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SUMMARY

Procedures of statistical inference are described which generalize Bayesian
inference in specific ways. Probability is used in such a way that in general
only bounds may be placed on the probabilities of given events, and
probability systems of this kind are suggested both for sample information
and for prior information. These systems are then combined using a specified
rule. Illustrations are given for inferences about trinomial probabilities, and
for inferences about a monotone sequence of binomial p;. Finally, some
comments are made on the general class of models which produce upper
and lower probabilities, and on the specific models which underlie the
suggested inference procedures.

1. INTRODUCTION

REDUCED to its mathematical essentials, Bayesian inference means starting with a
global probability distribution for all relevant variables, observing the values of some
of these variables, and quoting the conditional distribution of the remaining variables
given the observations. In the generalization of this paper, something less than a
global probability distribution is required, while the basic device of conditioning on
observed data is retained. Actually, the generalization is more specific. The term
Bayesian commonly implies a global probability law given in two parts, first the
marginal distribution of a set of parameters, and second a family of conditional
distributions of a set of observable variables given potential sets of parameter values.
The first part, or prior distribution, summarizes a set of beliefs or state of knowledge in
hand before any observations are taken. The second part, or likelihood function,
characterizes the information carried by the observations. Specific generalizations
are suggested in this paper for both parts of the common Bayesian model, and also
for the method of combining the two parts. The components of these generalizations
are built up gradually in Section 2 where they are illustrated on a model for trinomial
sampling.

Inferences will be expressed as probabilities of events defined by unknown values,
usually unknown parameter values, but sometimes the values of observables not yet
observed. It is not possible here to go far into the much-embroiled questions of
whether probabilities are or are not objective, are or are not degrees of belief, are or
are not frequencies, and so on. But a few remarks may help to set the stage. I feel
that the proponents of different specific views of probability generally share more
attitudes rooted in the common sense of the subject than they outwardly profess, and
that careful analysis renders many of the basic ideas more complementary than
contradictory. Definitions in terms of frequencies or equally likely cases do illustrate
clearly how reasonably objective probabilities arise in practice, but they fail in
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themselves to say what probabilities mean or to explain the pervasiveness of the
concept of probability in human affairs. Another class of definitions stresses concepts
like degree of confidence or degree of belief or degree of knowledge, sometimes in
relation to betting rules and sometimes not. These convey the flavour and motivation
of the science of probability, but they tend to hide the realities which make it both
possible and important for cognizant people to agree when assigning probabilities to
uncertain outcomes. The possibility of agreement arises basically from common
perceptions of symmetries, such as symmetries among cases counted to provide
frequencies, or symmetries which underlie assumptions of exchangeability or of
equally likely cases. The importance of agreement may be illustrated by the
statistician who expresses his inferences about an unknown parameter value in terms
of a set of betting odds. If this statistician accepts any bet proposed at his stated
odds, and if he wagers with colleagues who consistently have more information,
perhaps in the form of larger samples, then he is sure to suffer disaster in the long run.
The moral is that probabilities can scarcely be “fair”’ for business deals unless both
parties have approximately the same probability assessments, presumably based on
similar knowledge or information. Likewise, probability inferences can contribute
little to public science unless they are as objective as the web of generally accepted fact
on which they are based. While knowledge may certainly be personal, the communica-
tion of knowledge is one of the most fundamental of human endeavours. Statistical
inference can be viewed as the science whose formulations make it possible to
communicate partial knowledge in the form of probabilities.

Generalized Bayesian inference seeks to permit improvement on classical Bayesian
inference through a complex trade-off of advantages and disadvantages. On the credit
side, the requirement of a global probability law is dropped and it becomes possible
to work with only those probability assumptions which are based on readily apparent
symmetry conditions and are therefore reasonably objective. For example, in a wide
class of sampling models, including the trinomial sampling model analysed in Section 2,
no probabilities are assumed except the familiar and non-controversial representation
of a sample as n independent and identically distributed random elements from a
population. Beyond this, further assumptions like specific parametric forms or prior
distributions for parameters need be put in only to the extent that they appear to
command a fair degree of assent.

The new inference procedures do not in general yield exact probabilities for
desired inferences, but only bounds for such probabilities. While it may count as a
debit item that inferences are less precise than one might have hoped, it is a credit
item that greater flexibility is allowed in the representation of a state of knowledge.
For example, a state of total ignorance about an uncertain event 7 is naturally
represented by an upper probability P*(T) =1 and a lower probability P,(T) = 0.
The new flexibility thus permits a simple resolution of the old controversy about how
to represent total ignorance via a probability distribution. In real life, ignorance is
rarely so total that (0, 1) bounds are justified, but ignorance is likely to be such that a
precise numerical probability is difficult to justify. I believe that experience and
familiarity will show that the general range of bounds 0< P, (T) <P*(T)< 1 provides
a useful tool for representing degrees of knowledge.

Upper and lower probabilities apparently originated with Boole (1854) and have
reappeared after a largely dormant period in Good (1962) and Smith (1961, 1965). In
this paper upper and lower probabilities are generated by a specific mathematical
device whereby a well-defined probability measure over one sample space becomes
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diffused in its application to directly interesting events. In order to illustrate the idea
simply, consider a map showing regions of land and water. Suppose that 0-80 of the
area of the map is visible and that the visible area divides in the proportions 0-30 to
0-70 of water area to land area. What is the probability that a point drawn at random
from the whole map falls in a region of water? Since the visible water area is 0-24 of
the total area of the map, while the unobserved 0-20 of the total area could be water or
land, it can be asserted only that the desired probability lies between 0-24 and 0-44.
The model supposes a well-defined uniform distribution over the whole map. Of the
total measure of unity, the fraction 0-24 is associated with water, the fraction 0-56 is
associated with land, and the remaining fraction 0-20 is ambiguously associated with
water or land. Note the implication of total ignorance of the unobserved area. There
would be no objection to introducing other sources of information about the un-
observed area. Indeed, if such information were appropriately expressed in terms of
an upper and lower probability model, it could be combined with the above informa-
tion using a rule of combination defined within the mathematical system. A correct
analogy can be drawn with prior knowledge of parameter values, which can likewise
be formally incorporated into inferences based on sample data, using the same rule of
combination. The general mathematical system, as given originally in Dempster
(1967a), will be unfolded in Section 2 and will be further commented upon in Section 4.

If the inference procedures suggested in this paper are somewhat speculative in
nature, the reason lies, I believe, not in a lack of objectivity in the probability
assumptions, nor in the upper and lower probability feature. Rather, the source of
the speculative quality is to be found in the logical relationships between population
members and their observable characteristics which are postulated in each model set
up to represent sampling from a population. These logical relationships are conceptual
devices, which are not regarded as empirically checkable even in principle, and they
are somewhat arbitrary. Their acceptability will be analysed in Section 5 where it
will be argued that the arbitrariness may correspond to something real in the nature of
an uncertainty principle.

A degree of arbitrariness does not in itself rule out a method of statistical inference.
For example, confidence statements are widely used in practice despite the fact that
many confidence procedures are often available within the same model and for the
same question, and there is no well-established theory for automatic choice among
available confidence procedures. In part, therefore, the usefulness of generalized
Bayesian inference procedures will require that practitioners experiment with them
and come to feel comfortable with them. Relatively few procedures are as yet
analytically tractable, but two examples are included, namely, the trinomial sampling
inference .procedures of Section 2, and a procedure for distinguishing between
monotone upward and monotone downward sequences of binomial p; as given in
Section 3. Another model is worked through in detail in Dempster (1967b).

Finally, an acknowledgement is due to R. A. Fisher who announced with
characteristic intellectual boldness, nearly four decades ago, that probability inferences
were indeed possible outside of the Bayesian formulation. Fisher compiled a list of
examples and guide-lines which seemed to him to lead to acceptable inferences in
terms of probabilities which he called fiducial probabilities. The mathematical
formulation of this paper is broad enough to include the fiducial argument in addition
to standard Bayesian methods. But the specific models which Fisher advocated,
depending on ingenious but often controversial pivotal quantities, are replaced here by
models which start further back at the concept of a population explicitly represented
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by a mathematical space. Fisher did not consider models which lead to separated
upper and lower probabilities, and indeed went to some lengths, using sufficiency
and ancillarity, and arranging that the spaces of pivotal quantities and of parameters
be of the same dimension, in order to ensure that ambiguity did not appear. This
paper is largely an exploration of fiducial-like arguments in a more relaxed mathe-
matical framework. But, since Bayesian methods are more in the main stream of
development, and since I do explicitly provide for the incorporation of prior informa-
tion, I now prefer to describe my methods as extensions of Bayesian methods rather
than alternative fiducial methods. I believe that Fisher too regarded fiducial inference
as being very close to Bayesian inference in spirit, differing primarily in that fiducial
inference did not make use of prior information.

