference problem. For-

mally, an observable random variable X has the convolution form X =Y + Z, where
Y is the latent unobservable variable of real interest, and Z is another random variable
independent of Y. The distribution of Z is assumed to be known, while the distribution
of Y is unknown, and we would like to estimate that unknown distribution of Y. So, we
wish to deconvolve Y [rom the convolution Y + Z.

Since we do not get to observe Y, and observe only X, the estimation has to be done on
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the basis of samples on the X variable. This model is of practical interest in any situation
where a signal cannot be directly observed and is always contaminated by a background
noise. The noise distribution can be reasonably estimated by physically tuning off any
potential signals, and so we consider it as known. The question is how well can we infer
the distribution of the latent signals.

Deconvolution is a very hard problem. One must make fairly strong assumptions about
the density of Y; but we can still attack the problem nonparametrically. One must also
assume that the density of the noise Z is known; without that assumption, we cannot do
essentially anything to estimate the density of Y. There are a few approaches to the de-
convolutioon problem; some references are Carroll and Hall (1988), Stefanski and Carroll
(1990), and Fan (1991).

Nonparametric Regression The simplest regression problem is one in which you have

data (X3,Y;),s = 1,2,---,n on a pair of variables X,Y, and we want to predict a fu-
ture Y value by using its associated X value and also all the available paired data
(X4,Y;),s=1,2,--+,n. We usually call Y the response or the dependent variable, and X
the covariate or the independent variable.
The most basic model for this is that apart from a random error, Y changes in response
to X linearly:

y=Lo+ bz +e

where € is the random error. We usually assume that € has a zero mean and some (possibly
unknown) finite variance o2. This is the simple linear regression model, hugely popular
in statistical methodology. The parameters of the simple linear regression model are
Bo, B1, 0. Often, we estimate (o, 81, which are called regression coefficients, by using the
method of least squares.

The simple linear regression model is saying that (Y [X = z) = m(z) is a linear function,
m(z) = Bo + Piz. In other words, apart from random fluctuations, a plot of the data
pairs, (X4,Y;),i = 1,2,---,n, should look like a straight line plot. Clearly, in some
practical instances, this would not be the case. There may be more ups and downs, and

more curvature, than a straight line, as in the plot we show.

Nonparametric regression attacks the problem by making very flexible assumptions
about the function m(z). In nonparametric regression, we would typically only make
certain smoothness assumptions about our true unknown function m(z); for instance,
we may assume that m(z) is two or three times continuously differentiable. Other than
that, we do not make any shape assumptions about m(z); hence the name nonparametric
regression.

There is a rich literature on estimating the mean function m(z) nonparametrically. A

downside of attacking the regression problem nonparametrically is that the final estimate
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of your mean function m(z) would not be as accurate as a simple linear regression estimate,
if the simple linear regression model was true. You can understand this intuitively. Due
to the nonparametric modelling, the parameter is infinite dimensional. So, to achieve
comparable estimation accuracy to a simply parametrized model, you will require much
more data.

Another problem with nonparametric regression is that if the covariate X was multivariate
in character, then nonparametric regression becomes infeasible. It is theoretically possible,
but practically essentially impossible. Some references on nonparametric regression are
Hardle (1992), Wand (1994), and Ruppert (2003).

4.2.4 TUltramodern Inference Problems

Thirty or forty years ago, inference problems that involved five or six parameters used to be
considered fairly high dimensional. Demands from subject matter scientists in some fields
are now forcing statisticians to try to write models and say something inferentially useful
in problems that have thousands or even millions of parameters. Unless you assume, with
proper subject matter justification, that most of these parameters should not be in the
model (e.g., regression coefficients which are zeroes), we cannot do meaningful inference on
them. Compounded with these unfathomably large number of parameters is the problem
of a low volume of data. The phrases sparsity and small n, large p have been coined to
characterize such new age problems.

Because of the fantastic difficulty in constructing a structured theory in such problems,

a very significant portion of the statistical effort has focused on data analysis, aided by
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powerful computers. However, there have been important developments in theoretical
inference also, and new theoretical progress is taking place quite consistently. Here are
some examples of these extremely challenging and ultramodern inference problems.

