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Settle the unsettling: an inferential
models perspective
Chuanhai Liu and Ryan Martin

Abstract. Here we demonstrate that the inferential model (IM) framework,
unlike the updating rules that Gong and Meng show to be unreliable, pro-
vides valid and efficient inferences/prediction while not being susceptible to
sure loss. In this sense, the IM framework settles what Gong and Meng char-
acterized as “unsettling.”
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1. INTRODUCTION

Ruobin Gong and Xiao-Li Meng are to be congratulated for their thought-provoking article
shedding light on the paradoxical results that can surface when imprecise or incompletely-
specified models are updated, in light of observed data, using formal rules like Dempster’s
and generalized Bayes. With scientific problems becoming increasingly more complex, the
idea that models describing the phenomena under investigation can be precisely specified is
a fantasy, so Gong and Meng’s insights about the effects of these updating rules are both
important and timely. However, after highlighting a number of cases where the updates are
“unsettling,” they give no recommendations about which updating rule, if any, is reliable. In
some cases, generalized Bayes seems to be the right choice, while in others it’s Dempster’s
rule. Since we can’t rely on any of the updating rules to give satisfactory answers in every
problem, apparently our only recourse is to use “judicious judgment” on a case-by-case basis.

Here we argue that steps toward settling what’s unsettling about these updates can be made
by taking a different perspective on what a solution to the problem entails. Gong and Meng
make their perspective very clear:

Statistical learning is a process through which models perform updates in light of
new information, according to a pre-specified set of operation rules.

What’s missing from this description is that inferences drawn based on the updated models
must be reliable or valid in some specific sense, otherwise, the results are not useful. So the
question is not really about updating beliefs but, rather, how to ensure that the beliefs data sci-
entists construct for inference and prediction achieve the desired reliability properties. From
this perspective, Gong and Meng’s goal is overly ambitious: for valid and efficient inference,
rules that update beliefs are not necessary. A less ambitious goal—but still in line with the
priorities of scientists—is to understand what it takes to construct procedures for allocating
beliefs such that inferences drawn are valid and efficient. The first step is to define what these
terms mean, which we do below in Section 2. We immediately take comfort in the fact that
validity rules out the troubling sure loss phenomenon, and, as we show in Section 3, validity
and efficiency make it possible to compare the solutions based on the different updating rules.
Of course, if validity and efficiency are the goal, then it makes sense to follow a procedure
that is specifically design to achieve these properties. The inferential model (IM) procedure
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introduced in Martin and Liu (2013, 2015a) is just that, and in Section 4 we describe this
framework and show how it generally leads to better solutions than those based on the formal
updating rules in Gong and Meng’s examples. The take-away message is that, by follow-
ing the validity- and efficiency-focused IM approach, the “unsettling” phenomena identified
by Gong and Meng can be avoided. Finally, Section 5 concludes with few topics for future
investigation.

2. VALID AND EFFICIENT PREDICTION

The examples in Gong and Meng (2020) are most conveniently described as prediction
problems, so that’s the perspective we take; all of this can be developed in a similar way for
inference. To set the scene, let X denote the observable data and Y ∈ Y the quantity to be
predicted. Next, let P denote the probability measure that describes the joint distribution of
(X,Y ), at least partially unknown or unspecified. As indicated above, we proceed by quanti-
fying uncertainty about Y , given X = x, via a pair of lower and upper probabilities, denoted
by (πx, πx), defined on Y. We refer to the map x 7→ (πx, πx) as a probabilistic predictor,
and the user’s degree of belief in the truthfulness of an assertion A⊆Y concerning the unob-
served Y , given X = x, are described by the pair (πx(A), πx(A)). Note that the probabilistic
predictor need not be based on updating a precise or imprecise probability model.

Since the goal is for the probabilistic predictor to make reliable predictions, i.e., not wrong
too often, consider the following prediction validity property.

DEFINITION (Cella and Martin 2020). A probabilistic predictor is valid if

(1) P{πX(A)≤ α , Y ∈A} ≤ α, ∀ (A,α,P),

where the probability is with respect to the joint distribution of (X,Y ) determined by P and
“∀” is over all assertions A⊆Y, all levels α ∈ [0,1], and all P.

The intuition is that, at least for small α, the data analyst interprets the event “πX(A)≤ α”
as evidence against the truthfulness of the assertion A about Y , so the joint event “πX(A)≤
α,Y ∈ A” is one where an erroneous prediction is possible. Then (1) requires that the user
be able to control the frequency of such erroneous predictions. Thanks to the familiar duality
between lower and upper probabilities, a similar condition can be formulated in terms of πx
(Cella and Martin, 2020). To see what condition (1) imposes on the probabilistic predictor,
consider the equivalent expression

(2) E{1πX(A)≤αP(Y ∈A |X)} ≤ α, ∀ (A,α,P),

where 1B is the indicator function, E is expectation with respect to the marginal distribution
of X under P, and P(Y ∈A |X) is the conditional probability based on P. Clearly, if πx(A)
equals or dominates the conditional probability P(Y ∈ A | x) or the marginal probability
P(Y ∈A), then (2) holds. This connection between validity and “dominance” leads to several
interesting observations, as discussed in Cella and Martin (2020).