2. UprPER AND LOWER PROBABILITY INFERENCES ILLUSTRATED
ON A MODEL FOR TRINOMIAL SAMPLING

A pair of sample spaces X and S underlie the general form of mathematical model
appearing throughout this work. The first space X carries an ordinary probability
measure y, but interest centres on events which are identified with subsets of S. A
bridge is provided from X to S by a logical relationship which asserts that, if x is the
realized sample point in X, then the realized sample point s in S must belong to a
subset I'x of S. Thus a basic component of the model is a mathematical transforma-
tion which associates a subset I'x of S with each point x of X. Since the I'x deter-
mined by a specific x contains in general many points (or branches or values), the
transformation x - I'x may be called a multivalued mapping. Apart from measurability
considerations, which are ignored in this paper, the general model is defined by the
elements introduced above and will be labelled (X, S, u, I') for convenient reference.
Given (X, S, u, I'), upper and lower probabilities P*(T") and Py(T) are determined
for each subset T of S.

In the cartographical example of Section 1, X is defined by the points of the map,
S is defined by two points labelled “water” and “land”, u is the uniform distribution
of probability over the map, and I is the mapping which associates the single point
“water” or “land” in S with the appropriate points of the visible part of X and associ-
ates both points of S with the points of the unseen part of X. For set-theoretic
consistency, I'x should be regarded as a single point subset of .S, rather than a single
point itself, over the visible part of X, but the meaning is the same either way.

The general definitions of P*(T) and P,(T) as given in Dempster (1967a) are
repeated below in more verbal form. For any subset T of S, define T* to be the set
of points x in X for which I'x has a non-empty intersection with 7, and define T, to
be the set of points x in X for which I'x is contained in T but is not empty. In
particular, the sets S* and S, coincide. The complement X—S* of S* consists of
those x for which I'x is the empty set. Now define the upper probability of T to be

P¥T) = (T*)/(S™) (6))
and the lower probability of T to be
Py(T) = (T, )/ (S ™). (@)

Note that, since T, = T*<.S*, one has

0< P (T)<PHT)L 1. 3)
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Also, if T'is the complement of T'in S, then T, and T* are respectively the complements
of T* and T, in S*, so that

PyT)=1-PXT) and P*T)=1-PyT). 0

Other formal consequences of the above definitions are explored in Dempster
(1967a).

The heuristic conception which motivates (1) and (2) is the idea of carrying
probability elements du from X to S along the branches of the mapping I'x. The
ambiguity in the consequent probability measure over S occurs because the
probability element du(x) associated with x in X may be carried along any branch of
I'x or, more generally, may be distributed over the different branches of I'x for each x.
Part of the u measure, namely the measure of the set X—.S* consisting of points x
such that I'x is empty, cannot be moved from X at all. Since there is an implicit
assumption that some s in S is actually realized, it is appropriate to condition by
S* when defining relevant probabilities. This explains the divisor u(.S *) appearing in
(1) and (2). Among all the ways of transferring the relevant probability u(S*) from
X to S along branches of I'x, the largest fraction which can possibly follow branches
into T is P*(T), while the smallest possible fraction is P, (7). Thus conservative
probability judgements may be rendered by asserting only that the probability of T
lies between the indicated upper and lower bounds.

It may also be illuminating to view I'x as a random set in S generated by the random
point x in X, subject to the condition that I'x is not empty. After conditioning on S'*,
P*(T) is the probability that the random set I'x intersects the fixed set T, while P, (T)
is the probability that the random set I'x is contained in the fixed set T.

A probability model like (X, S, u,I") may be modified into other probability
models of the same general type by conditioning on subsets of S. Such conditioning
on observed data defines the generalized Bayesian inferences of this paper. Beyond
and generalizing the concept of conditioning, there is a natural rule for combining or
multiplying several independent models of the type (X, S,u,I") to obtain a single
product model of the same type. For example, the models for n independent sample
observations may be put together by the product rule to yield a single model for a
sample of size n, and the model defining prior information may be combined with the
model carrying sample information by the same rule. The rules for conditioning and
multiplying will be transcribed below from Dempster (1967a) and will be illustrated
on a model for trinomial sampling. First, however, the elements of the trinomial
sampling model will be introduced for a sample of size one.

Each member of a large population, shortly to be idealized as an infinite population,
is supposed known to belong to one of three identifiable categories ¢;, ¢, and cg, where
the integer subscripts do not indicate a natural ordering of the categories. Thus the
individuals of the population could be balls in an urn, identical in appearance apart
from their colours which are red (¢,) or white (¢,) or blue (c3). A model will be defined
which will ultimately lead to procedures for drawing inferences about unknown
population proportions of ¢;, ¢, and ¢, given the categories of a random sample of
size n from the population. Following Dempster (1966), the individuals of the
population will be explicitly represented by the points of a space U, and the random-
ness associated with a sample individual drawn from U will be characterized by a
probability measure over U. Thus, a finite population of size N could be represented
by any finite space U with N elements, with random sampling represented by the
uniform distribution of probability over the N elements of U. Such a finite population
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model is analysed in detail in Dempster (1967b). Here, however, the population is
treated as infinite, and, for reasons tied up with the trinomial observable, the space U
is identified with a triangle. Convenient barycentric coordinates for a general point
of U are

u= (up Uy, u3)’ (5)

where 0<uy, 0<up, 0<ug and u; +u,+ug = 1. See Fig. 1. It is further supposed that
a random sample of size one means an individual u drawn according to the uniform

(1,0,0)

7= (my, Ty T3)

u = (uy, Uy, Uy)

©, 1,0 0,0,1)

Fic. 1. A triangle representing the space U, showing the barycentric coordinates of the
three vertices of U together with a general point w = (;, s, #5). The three closed sub-
triangles labelled U;, U, and U, with a common vertex at 7t represent the subsets of U
consisting of points u such that Bu contains (c;, 7), (¢, 7t) and (c,, 7), respectively.

distribution p over the triangle U. In the model (X, S, u, I') representing a random
sample of size one from a trinomial population the roles of X and u will be played by
U and p.

Two further spaces enter naturally into the model for a single trinomial
observation. The first is the three-clement space C = {c;,c,,c5} Whose general
member ¢ represents the observable category of the sample individual. The second
is the space II whose general point is

7 = (111, 709, ), (©)

with 0<my, 07y, 0<my and wy+my+my =1, where 7, is to be interpreted for
i =1,2,3 as the proportion of the population falling in category c¢;. Note that II is a
mathematical copy of U, but its applied meaning is distinct from that of U. The role
of Sin the general model (X, S, u, I') will be played by the product space C x II which
represents jointly the observation on a single random individual together with the
population proportions of ¢;, ¢, and ¢5. Finally, the role of I is played by B where,
for any win U, the set Bu in C x II consists of the points (c;, 7t) such that

ﬂ = max (ﬂ, 12', E), (7)

Uy U U U
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for i=1,2,3, To understand the definition of B, but not yet the motivation for the
definition, it is helpful to visualize CxII as a stack of three triangles as in Fig. 2
where the three levels correspond to the three points of C. The contributions to Bu
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Fi16. 2. The space CxII represented as triangles on three levels. The three closed
shaded regions together make up the subset Bu determined from a given u.

from the three levels of C x I are shown as shaded areas in Fig. 2. It is important also
to understand the inverse mapping B~ which carries points of C x IT to subsets of U,
where

U; = BY(c;, ™) ®

is defined to be the subset of U consisting of points u for which Bu contains (c;, 7).
The subsets Uy, U, U defined by a given = in II are illustrated in Fig. 1.
It is easily checked with the help of Fig. 1 that

pU)=m; and pU;nU) =0 ©)
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fori,j=1,2,3 and ij. It will be shown later that the property (9) is a basic require-
ment for the mapping B defined in (7). Other choices of U and B could be made which
would also satisfy (9). Some of these choices amount to little more than adopting
different coordinate systems for U, but other possible choices differ in a more funda-
mental way. Thus an element of arbitrariness enters the model for trinomial
sampling at the point of choosing U and B. The present model was introduced in
Dempster (1966) under the name structure of the second kind. Other possibilities will
be mentioned in Section 5.