Multiple Testing and False Discovery The terms multiple testing and simultaneous

testing refer to either many tests of hypotheses performed using a common data set, or
repeated independent tests based on separate data sets. Just by the laws of chance, it is
unavoidable that in a large collection of tests, some statistically significant results would
be found, although the effects actually do not exist. For instance, if k true null hypotheses
are each tested at level « using independent sets of data (independent test statistics), then

the probability that at least one of these true nulls will be rejected is
1-(1-a)*~ka

for small . If @ = .05 and k = 10, then ka = .5, which is too high. If an experimenter is
trying to find nonzero effects, then sooner or later, by chance alone, she or he will discover
an effect; the colorful term false discovery has been coined for this phenomenon.
Simultaneous testing is actually a very old topic. The two most influential early exposi-
tions of multiple testing are Tukey (1953) and Miller (1966). In the past, testing 5 — 10
hypotheses simultaneously was considered plenty. But influenced by problems in genomics,
nowadays we test several thousand hypotheses simultaneously. For example, in genomic
studies, numerous locis are simultaneously tested for association with a particular disease.
Although each test on its own may have a low potential of registering a false positive,
collectively, some and even many false positives would be discovered. The new multiple
testing problem is to devise methods which provably prevent large scale false discoveries.
At the present state of knowledge, methods to control propensities of discovering nonex-
istent effects are quite problem specific. The probability theory associated with devising
such methods for realistic types of situations is very very hard. Another critical direction
in which multiple testing still requires a lot of theoretical movement is the case when the
various tests are not independent; for example, in genomic studies, usually one would not
want to assume that the thousands of genes being tested for association with a disease are
independent. Some references are Soric (1989), Benjamini and Hochberg (1995), Shaffer
(1995), and Storey and Tibshirani (2003).

Variable Selection Variable selection, just like multiple testing, is an ancient topic. But

its character has changed in response to the new problems in subject matter sciences, often
genomics. The term variable selection often applies to a regression model with a set of
covariates, of which we want to retain an active set, and delete the rest of the covariates.
Any standard statistical methods text has some discussion of the old age variable selection
methods.

In the new age variable selection problems, we have a huge set of covariates, not much
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data, and we have to decide which covariates to keep. Here is a practical example. In motif
regression, a coarse segment of the DNA is partitioned into relatively short DNA words;
the phrase DNA word means a sequence of consecutive letters from the DNA alphabet,
{A,T,G,C}. A suitable univariate response variable Y measures the binding intensity
ol a specific protein in a specific coarse DNA segment, and the covariates measure the
abundance level, scaled to a score, of the various candidate DNA words, say a total of
p such words, which are called motifs. Based on replicated data on some n coarse DNA
segments, we want to discover the relevant motifs. Quite typically, p would be several
hundreds, and n in the low hundreds. The classic variable selection methods cannot be
used in such problems. Modern techniques, such as the lasso, and its refinements, had
to be invented to grapple with these high dimensional variable selection problems. Some
references are Tibshirani (1996), Wasserman and Roeder (2009), Miller and Hall (2010),
and Biiblmann and van de Geer (2011).

Detecting Changes and Jumps Perhaps the simplest example of this kind is the change

in value of a Bernoulli parameter as sample values are collected over time. For example,
suppose n = 15 items are randomly sampled each day from a manufacturing process that
produces, to start with, a certain proportion p; of defective items. As we collect our
daily data, along the way, at some point, the defective proportion p; is suspected to have
changed to some other value pq, for example because of a quality improvement project.
The inferential problem is to test whether a change really occured, and if so, at which point
of time. This is already a hard problem because a real change can be mistaken for natural
Auctuation, and natural fluctuation can be mistaken for a genuine change! Historically,
such problems have been called change point problems.

More modern versions are detection of a lack of smoothness in a regression function, and
detection of a lack of smoothness in a multidimensional surface. For example, a linear
regression function may have been E(Y|X = z) = fo + fiz for z < zo, and it is sus-
pected that after x = g, the regression function changed to some other linear function,
E(Y|X = z) = By + P2z, so that the regression function had a jump at the point z = z.
We want to know if a jump truly occured, and if so, what is the jump point zo. Higher
dimensional versions of the same problem correspond to detecting jumps in surfaces, One
reference is Qiu (2005).

4.3 Principal Philosophical Approaches

There are three main philosophical approaches to solving inference problems, Fisherian,
decision theoretic, and Bayesian. Fisher essentially concentrated his attention on prob-
lems of parametric inference. and made contributions of eternal importance on reducing

the data and processing it through the likelihood function, after choosing a model. In
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the Fisherian approach, long run performance measures, such as variance and bias are
certainly calculated, but perhaps merely as intuitively reasonable measures of accuracy.
Fisher’s approach to testing of hypotheses is less mathematically structured than the deci-
sion theory approach enunciated by Neyman and Pearson. Fisher popularized the concept
of an observed significance level, nowadays called a P value. It is widely uused, even if it
is considered controversial by others.