• Sure loss, the most unsettling of the three phenomena studied by Gong and Meng, is
ruled out by validity, that is, validity implies no sure loss.

• If the imprecise model is known to contain the true joint distribution of (X,Y ), like in
Gong and Meng’s examples, then the generalized Bayes solution is valid.

While generalized Bayes provides a strategy to achieve validity, it’s not the only option and
often will not be the best; see below.

Beyond validity, efficiency is important too. Here, we say that between a pair of valid prob-
abilistic predictors, with upper probabilities πx and π′x, the latter is no less efficient than the
former—with respect to a specified assertion A—if π′x(A)≤ πx(A) for all x. The idea is that
large upper probabilities are trivially valid, so the goal is to find the smallest possible upper
probabilities that satisfy (1) or (2). By the duality between lower and upper probabilities,
similar intuition can be developed for πx. We’ll not investigate validity or efficiency formally
here, only in the context of two examples in Section 3.
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3. GONG AND MENG’S EXAMPLES

3.1 Three prisoners

Three prisoners—labeled A, B, and C—are in custody and one will be randomly chosen
to have their sentence pardoned; the other two will be executed. Let Y denote the pardoned
prisoner. Prisoner A ask the guard to tell him which of Prisoners B or C will be executed, and
the guard’s response is the dataX . The goal is to predict Y based on dataX . What do validity
and efficiency add to the discussion?

As Gong and Meng argue, the joint distribution for (X,Y ) is fully determined except
for the conditional probability θ = P(X = B | Y = A). So, for the most relevant assertion,
“Y = A,” the validity condition (2) can be expressed as

(3) 1πB(A)≤α · θ3 + 1πC(A)≤α · 1−θ3 ≤ α.

As presented in Gong and Meng—see, also, Walley (1991, Sec. 6.4.4)—the generalized Bayes
solution returns a probabilistic predictor with

πx(A) = 0 and πx(A) = 1
2 , x ∈ {B, C},

and, for this, it’s easy to check that (3) holds. Dempster’s rule returns a probabilistic predictor
with lower and upper probabilities for “Y = A” equal to 1

2 , for all x. This satisfies (3) at “Y =
A,” but not if we consider the complementary assertion. Indeed, with Dempster’s probabilistic
predictor at the assertion “Y ∈ {B,C},” the validity requirement in (3) boils down to

(4) 1 1

2
≤α · 23 ≤ α.

Taking α = 1
2 leads to a contradiction. This is basically the proof of how sure loss leads to

a violation of validity in general. Similarly, the solution based on the geometric rule, which
also suffers from sure loss in this example, is invalid.

A closer look at (3) provides some insight as to what the “most efficient” solution is. If
πx(A) = 1

3 for each x ∈ {B, C}, then (3) would be satisfied, and it would be more efficient
than the generalized Bayes solution. It would also be valid since lower probability on the
complementary event is 2

3 , as opposed to Dempster’s 1
2 , so it would not get caught by the trap

(4). We’ll see below how this “most efficient” solution can be achieved.

3.2 Boxer, wrestler, and coin

Let Y1 denote the outcome a fair coin flip, with Y2 = 1 and Y1 = 0 corresponding to Heads
and Tails, respectively, and let Y2 denote the outcome of the boxer versus wrestler match,
with Y2 = 1 and Y2 = 0 denoting a boxer and wrestler victory, respectively. The data is X =
|Y1− Y2|, an indicator that Y1 and Y2 take the same value. The goal is to predict the outcome
of the fight (or of the coin flip) based on the observed value of X .

Features of the joint distribution of (X,Y ), with Y = (Y1, Y2), are left unspecified, in
particular, the conditional probabilities

θ1|y1 = P(Y2 = 1 | Y1 = y1), y1 ∈ {0,1}.

This pair θ = (θ1|0, θ1|1) of conditional probabilities can take any value in [0,1]2. That is, the
problem setup doesn’t rule out the possibility that the fight’s outcome is determined by the
coin flip, or that the fight’s outcome is independent of the coin and pre-determined.

As above, let’s start by specializing the validity condition to the present example. That is, if
πx(1) is the probabilistic predictor’s upper probability at the assertion “Y2 = 1,” i.e., a boxer
victory, then (2) requires

1
2

{
1π0(1)≤α · θ1|0 + 1π1(1)≤α · θ1|1

}
≤ α.

Since (θ1|0, θ1|1) can take any value in [0,1]2, there is no way to ensure that validity holds,
except trivially, by taking the upper probabilities identically equal to 1. This is precisely the
generalized Bayes solution in Gong and Meng. Dempster’s rule, again, is invalid.
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For assertions about the coin, the only satisfactory solution based on the methods investi-
gated in Gong and Meng is that based on Dempster’s rule, which ignores the data and uses the
known marginal distribution of Y1. It’s easy to check that the simple probabilistic predictor

πx(“Y1 = 1”) = πx(“Y1 = 1”) = 1
2 , x ∈ {0,1},

is valid and efficient. We’ll see below how this solution can be achieved in the IM context.