All of the pieces of the model (U, C x II, p, B) are now in place, so that upper and
lower probabilities may be computed for subsets T of Cx II. It turns out, however,
that P*(T)=1 and P,(T)=0 for interesting choices of T, and that interesting
illustrations of upper and lower probabilities are apparent only after conditioning.
For example, take T to be the event that category ¢; will be observed in a single
drawing from the population, i.e. T = C; x I, where C; is the subset of C consisting
of ¢; only. To check that P*(T) =1 and P (T) =0, note (i) that 7* = U because
every u in U lies in U; of Fig. 1 for some (c;, =) in C; xII, and (ii) that T}, is empty
because no u in U lies in U for all (¢;, 7) in C; xII. In general, any non-trivial event
governed by C alone or by II alone will have upper probability unity and lower
probability zero. Such a result is sensible, for if no information about = is put into
the system no information about a sample observation should be available, while if
no sample observation is in hand there should be no available information about .
(Recall the interpretation suggested in Section 1 that P*(T) = 1 and P,(T") = 0 should
convey a state of complete ignorance about whether or not the real world outcome s
will prove to lie in T.)

Turning now to the concept of upper and lower conditional probabilities, the
definition which fits naturally with the general model (X, S, u, I') arises as follows.
If information is received to the effect that sample points in S-T are ruled out of
consideration, then the logical assertion “x in X must correspond to s in I'x< S”
is effectively altered to read “x in X must correspond to s in 'x N T<S”. Thus the

original model (X, S, u, I') is conditioned on T by altering (X, S, », I') to (X, S, u, f‘),
where the multivalued mapping T' is defined by

I'x=IxnT. (10)

Under the conditioned model, an outcome in S-T is regarded as impossible, and
indeed the set S-T has upper and lower conditional probabilities both zero. It is
sufficient for practical purposes, therefore, to take the conditional model to be

(X, T, u, f) and to consider upper and lower conditional probabilities only for
subsets of 7.

Although samples of size one are of little practical interest, the model for a single
trinomial observation provides two good illustrations of the definition of a
conditioned model. First, it will be shown that conditioning on a fixed value of
T = (my, 7y, 7g) results in w; being both the upper and lower conditional probability
of an observation ¢;, for i = 1,2,3. This result is equivalent to (9) and explains the
importance of (9), since any reasonable model should require that the population
proportions be the same as the probabilities of the different possible outcomes in a
single random drawing when the population proportions are known. Second, it will be
shown that non-trivial inferences about 7t may be obtained by conditioning on the
observed category ¢ of a single individual randomly drawn from U.
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In precise mathematical terms, to condition the trinomial sampling model
(U,Cx11, p, B) on a fixed = is to condition on T = C x II, where 11 is the subset of IT
consisting of the single point 7. T itself consists of the three points (c;, 7), (c,, %) and
(¢g, ™) which in turn define single point subsets T;, T, and T of 7. The conditioned
model may be written (U, T, p, B) where Bu = Bun T for all u. By referring back to
the definition of B as illustrated in Figs. 1 and 2, it is easily checked that the set of u
in U such that Bu intersects T} is the closed triangle U; appearing in Fig. 1, while the
set of u in U such that Bu is contalned in T; is the open triangle U, for i =1,2,3.
Whether open or closed, the triangle U; has measure #;, and it follows easily from )
that the upper and lower conditional probabilities of T, given T are

PXT|T) = P(T;|T) = =, (11)

fori=1,2,3, Note that Bu is not empty for any u in U, so that the denominators in
(1) and (2) are both unity in the application (11).

(cl’ 1, 09 O)

(c1» Uys U, Ug)

(01, 0,1,0) (cp 0,0,1)
FiG. 3. The triangle 7= C; xII for the model conditioned on the observation .

Horizontal shading covers the region Bu, while vertical shading covers a general fixed
region C; X R.

Consider next the details of conditioning the trinomial model on a fixed
observation ¢;. The cases where a single drawing produces ¢, or c; may be handled by
permuting indices. Observing ¢, is formally represented by conditioning on 7' = C; x I
where C, as above is the subset of C consisting of ¢, alone. In the conditional model
(U, T, p, B), the space T'is represented by the first level in Flg 2 while Bu is represented
by the closed shaded region in that first level. Since Bu is non-empty for all u in U,
the p measure may be used d1rectly without renormalization to compute upper and
lower conditional probabilities given 7. An event R defined as a subset of IT is
equlvalently represented by the subset C; x R of T. The upper conditional probability
of C; x R given T is the probability that the random region Bu intersects C; x R where
(¢y,u) is uniformly distributed over C;xII. See Fig. 3. Similarly, the lower
conditional probablhty of C; x R given T'is the probability that the random region Bu
is contained in C; x R. For example, if R is the lower portion of the triangle where
0< 7 <7f, then

P¥CxR|T)=1-(1-m)2=7{2-7}) and P, (C,xR|T)=0.
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Or, in more colloquial notation,
P¥O0<m<7y|le=¢)=n]2—7) and P O0<m<a]|c=c)=0.

More generally, it can easily be checked that

PHm <m <y e = ¢) = w2 ~7)), (12)
while
Py (m<m<7ilc=¢)=0 %fn"l'< 1 (13)
=(1-m)? ifa]=1,

for any fixed ; and = satisfying 0< ;<7 <1. Likewise,
PHmy<my< | =¢)) = 1 —my, (14)
while

1s)

Py(my<my<mylc=¢)=0 ifwy>0
=my, ifmy=0,

for any fixed 7 and 7 satisfying 0 < 7, <7y < 1. Relations (14) and (15) also hold when
subscripts 2 and 3 are interchanged. Formulae (12) to (15) are the first instances of
generalized Bayesian inferences reached in this paper, where, as will shortly be
explained, prior knowledge of 7 is tacitly assumed to have the null form such that all
upper probabilities are unity and all lower probabilities are zero. For example, the
model asserts that, if a single random individual is observed to belong in category c;,
and no prior knowledge of = is assumed, it may be inferred that at least half the
population belongs in ¢; with probability between ¢ and 1.

A collection of # models (X, S, u®,T'®) for i = 1,2, ...,n may be combined or
multiplied to obtain a product model (X, S, p, I"). The formal definition of (X, S, u, I')
is given by

X=XDOx X x xXn),
= (2) (n)
and n =K X‘I.L X...X‘un (16)

Ix = [ x0 A ['@ x@ o T ),

where x = (x),x® ... x™) denotes a general point of the product space X. The
product model is appropriate where the realized values x®, x®, ..., x(™ are regarded
as independently random according to the probability measures p@,u®, ..., ut™,
while the logical relationships implied by I'0, I'®_ .. T'® are postulated to apply
simultaneously to a common realized outcome s in S. It may be helpful to view the
models (X9, S, u®, I'®) as separate sources of information about the unknown s in S.
In such a view, if the n sources are genuinely independent, then the product rule (16)
represents the legitimate way to pool their information.

The concept of a product model actually includes the concept of a conditioned
model which was introduced earlier. Proceeding formally, the information that T
occurs with certainty may be represented by a degenerate model (Y, S,v,A), where Y
consists of a single point y, while Ay = T and y carries v measure unity. Multiplying
a general model (X, S,u,I') by (¥, S,v,A) produces essentially the same result as
conditioning the general model (X, S, u, I') on 7. For X'x Y and u x v are isomorphic
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in an obvious way to X and g, while TxnAy = Txn7T = T'x as in (10). Thus the
objective of taking account of information in the special form of an assertion that T
must occur may be reached either through the rule of conditioning or through the
rule of multiplication, with identical results. In particular, when T =S the
degenerate model (Y, S,»,A) conveys no information about the uncertain outcome
s in S, both in the heuristic sense that upper and lower probabilities of non-trivial
events are unity and zero, and in the formal sense that combining such a (Y, S,v,A)
with any information source (X, S, u, I') leaves the latter model essentially unaltered.