The decision theory approach elegantly unifies essentially all of inference into a single
mathematical framework, and, at least in principle, tells a user what is an optimal proce-
dure. It was formulated in the work of Abraham Wald, treating inference as a two person
game between a hidden adversary called nature and the statistician. The decision theory
approach has led to useful understanding in simple as well as difficult problems, and it is
a gold mine of beautiful mathematical results. The critics of the decision theory approach
do not relish the idea of specifying certain essential elements of a decision theoretic for-
mulation; one of them is a loss function. It is generally believed that the choice of the loss
function matters materially; but there has not been really systematic research on it. In
fact, it would be difficult to study the effect of the loss function except on a case by case
basis.

The Bayesian approach originates from a truly fundamental question about what does it
mean to say that we have used a good procedure in a given inference problem. As an
example, the meaning of a 95% confidence interval is that if many users independently
calculate a 95% confidence interval by using the same formula, the interval will work, i.e.,
capture the true value of the parameter, for 95% of the users. If you are one of the users,
how confident are you that the confidence interval worked for you?

The question cannot be answered and in fact, does not make sense, without thinking of
the uncertain parameter value as a random variable with a distribution. This is the prior
distribution of Bayesian inference. Just as there is nothing like one single correct model,
there is also nothing like a unique prior that all Bayesians should agree to use. Critics of
the Bayesian approach suggest that specifying a prior is much more difficult than choos-
ing a model. They also ask whether and how much the final Bayesian answer depends on
which prior would be used. Bayesians have done a massive amount of research on encoun-
tering these criticisms; some of the work attempts to give methods for writing a correct
prior by elicitation, Some other work tries to show that in low dimensional problems, the
choice of the prior does not matter much, or if it does, then you can suitably refine your
choice so that it does not matter. A fairly popular third line of work is to choose a family
to which the prior is assumed to belong, and then pick one element from that family by
suitable use of the data values. Such methods are called empirical Bayes methods. There
is yet another line of work on writing automatic priors, so that you can skip the choice

issue altogether. Some references are Maritz and Lwin (1989), Berger (1994), Kass and
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Wasserman (1996), Efron (2010). and Kadane and Wolfson (1998).

Computing is necessary in most inference problems, regardless of which philosophical ap-
proach is adopted. Feasibility and ease of computing are important. Certain solutions to
an inference problem require more computing time, or more preparatory computing effort,
such as producing customized software. Leaving computing aside, each philosophical ap-
proach has clearly led to useful procedures, greater understanding, and opportunities for
finding unexpected but beautiful connections. You need not feel compelled to be sold to
one philosophical approach as the best for every conceivable inference problem. It would

be an unwise scientific decision.

4.4 Exercises

Exercise 4.1. Suppose X ~ Poi()), and the distribution of Y is that of X, truncated to
X < M for some M. That is, P(Y = y) = P}T—(XX;TZ)’?/ =0,1,---,M. If M is considered
unknown, between A and M, would you call one of them a nuisance parameter? If so,

which one?

Exercise 4.2. Suppose you have data values Xj, -, X5, and you are going to use them
to predict the next value X, 1, which is as yet unobserved. Call the predicted value Xn+1.

Suggest a criterion for assessing how good your predictor is.

Exercise 4.3. Suppose you have data values Xj, -+, X, ~ N(g,1). Would you use a

confidence interval for i as a prediction interval for the next value X,;1? Discuss briefly.

Exercise 4.4. Why can you not use the empirical CDF to estimate the density f of F'?
What modifications to the empirical CDF would you suggest so that you can then estimate

the density f7

Exercise 4.5. Suppose in a deconvolution problem, the noise variable Z ~ N(0,1). On
using the data values on X, it seemed to you that X was close to a normal with mean 11

and variance 5. What conclusions will you draw about the distribution of ¥Y'?

Exercise 4.6. Why do we need to assume that the distribution of the noise variable Z is

known in a deconvolution problem?

Exercise 4.7. Suppose X1, Xo, - - - are independent normal observations, all with variance
one. Suggest a methood for detecting if the mean u changed to a different value at some

point in the sequence, and if so, when.

Exercise 4.8. Suppose (X;,Y:),7 = 1,2,---,n are bivariate data on two real valued
variables X,Y. A theorem in mathematics says that the n points in the plane (X;,Y;),i =
1,2,--+,n can always be joined together exactly by a polynomial of degree n — 1. In that

case, why do we need to consider nonparametric regression?
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Exercise 4.9. Suppose based on n = 50 observations in a regression problem that has
p = 100 covariates to start with, you want to know which covariates really bhelong in
the model. Since data are sparse, and there are too many covariates, it seems difficult
to estimate the effect that each covariate has. Do you think that you must make some
assumptions about the covariates’ effects to make inference at all feasible? What sorts of

assumptions?

Exercise 4.10. Suppose two random variables X,Y are assumed to have a continuous
joint CDF. You want to test whether X,Y are independent. Is this a nonparametric or a

parametric problem?
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