Product models are widely used in mathematical statistics to represent random
samples of size n from infinite populations, and they apply directly to provide the
general sample size extension of the trinomial sampling model (U, CxII, p, B). A
random sample of size n from the population U is represented by u®¥,u®,...,ut®
independently drawn from U according to the same uniform probability measure p.
More precisely, the sample (u®®,u®, ..., u'™) is represented by a single random point
drawn from the product space

Unr = U(l)xU(z)x“_xU(n) (17)
according to the product measure
pn = P(l) X P(2) X...X p(n)’ (18)

where the pairs (U®, pM), (U, p®),...,(U™, p™) are n identical mathematical
copies of the original pair (U, p). In a similar way, the observable categories of the n
sample individuals are represented by a point in the product space

Cr=CWxC®x.. xCm, 19

where C® is the three-element space from which the observable category ¢ of the
sample individual u® is taken. The interesting unknowns before sampling are
W, c® ., c™ and =, which define a point in the space C*xII. Accordingly, the
model which represents a random sample of size # from a trinomial population is of
the form (U", C* x 11, p™, B™), where it remains only to define B®. In words, B" is the
logical relationship which requires that (7) shall hold for each u‘?. In symbols,

Br®,u®, ... u™) = BOu® nB@u@ .. n B g, (20)
where B®u consists of those points (¢, c®,...,c™, ) in C* x II such that
m/ud = max{(my/ufP), (mo/ul®), (mrs/u)} (21)

fork=1,2,3.

The model (U™, C”x1I, p®, B*) now completely defined provides in itself an
illustration of the product rule. For (17), (18) and (20) are instances of the three lines
of (16), and hence show that (U™, C" xIl, p®, B") is the product of the n models
(U@, CrxI1, p», BW) for i=1,2,...,n, each representing an individual sample
member.

As in the special case n =1, the model (U™, C" xII, p®, B") does not in itself
provide interesting upper and lower probabilities. Again, conditioning may be
illustrated either by fixing 7 and asking for probability judgments about ¢, ¢®, ..., c™
or conversely by fixing ¢, c¢®, ..., ¢!™ and asking for probability judgments (i.e.
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generalized Bayesian inferences) about . Conditioning on fixed 7 leads easily to the
expected generalization of (11). Specifically, if T is the event that 7 has a specified
value, while T is the event that ¢®,c®, ... ¢ are fixed, with n; observations in
category ¢; for i = 1,2,3, then

PH(T|T) = P(T|T) = nmatants, (22

The converse approach of conditioning on T leads to more difficult mathematics.

Before ¢V, c®, ..., c™ are observed, the relevant sample space Cx II consists
of 3” triangles, each a copy of II. Conditioning on a set of recorded observations
c®,c®, ..., c™ reduces the relevant sample space to the single triangle associated
with those observations. Although this triangle is actually a subset of C*»xII, it is
essentially the same as IT and will be formally identified with II for the remainder of
this discussion. Conditioning the model (U", C*xIL,u® B™) on ¢®,c®,...,c™
leads therefore to the model (U™, II, u™, B") where B™ is defined by restricting B"
to the appropriate copy of II. The important random subset B»(u®,u®, ..., u™) of IT
defined by the random sample u®,u®, ..., u‘ will be denoted by V for short. V
determines the desired inferences, that is, the upper and lower probabilities of a fixed
subset R of II are respectively the probability that ¥ intersects R and the probability
that 7 is contained in R, both conditional on ¥ being non-empty.

V is the intersection of the n random regions B®u® for i = 1,2, ..., n where each
B@u® js one of the three types illustrated on the three levels of Fig. 2, the type and
level depending on whether the observation ¢ is ¢;, ¢, or c;. Fig. 4 illustrates one

(1,0,0)

0,1,0) ©,0, 1)
FiG. 4. The triangle II representing the sample space of unknowns after #n = 4 observa-
tions ¢V = ¢;, ¢! = ¢;, ¢'® =¢;, ¢ = ¢, have been taken. The shaded region is the
realization of ¥ determined by the illustrated realization of u@, u‘®, u® and u®,

such region for n=4. It is easily discovered by experimenting with pictures like
Fig. 4 that the shaded region ¥ may have 3, 4, 5 or 6 sides, but most often is empty. It
is shown in Appendix A that ¥ is non-empty with probability n,! n,! n3!/n! under
independent uniformly distributed u®,u®, ...,u™. Moreover, conditional on non-
empty V, six random vertices of ¥ are shown in Appendix A to have Dirichlet
distributions. Specifically, define W® for i =1,2,3 to be the point 7 in ¥ with
maximum coordinate 7; and define Z® for i =1,2,3 to be the point 7 in ¥ with
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minimum coordinate 7;. These six vertices of ¥ need not be distinct, but are distinct
with positive probability and so have different distributions. Their distributions are
W@ D(ny+ 1,1y, ng),
W@ D(ny,ny+1,n,),
W& D(ny,ng,ng+1),
ZY: D(ny,ny+1,n5+1),
Z®: Dy +1,n,n5+1),
Z®: D(ny+1,ny+1,n),

where D(ry,rp, ;) denotes the Dirichlet distribution over the triangle IT whose
probability density function is proportional to

23

71—1 re—1 —r3—1
77'1 77'2 77'3 .

The Dirichlet distribution is defined as a continuous distribution over II if ;>0 for
i =1,2,3. Various conventions, not listed here, are required to cover the distributions
of the six vertices when some of the n; are zero.

Many interesting upper and lower probabilities follow from the distributions (23).
For example, the upper probability that 7, exceeds =} is the probability that V
intersects the region where ;> which is, in turn, the probability that the first
coordinate of W® exceeds ;. In symbols,

1 1 n!
P* > n ,Hg) = . N1 No—1 ’na’—ld d
ry2 i, g fwfﬂm!(nz—l)!(ns—l)!"l T A dmy
fl n! n(l l)n +7; ld (24)
= —_— (] — 7 217131 dar.
m'nl!(n2+n3_1)! 1 1

if n,>0 and n;>0. Similarly, Py(m, >n]|ny,ny,ny) is the probability that the first
coordinate of Z®) exceeds y, that is,

1 (n+1)!

7,1' (nl_ 1)! (n2+n3+ 1)!

P (my = I Ny, Mg, Ng) = a1 —)retetldn,  (25)
again assuming no prior information about . Two further analogues of the pair (24)
and (25) may be obtained by permuting the indices so that the role of 1 is played
successively by 2 and 3. In a hypothetical numerical example with n; = 2, ny=1,
ng = 1 as used in Fig. 4, it is inferred that the probability of at least half the population
belonging in ¢, lies between % and 1§. In passing, note that the upper and lower
probabilities (24) and (25) are formally identical with Bayes posterior probabilities
corresponding to the pseudo-prior distributions D(1,0,0) and D(0, 1, 1), respectively.
This appears to be a mathematical accident with a limited range of applicability, much
like the relations between fiducial and Bayesian results pointed out by Lindley (1958).
In the present situation, it could be shown that the relations no longer hold for events
of the form (7] < < 7).

The model (U”, C*xII, p" B™) has the illuminating feature of remaining a
product model after conditioning on the sample observations. Recall that the original
model (U™", C*xII, p" B™) is expressible as the product of the » models
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(UD,Cm <11, p, B®) for i=1,2,...,n. Conditioning the original model on the
observations yields (U™, T, p™, B®) where, as above, T is the subset of C®xII with
cD, @ ™ fixed at their observed values and

Br®,u®, ... um) = Bru®,u®, ... ,um)n T (26)

Conditioning the ith component model on the ith sample observation yields
(U, T, o0 B@) where T® is the subset of C*xII with ¢ fixed at its observed
value, and

B@wg® = By n T, 27
fori=1,2,...,n. Itis clear that
T=TOnT®n.. . nTm, (28)
and from (20), (26), (27) and (28) it follows that
En(u(l),u(z)’ B () By aB@y@n, . ABwygm, 29

From (28) and (29) it is immediate that the model (U™, T, p®, B) is the product of the
n models (U®,T®, p@ B@) for i=1,2,...,n. The meaning of this result is that
inferences about 7 may be calculated by traversing two equivalent routes. First,
as above, one may multiply the original » models and condition the product on 7.
Alternatively, one may condition the original # models on their associated 7%} and
then multiply the conditioned models. The availability of the second route is
conceptually interesting, because it shows that the information from the ith sample
observation ¢ may be isolated and stored in the form (U@, T®, pt, B@) and when
the time comes to assemble all the information one need only pick up the pieces and
multiply them. This basic result clearly holds for a wide class of choices of U and B,
not just the particular trinomial sampling model illustrated here.

The separability of sample information suggests that prior information about 7
should also be, stored as a model of the general type (X,II,u,I") and should be
combined with sample information according to the product rule. Such prior
information could be regarded as the distillation of previous empirical data. This
proposal brings out the full dimensions of the generalized Bayesian inference scheme.
Not only does the product rule show how to combine individual pieces of sample
information: it handles the incorporation of prior information as well. Moreover,
the sample information and the prior information are handled symmetrically by the
product rule, thus banishing the asymmetric appearance of standard Bayesian
inference. At the same time, if the prior information is given in the standard form of
an ordinary probability distribution, the methods of generalized Bayesian inference
reproduce exactly the standard Bayesian inferences.

A proof of the last assertion will now be sketched in the context of trinomial
sampling. An ordinary prior distribution for an unknown 7 is represented by a
model of the form (X,II, u, I') where I' is single-valued and hence no ambiguity is
allowed in the computed probabilities. Without loss of generality, the model
(X, 11, u, I') may be specialized to (I1,II, u, I), where I is the identity mapping and p
is the ordinary prior distribution over II. For simplicity, assume that u is a discrete
distribution with probapbilities p;, p,, ..., p4 assigned to points 7, Ty, ..., 7z in II. From
(16) it follows that the mapping associated with a product of models is single-valued
if the mapping associated with any component model is single-valued. If a component
model not only has a single-valued mapping, but has a discrete measure u as well,
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then the product model is easily seen to reduce to another discrete distribution over
the same carriers ;, 7, ..., ;. Indeed the second line of (16) shows that the product
model assigns probabilities P(;) to 7; which are proportional to p;;, where /; is the
probability that the random region ¥ includes the point ;. Setting 7t; = (71, 740, 72),
it follows from the properties of the random region V that

I = nR TR, (30)

which is just the probability that all of the independent random regions whose
intersection is ¥ include ;. Normalizing the product model as indicated in (1) or (2)
leads finally to

pily
P(w,) = 31
. ( ’L) plll+p212+"'+pdld ( )

for i=1,2,...,d, which is the standard form of Bayes’s theorem. This result holds
for any choices of U and B satisfying (9). Note that /; is identical with the likelihood
of =,

Generalized Bayesian inference permits the use of sample information alone,
which is mathematically equivalent to adopting the informationless prior model in
which all upper probabilities are unity and all lower probabilities are zero. At
another extreme, it permits the incorporation of a familiar Bayesian prior distribution
(if it is a genuine distribution) and then yields the familiar Bayesian inferences.
Between these extremes a wide range of flexibility exists. For example, a prior
distribution could be introduced for the coordinate 7, alone, while making no prior
judgment about the ratio m,/ms. Alternatively, one could specify prior information to
be the same as that contained in a sample of size m which produced m; observations
in category ¢; for i=1,2,3. In the analysis of quite small samples, it would be
reasonable to attempt to find some characterization of prior information which could
reflect tolerably well public notions about w. In large samples, the inferences clearly
resemble Bayesian inferences and are insensitive to prior information over a wide
range.

3. A SECOND ILLUSTRATION
Consider a sequence of independent Bernoulli trials represented by z; with

P(z;=1|p)=p; and P(z;=0|p)=1-—p; fori=1,2,...,n, 32)

where it is suspected that the sequence p, is subject to a monotone upward drift. In
this situation, the common approach to a sequence of observations z; is to apply a
test of the null hypothesis {p, = p, = ... = p,} designed to be sensitive against the
alternative hypothesis {p; <p,<...<p,}. The unorthodox approach suggested here
is to compute upper and lower probability inferences for the pair of symmetric
hypotheses {p, >p,>...>p,} and {p; <p,<... <p,} under the overall prior assumption
that the sequence p; is monotone, either increasing or decreasing, with probability
one. A small upper probability for either of these hypotheses would be evidence for
drift in the direction contrary to that indicated by the hypothesis. Upper and lower
probabilities may also be computed for the null hypothesis {p; = p, = ... = p,,}, but
the upper probability will usually be vanishingly small in sample sequences of moderate
length however little trend is apparent, while the lower probability is always zero.



220 DEMPSTER — A Generalization of Bayesian Inference [No. 2,

The model described could apply in simple bioassays or learning situations. A
wider range of applications could be achieved in several ways, for example by
allowing several observations at each p; or postulating Markov-type dependence in
the z; sequence. But the aim here is to focus attention as simply as possible on one
feature of the new methods, namely their ability to handle the problem of many
nuisance parameters which plagues the more traditional forms of statistical inference.
Plausible inferences may be obtained despite the presence of as many continuous
parameters as there are dichotomous observables.

Under the binomial analogue of the trinomial model treated in Section 2, a single
binomial observable z is represented before observation by the model (U,Z x P, p, B)
where

U={u:0<u<l1}, (33)
Z={z:z=0o0rz=1}, (34
P={p:0<p<1}, 35)

p is the uniform distribution over U, and
Bu={(z,p): z=0 and u<p<l1, or (36)
z=1 and 0<p<u}.
After conditioning on z, this model becomes effectively (U, P, p, B,), where
Bu={p:u<p<l} ifz=0,
={p:0<p<u} ifz=1. 37

A conditioned model of this kind may be constructed for each of » independent
observations z; and associated parameters p;,. Combining these n sources of informa-
tion about p;, p,, ..., p,, yields a single model (U", P*, p™, B, ,,. .,), Where

U™ = {(uy, up, ..., u,): 0<u;<1 fori=1,2,...,n}, (38)
P ={(p1sPgs +-sPp): 0<p; <1 fori=1,2,...,n}, (39)
p™ is the uniform distribution over the cube U, and

B(zb%m,z”)(ul, Ugy vensty) = {(D1sDos -+ D) Pi€B,u; fori=1,2,...,n}. (40)

The combined model would be appropriate for unrestricted inferences about an
unknown (py,ps,...,p,) based on observations (zy,2s,...,z,). However, when
consideration is restricted to the subset S of P* in which p,, p,, ..., p,, is a monotone
sequence, the sharpness of the inferences is much improved.

Define T, and T, to be the subsets of S for which p;<p,<...<p, and
P1=Ds> ... 2Dy, respectively. Define Ty, = TN T, to be the subset of S for which
D1 =Ds= ... = p,. An immediate objective is to characterize T§, T§ and T, from
whose p™ measure the desired inferences will follow. For example, T'§ consists of all
points (uy, Uy, ..., u,) for which there exists some (py, ps, - --, P,,) satisfying p; < po<... <p,,
and such that p; lies in B, u;, for i=1,2,...,n. With the help of Fig. 5 it is easily
checked that

TF ={(w, u, ..., uy): u;<uy, whenever z; =1, z; = 0, i<j}. 41)
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By symmetry,
TF = {(uy, s, ..., 1) u;>u;, whenever z; =0, z; = 1, i<j}. 42)
Finally,
TH, = {(uy, tg, ..., uy): u;<uy;, whenever z; = 1, z; = 0}. (43)

It is clear that T35 = T#NTy¥ and that T3, T§—T73, and T3 —T7, are disjoint sets
whose union is S*.

uorp A
l """ | ""“T """ iuhaiuieiaieindineheig  Seliiiediededeet
ooy X,
1 ) 1 1
1 ' 1
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Fic. 5. The plotted values p,, p,, ..., p, determine a point P™ for which
P1<P2<...<Dp
The plotted values #y, us, ..., 4, determine a point of U™ for which p, lies in B, z;, p, lies
in By z,, p lies in B, z,, ..., p, lies in B, z,. The interpretation is that (uy, u,, ..., u,) lies
in the region T§ determined by the observationz; =1,2,=0,2 =1, ..., z,=0.

U™ may be decomposed into n! geometrically similar simplexes, each character-
ized by a particular ordering of the values of the coordinates (i, u, ..., #,). These
simplexes are in one-to-one correspondence with the permutations

(1,2,...,n)>(1*%,2%, ...,n%),

where for every (uy, s, ..., 4,) in a given simplex the corresponding permutation obeys
Uys SUpe < ... SU,.. Since the characterizations (41), (42) and (43) involve only order
relations among coordinates u;, each of the simplexes is either included or excluded
as a unit from 7§ or T§ or T§,. And since each of the n! simplexes has p™ measure
1/n!, the p™ measures of T§ or T§ or T}, may be found by counting the appropriate
number of simplexes and dividing by n!. Or, instead of counting simplexes, one may
count the permutations to which they correspond. The permutation

(L,2,...,m)—>(1%,2%,...,n%)

carries the observed sequence (zy, 2z, .., Z,) Of zeros and ones into another sequence
(Z14> Zgws -5 Zp+) OF zeros and ones. According to the definition of T¥, a simplex is
contained in T¥ if and only if its corresponding permutation has the property that
i* <j* for all i<j such that z; = 1 and z; = 0, i.e. any pair ordered (1,0) extracted
from (zy,2s,...,2,) must retain the same order in the permuted sequence
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(2145 Zans ++5 Zpe).  Similarly, to satisfy T§ any pair ordered (0,1) extracted from
(21, 25 ---, 2,) must have its order reversed in the permuted sequence, while to satisfy
TH =T¥nT§ the sequence (zya, Zgs, ..., Z,+) Must consist of all ones followed by all
Zeros.

If (zy, 25, ..., z,,) contains n; ones and n, zeros, then a simple counting of permuta-
tions yields

15,1
pTE) =2 (44)
A simple iterative procedure for computing p™(T¥) or p™T¥) is derived in
Appendix B by Herbert Weisberg. The result is quoted below and illustrated on a
numerical example.

For a given sequence of observations z;, z,, ... of indefinite length define N(n) to
be the number of permutations of the restricted type counted in T¥. N(n) may be

decomposed into
N@m) = 3 N(k,n), 43)
x=0

where N(k,n) counts the subset of permutations such that (zy., Zss, ..., Z,+) has k
zeros preceding the rightmost one. Since no zero which follows the rightmost one in
the original sequence (zy, z,, ..., z,,) can be permuted to the left of any one under any
allowable permutation, the upper limit r in (45) may be taken as the number of zeros
preceding the rightmost one in the original sequence (z;, z,, ..., z,). In the special case
of a sequence consisting entirely of zeros, all of the zeros will be assumed to follow
the rightmost one so that N(k,n) =0 for k>0 and indeed N(n) = N(0,n) = n!.
Weisberg’s iterative formula is

k-1
N(k,n+1) = X NG +m+1+k)Nk,n) iz, =1
i=0

=+ 1—K)N(k,n) if z,,4 =0, (46)

where n; and n, denote as above the numbers of ones and zeros, respectively, in
(215 235 ---» Zp,)-

Formula (46) has the pleasant feature that the counts for the sequences
(20, (21, 25), (23 23, Z5), ... may be built up successively, and further observations may
be easily incorporated as they arrive. Consider, for example, the hypothetical
observations

(21, 255 .-, 2) = (0,0,1,1,0,1, 1).
Table 1 shows
Z,, N(@©,n), ..., N(r,n)

on line n, for n = 1,2, ...,7, from which N(7) = 1680. The number of permutations
consistent with T} is found by applying the same iterative process to the sequence
(1,1,0,0,1,0,0) with zeros and ones interchanged. This yields Table 2 from
which N(7) = 176. The number of permutations common to T§F and TF is
314!=144. Thus p™(T¥) =1680/7!, p™(T¥) =176/7!, p™(T3},) =144/7!, and
p™(S*) = (1680+176—144)/7! = 1712/7!. = Consequently, the upper and lower
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TABLE 1
n Zn N@O,n) N(,n) N@2,n) NQ@G,n)
1 0 1
2 0 2
3 1 2, 2, 2
4 1 4, 8, 12
5 0 12, 16, 12
6 1 36, 76, 84, 40
7 1 144, 416, 640, 480
TABLE 2
n Zp N@O,n) N(,n) N@2,n)
1 1 1
2 1 2
3 0 2
4 0 4
5 1 12, 4, 4
6 0 36, 8, 4
7 0 144, 24, 8

probabilities of T3, T, and Ty, conditional on S and (zy,2,,...,2,) = (0,0,1,1,0,1,1)
are
1680 1536 176 32
* - = —— * = —— = e
PXT) 1712° P(Ty) 1712 PAT) 1712 Py(To) 1712

144
P*(le) = ma P*(Tm) =0.

Since more than 10 per cent of the measure could apply to a monotone non-increasing
sequence, the evidence for an increasing sequence is not compelling.

TABLE 3

n Py(Ty) Px(Ty)

1 0 1

2 0 1

3 0 0-333

4 0 0-167

5 0-167 0-417

6 0-048 0-190

7 0-019 0-103

8 0-188 0-319

9 0-065 0-148
10 0-028 0-080
11 0-014 0-047

For the extended sequence of observations 0,0,1,1,0,1,1,0,1,1,1,..., the lower
and upper probabilities of a monotone downward sequence after » observations are
exhibited in Table 3.
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4. COMMENTS ON THE METHOD OF GENERATING
UPPER AND LOWER PROBABILITIES
Although often notationally convenient, it is unnecessary to use models
(X, S, 1, I') outside of the subclass where the inverse of I' is single-valued. For the
model (X, S, u, I) with

S=Xx8 (47)
and
Ix={x}xIx (48)
does belong to the stated subclass, and yields
(P*(T), P(T)) = (B*(X x T),P (X x T)) (49)

for any T'< S, where the left side of (49) refers to any original model (X, S, u, I') and
the right side refers to the corresponding model (X, S, u, I"). Moreover, the model

x,8, u, ) provides upper and lower probabilities for all subsets of X x .S, not just
those of the form X x T. On the other hand, it was assumed in applying the original
form (X, S, u,I') that the outcome x in X is conceptually unobservable, so that no
operational loss is incurred by the restriction to subsets of the form X x T<S.

Underlying the formalism of (X, S, u, I') or its equivalent (X, S, u, I') is the idea
of a probability model which assigns a distribution only over a partition of a complete
sample space, specifically the distribution u over the partition of § = X x S defined by
X. Thus the global probability law of an ordinary probability measure space is
replaced by a marginal distribution or what might be called a partial probability law.
The aim therefore is to establish a useful probability calculus on marginal or partial
assumptions.

I believe that the most serious challenges to applications of the new calculus will
come not from criticism of the logic but from the strong form of ignorance which is
necessarily built into less-than-global probability laws. To illustrate, consider a
simple example where w; denotes a measured weight, w, denotes a true weight, and
X = w;— W, denotes a measurement error. Assume that ample relevant experience is
available to justify assigning a specific error distribution u over the space X of possible
values of x. The situation may be represented by the model (X, W, u, I') with X and
p as defined, with W ={(wy, w,); w; >0, w,>0}, and I' defined by the relation
X = wy—w,. Conditioning the model on an observed w; leaves one with the same
measure u applied to w; —w,, except for renormalization which restricts the measure
to w;>0. The result is very much in the spirit of the fiducial argument (although
there is some doubt about Fisher’s attitude to renormalization). I am unable to fault
the logic of this fiducial-like argument. Rather, some discomfort is produced by
distrust of the initial model, in particular by its implication that every uncertain
event governed by the true weight w, has initial upper and lower probabilities one and
zero. It would be hard to escape a feeling in most real situations that a good bit of
information about a parameter is available, even if difficult to formalize objectively,
and that such information should clearly alter the fiducial-like inference if it could be
incorporated. One way to treat this weakness is openly to eschew the use of prior
information, while not necessarily denying its existence, that is, to assert that the
statistician should summarize only that information which relies on the observation
w, and the objectively based error distribution p. Because of the conservatism
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implicit in the definition of upper and lower probabilities, the approach of rejecting
soft information seems likely to provide conservative inferences on an average, but
I have not proved theorems to this effect. The difficulty is that the rejection of all soft
information, including even information about parametric forms, may lead to
unrealistically weak inferences. The alternative approach is to promote vague
information into as precise a model as one dares and combine it in the usual way with
sample information.

Some comments on the mathematics of upper and lower probabilities are
appropriate. A very general scheme for assigning upper and lower probabilities to
the subsets of a sample space S is to define a family € of measures P over S and to set

PXT) = SEPP(T), P(T) = inf P(T). (50)
13

Within the class of systems of upper and lower probabilities achieved in this way for
different €, there is a hierarchical scheme of shrinking subclasses ending with the
class of systems defined by models like (X, S, u,I"). (see Dempster, 1967a). The
family % corresponding to a given (X, S, 4, I') consists of all measures P which for
each x distribute the probability element du(x) in some way over I'x. Some readers
may feel that all systems should be allowed, not just the subclass of this paper. In
doing so, however, one loses the conception of a source of information as being a
single probability measure. For, in the unrestricted formulation of (50), the class ¥
consists of conceptually distinct measures such as might be adopted by a corresponding
class of personalist statisticians, and the conservatism in the bounds of (50) amounts
to an attempt to please both extremes in the class of personalist statisticians. I
believe that the symmetry arguments underlying probability assignments do not
often suggest hypothetical families ¥ demanding simultaneous satisfaction. Also,
the rules of conditioning and, more generally, of combination of independent sources
of information do not extend to the unrestricted system (50), and without these rules
the spirit of the present approach is lost.

The aim of this short section has been to suggest that upper and lower probabilities
generated by multivalued mappings provide a flexible means of characterizing limited
amounts of information. They do not solve the difficult problems of what information
should be used, and of what model appropriately represents that information. They
do not provide the only way to discuss meaningful upper and lower probabilities.
But they do provide an approach with a well-rounded logical structure which
applies naturally in the statistical context of drawing inferences from samples to
populations.

5. COMMENTS ON THE MODELS USED FOR INFERENCE

The models used here for the representation of sampling from a population take
as their point of departure a space whose elements correspond to the members of the
population. In addition to the complex of observable characteristics usually postulated
in mathematical statistics, each population member is given an individual identity. In
conventional mathematical statistics the term Aypothesis is often used for an unknown
population distribution of observable characteristics, but the presence of the popula-
tion space in the model leads directly to the more fundamental question of how each
hypothesized population distribution applies to the elements of the population
space, that is, under a given hypothesis what are the observable characteristics of
each population member? In the trinomial sampling model of Section 2, the question
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is answered by the multivalued mapping B defined in (7). As illustrated in Fig. 1, B
asserts that for each hypothesis 7 the population space U partitions into three regions
Uy, Uy, Us corresponding to the observable characteristics ¢y, ¢y, c;. More generally,
the observable characteristics may be multinomial with k categories ¢y, c,, ..., ¢, and
the population space U may be any space with an associated random sampling
measure p. For a given hypothesis 7 = (my, 7, ..., ;) the question is answered by
determining subsets Uj, Uy, ..., U;, of U which specify that a population member in U,
is permitted to have characteristic ¢; under =, for i = 1,2, ..., k. Having reached this
point in building the model, it seems reasonable to pose the restriction which
generalizes (9), namely,

p(U) =m; and p(U;nTp) =0 (51

for i,j=1,2,...,k and i#j. The reason for (51) as with (9) is simply to have
m; represent both upper and lower probabilities of ¢; for a single drawing with a
given 7.

Now it is evident that the above information by no means uniquely determines a
model for multinomial sampling. Indeed, one may start from any continuous space
U with measure p, and for each 7 specify a partition Ui, U, ..., Uy, satisfying (51) but
otherwise completely arbitrary. In other words, there is a huge bundle of available
models. In Dempster (1966), two choices were offered which I called models of the
first kind and models of the second kind. The former assumes that the multinomial
categories ¢;, ¢y, ..., ¢;, have a meaningful order, and is uniquely determined by the
assumption that the population members have an order consistent with the order of
their observable characteristics under any hypothesis . (See Dempster, 1967b). The
restriction to ordered categories implies essentially a univariate characteristic, and
because that restriction is so severe the following discussion is mostly aimed at a
general multinomial situation with no mathematical structure assumed on the space
of k categories. The general model of the second kind is defined by extending (5), (6)
and (7) in the obvious way from k = 3 to general k. This model treats the k categories
with complete symmetry, but it is not the only model to do so, for one can define
B~ arbitrarily for 7 such that m <7,<...<m, and define B~ for other = by
symmetry. But the general model of the second kind is strikingly simple, and I
recommend it because I can find no competitor with comparable aesthetic appeal.

The status of generalized Bayesian inference resembles that of Bayesian inference
in the time of Bayes, by which I mean that Bayes must have adopted a uniform prior
distribution because no aesthetically acceptable competitor came to mind. The analogy
should be carried further, for even the principles by which competitors should be
judged were not formulated by Bayes, nor have the required principles been well
formulated for the models discussed here. I believe that the principles required by the
two situations are not at all analogous, for the nature and meaning of a prior
distribution has become quite clear over the last two centuries and the concept may
be carried more or less whole over to generalized Bayesian inference. The choice of a
model satisfying (51), on the other hand, has no obvious connection with prior
information as the term is commonly applied relative to information about postulated
unknowns. In the case of generalized Bayesian inference, I believe the principles for
choosing a model to be closely involved with an uncertainty principle which can be
stated loosely as: The more information which one extracts from each sample individual
in the form of observable characteristics, the less information about any given aspect of
the population distribution may be obtained from a random sample of fixed size.
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For example, a random sample of size n = 1000 from a binomial population yields quite
precise and nearly objective inferences about the single binomial parameter p involved.
On the other hand, if a questionnaire given to a sample of n = 1000 has been sufficient
to identify each individual with one of 1,000,000 categories, then it may be foolhardy
to put much stock in the sample information about a binomial p chosen arbitrarily
from among the 210000002 non-trivial available possibilities. Conceptually, at least,
most real binomial situations are of the latter kind, for a single binomial categorization
can be achieved only at the expense of suppressing a large amount of observable
information about each sample individual. The uncertainty principle is therefore a
specific instance of the general scientific truism that an investigator must carefully
delimit and specify his area of investigation if he is to learn anything precise.

Generalized Bayesian inference makes possible precise formulations of the
uncertainty principle. For example, the model of the second kind with k = 2 and
n = 1000 yields inferences which most statisticians would find nearly acceptable for
binomial sampling. On the other hand, it is a plausible conjecture that the model of
the second kind with &£ = 1,000,000 and # = 1000 would yield widely separated upper
and lower probabilities for most events. The high degree of uncertainty in each
inference compensates for the presence of a large number of nuisance parameters, and
protects the user against selection effects which would produce many spurious
inferences. Use of the model of the first kind with £ = 1,000,000 and » = 1000 would
very likely lead to closer bounds than the model of the second kind for binomial
inferences relating to population splits in accord with the given order of population
members. And it is heuristically clear that models could be constructed which for
each 7 would place each point of U in each of Uy, U,,...,U, as =* varies over an
arbitrarily small neighbourhood about . Such a model would present an extreme of
uncertainty, for all upper and lower probability inferences would turn out to be one
and zero, respectively. It is suggested here that the choice of a model can only be made
with some understanding of the specific reflections of the uncertainty principle which
it provides. For the time being, I judge that the important task is to learn more about
the inferences yielded by the aesthetically pleasing models of the second kind. Eventu-
ally, intuition and experience may suggest a broader range of plausible models.

Models of the second kind were introduced above for sampling from a general
multinomial population with k categories and unknown 1 x k parameter vector 7.
But the range of application of these models is much wider. First, one may restrict
7 to parametric hypotheses of the general form 7 = w(0,¢,...). More important,
the multinomial may be allowed to have an infinite number of categories, as explained
in Dempster (1966), so that general spaces of discrete and continuous observable
characteristics are permissible. It is possible therefore to handle the standard para-
metric hypotheses of mathematical statistics. Very few of these have as yet proved
analytically tractable.

At present, mainly qualitative insights are available into the overview of statistical
inference which the sampling models of generalized Bayesian inference make possible.
Some of these insights have been mentioned above, such as the symmetric handling of
prior and sample information, and the uncertainty principle by which upper and
lower probabilities reflect the degree of confusion produced by small samples from
complex situations. It is interesting to note also that parametric hypotheses and prior
distributions, which are viewed as quite different in conventional statistical theory,
play indistinguishable roles in the logical machinery of generalized Bayesian inference.
For a parametric hypothesis such as 7@ = 7(6, ¢, ...) may be represented by a model of
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the general type (X, S, u, I'), which assigns all of its probability ambiguously over the
subset of 7 allowed by =(6,¢,...) as 8,4, ... range over their permitted values, and
this model combines naturally with sample information using the rule of combination
defined in Section 2 and suggested there to be appropriate for the introduction of
prior information.

Concepts which appear in standard theories of inference may reappear with
altered roles in generalized Bayesian inference. Likelihood is a prime example. The
ordinary likelihood function L(w) based on a sample from a general multinomial
population is proportional to the upper probability of the hypothesis 7. This may be
verified in the trinomial example of Section 2 by checking that the random region
illustrated in Fig. 4 covers the point 7 with probability #f1#%27%:, The general result
is hardly more difficult to prove. Now the upper probability of = for all 7© does not
contain all the sample information under generalized Bayesian inference. Thus the
likelihood principle fails in general, and the usual sets of sufficient statistics under
exponential families of parametric hypotheses no longer contain all of the sample
information. The exception occurs in the special case of ordinary Bayesian inference
with an ordinary prior distribution, as illustrated in (31). Thus the failure of the
likelihood principle is associated with the uncertainty which enters when upper and
lower probabilities differ. In passing, note that marginal likelihoods are defined in
the general system, that is, the upper probabilities of specific values of 8 from a set of
parameters 0, ¢, ... are well defined and yield a function L(f) which may be called the
marginal likelihood of 8 alone. If the prior information consists of an ordinary prior
distribution of 6 alone, with no prior information about the nuisance parameters,
then L(6) contains all of the sample information about 6.

Unlike frequency methods, which relate to sequences of trials rather than to
specific questions, the generalized Bayesian inference framework permits direct
answers to specific questions in the form of probability inferences. I find that
significance tests are inherently awkward and unsatisfying for questions like that
posed in the example of Section 4, and the main reason that Bayesian inference has
not replaced most frequency procedures has been the stringent requirement of a
precise prior distribution. I hope that I have helped to reduce the stringency of that
requirement.
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APPENDIX A
A derivation is sketched here for the distributions (23) relating to specific vertices
of the random region R defined by (20). R is the intersection of n regions B® u®, for
i=1,2,...,n, as illustrated in Fig. 4. The region B u® corresponding to u®,
which gives rise to an observation c;, consists of points u such that us/u; <u{®/u{® and
up/uy <ul? [u{®. The intersection of the n, regions corresponding to the n, observations
¢, is a region R, consisting of points u such that

us/uy <cyg and  uyuy < g, (A.1)

where ¢;3 = min (u{?/u{") and ¢;, = min (4 /u{?), the minimization being over the
subset of i corresponding to observations c¢;. Note that R; together with the n,
regions which define it are all of the type pictured on level 1 of Fig. 2. By permuting
subscripts, define the analogous regions R, with coordinates cy3, ¢y, and R; with
coordinates cgy, €35, Where R, and R; are of the types pictured on levels 2 and 3 of
Fig. 2, respectively. One is led thus to the representation

R=R NR;NR;. (A2)

Any particular instance of the region R which contains at least one point is a
closed polygon whose sides are characterized by fixed ratios of pairs of coordinates
u;,u;. Thus R may be described by a set of six coordinates

bw = max (u,/uz) (A‘3)
ueR

for i#j. From (A.1), (A.2), and (A.3) it follows that
bij < C,ij (A.4)

for i#j. Moreover, equality holds if the corresponding side of R; is also a side of R,
while the inequality is strict if the side of R, misses R entirely. The reader may wish
to satisfy himself that R may have 3, 4, 5 or 6 sides in which case the strict inequality
in (A.4) holds for 3, 4, 5 or 6 pairs i,j (with probability one).
If R is considered a random region, while RC is a fixed region of the same type with
coordinates bY;, then
P(R>R%) =P(b;;=bY) foralli#j
= (1459, + b99)~™ (1 +bY, + b3g)~"2 (1 + b, + b,) ™. (A.5)
To prove (A.5) note first that the three events
{b1o> Y5, b1 > bl3}, {bay >3y, 003> 055}, {bgy > Y, bgy > b3}
are equivalent respectively to the three events
{cia> b0y, 15> D05}, {ca>D9y, s> D05}, {Ca1> DYy, Con > DY}

In the latter form, the three events are clearly independent, for they depend on
disjoint sets of independent u‘®, and their three probabilities are the three factors in
(A.5). For example, the first event says that the n; points u‘® corresponding to
observations ¢, fall in the subtriangle uy/u; > b9, and ug/u; > b3, whose area is the
fraction (14 59,4 b%;)~1 of the area of the whole triangle U.
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It will be convenient to denote the right side of (A.5) by F(b,, b3, b3, b3s, 531, b3s)
which defines, as the bY; vary, a form of the joint cumulative distribution function of
the by, This c.d.f. should be handled with care. First, it is defined only over the
subset of the posmve orthant in six dimensions such that the b%; define a non-empty
R°. Many points in the orthant are ruled out by relations like 59, < b3, b3, which are
implicit in (A.3). Second, the distribution of the b;; is not absolutely contmuous over
its six-dimensional domain, but assigns finite probability to various boundary curved
surfaces of dimensions 5, 4 and 3, corresponding to random R with 5, 4 and 3 sides.
Nevertheless it is not difficult to deduce (23) from (A.5).

Suppose that u* denotes the vertex of R with maximum first coordinate. This
vertex lies, with probability one, at the intersection of two of the six sides of R;, Ry
and R,;. By looking at the vertices defined by all possible pairs of sides it is easily
checked that exactly three possibilities exist for u*, namely,

@ uffuf =cy and  uf/uf = cy,
(ii) uffuf =coy and uffuf =cy, or (A.6)
(iii) uffuf =cy and uf/uF = cg.

The probability density function of u* may be formed by summing the contributions
from the three possibilities (i), (ii), (iii). The contribution from case (i) will be expressed
first in terms of ¢y, c3; and then transformed to u§, uff. Consider the event E that both
{b3; < ¢y <bY; + 0, b9 < cgy <b; +} and that the lines ¢y and cy intersect in a point
which maximizes the first coordinate. The latter condition may be written
{122 1a/vy, €132 V3/vy, Ca3 2> V3/0y, Cg9 2> U5V}, (A.7)
where v = (v;,,,05) is the point at which the lines ¢,; and ¢y, intersect, or
{ere>c3fs eis > o3, cog > 0y 5, Caa 2 3 e (A.8)
Thus, apart from terms of second order and higher in & and &,
Pr(E) = F{(b,+¢)7 1, (b3, + 8) 71, b3, + &, (b3, + &) (b, + &)1,
b3y + 8, (63 + &) (b, + 8)}
—F{(b3;+ )7, (b9) 72, b3, + &, (b3, + &) (3L,
by, (b9, + &)1 b4}
—F{(B3) 7, (631 + 0) 1, b, b, (b, + ), b3, + 6,
(b3~ (B, + )}
+F{(63)71, (3D, b3y, b, (B3, b3, (B3) 1 b3} (A9)
That is, the required case (i) contribution is found in terms of ¢y, ¢, represented by

b3,,b3; by differentiating F with respect to its third and fifth arguments and then
substituting (b3,)~%, (b3, b3, (32, (b3,) 2 b3, in order for the other four arguments.
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Expressing the result in terms of the coordinates u = (u, 4, 43) at which the lines
b3, and bY, intersect, one finds
HgHg uiu u;‘zﬂ u%ba-!—l
which, after multiplying by
O(uy, u)[0(b3,, bY,) = uy uz2uz?
gives the density contribution
Ny ng uptl yfa—lyna—l (A.10)
expressed in terms of uy,u, and of course ug3 = 1—u;—u,. The contributions from
cases (ii) and (iii) may be found similarly to be
ngnguPuflyts  and  myngufrufrugsTl (A.11)
Since
Uty tug =1,
the sum of the three parts is
Ny Mg U Ut e,

or

ny! ny! ng! n!
n! ! (ny— 1! (ng—1)!

where the first term is the probability that u* is anywhere, i.e. that R is not empty,
while the second is the Dirichlet density given in (23).

The density of the point with minimum first coordinate may be found by a similar
argument. The analogue of (A.6) is

uprypel ug,}rl}, (A.12)

@) uFfuf = ¢, and  uffuf = cy,
(ii) uffuf = cg and  uffuf =cy, or (A.13)
(iii) uffuf = c;; and  uF/uF = cy,

and the corresponding three components of density turn out to be
m(m+Duptufuds, nnguptufaups, and nimpufplufaups (A.14)

which sum to

ny ! nylng! (n+1)! =1 s orms

n! {(nl—l)!nzlnsluff et (A-15)
which, like (A.12) is the product of the probability that R is not empty and the
Dirichlet density specified in (23).

The remaining four lines of (23) follow by symmetry. The probability that R is
not empty may be obtained directly by an argument whose gist is that, for any set of
n points in U, there is exactly one way to assign them to three cells of sizes ny,n,, 713
corresponding to observations c;, ¢,, ¢; in such a way that R is not empty. This latter
assertion will not be proved here.