4. INFERENTIAL MODELS

4.1 Formulation

The IM formulation starts by specifying an association between what is being modeled,
i.e., data X and quantity of interest Y , the unknown parameter θ ∈ Θ, and an unobservable
auxiliary variable U , whose distribution PU is known, via an equation or rule

(5) (X,Y ) = a(θ,U), U ∼ PU .

The mapping a(θ, ·) implicitly encodes what is known about the joint distribution but explic-
itly depends on the unknown θ. The details depend on the objectives of the analysis: if (X,Y )
is observable and the goal is inference on θ, then we proceed as described in Martin and Liu
(2013, 2015a); if only X is observable and the goal is prediction of Y , then we proceed as in
Martin and Lingham (2016) or Cella and Martin (2020).

For the case of prediction, the idea is as follows. GivenX = x, define a set-valued mapping
u 7→Qx(u), into the space Y×Θ of unknown quantities, as

Qx(u) = {(y,ϑ) ∈Y×Θ : (x, y) = a(ϑ,u)}.

If u satisfies the equation (5) with X = x, then Qx(u) contains the correct prediction. It is
impossible to know for sure which u values satisfy the equation, but it is possible—since the
distribution PU is known—to construct a random set U of u values that we believe is likely
to contain a solution. For such a U , the new random set

Qx(U) =
⋃
u∈U

Qx(u),

obtained by mapping through the association to the space of unknowns, is equally likely to
contain the correct prediction. Then we can define the lower and upper probabilistic predictor
for Y , given X = x,

πx(A) = PU{Qx(U)⊆A×Θ}

πx(A) = PU{Qx(U)∩ (A×Θ) 6= ∅},

where PU is the distribution of the random set U and A is an arbitrary subset of Y. The
appropriate choice of random set U is beyond the scope of this short note, but suffice it to
say that choosing U ∼ PU to achieve the validity condition is relatively straightforward; see
Martin and Liu (2013, 2015a).

The above lower and upper prediction probabilities are belief and plausibility functions,
respectively, defined on the power set of Y, determined by the association, data, and user-
defined random set. Our focus is on validity and efficiency, so we don’t obligate ourselves to
manipulating these functions using the Dempster–Shafer calculus of belief functions (Shafer,
1976; Dempster, 2008). Instead, the focus is on expressing the association between data and
unknowns in terms of an auxiliary variable whose dimension is as small as possible. When
the dimension is lower, the size of the random set needed to achieve validity is smaller, hence
greater efficiency. General strategies for reducing the dimension were presented in Martin and
Liu (2015b,c). The marginalization techniques in particular will be used below.



COMMENT ON GONG AND MENG 5

4.2 Three prisoners

For an IM solution, start with an association

Y = U1

X = f(θ,U1,U2),

where U1 ∼ Unif({A, B, C}) and U2 ∼ Unif(0,1) are independent, and

f(θ,u1, u2) =

{
B if u2 ≤ 1u1=C + θ 1u1=A

C otherwise.

A unique feature of this problem is that the quantity of interest, Y , the identity of the pardoned
prisoner, has a known marginal distribution.

Since θ is not of primary interest, there is an opportunity to potentially reduce the auxiliary
variable dimension before carrying out the IM construction (Martin and Liu, 2015c). Indeed,
it is easy to check that, for every (x, y,u2), there exists a θ such that x= f(θ, y,u2). By the
general IM marginalization theory, this implies the second equation in the association can
be effectively ignored. This means valid (and efficient) prediction of Y should proceed based
on its known marginal distribution. We say the second equation can be “effectively” ignored
because it wouldn’t make sense to predict that, say, Y = B if we observeX = B. So we should
account for this information in some way.

Based on the argument above, the A-step concludes by writing Y = U , where U ∼
Unif({A, B, C}). For the P-step, we introduce a suitable random set U ∼ PU targeting the
unobserved value of U . There are many options, but here we recommend to take U with
support

{
{B, C},{A, B, C}

}
and masses assigned as

PU (U = {B, C}) = 2
3 and PU (U = {A, B, C}) = 1

3 .

With this choice, the probabilistic predictor returned by the IM’s C-step is precisely the one
described at the end of Section 3.1, the one that is valid and most efficient, superior to all
the solutions presented in Gong and Meng (2020) based on updating the imprecise model
according to formal rules.

4.3 Boxer, wrestler, and coin

For an IM solution, define an association as

Y1 = 1U1≤0.5 and Y2 = 1U2≤θ1|1,U1≤0.5 + 1U2≤θ1|0,U1>0.5,

with X = |Y1−Y2| and (U1,U2) a pair of independent Unif(0,1) random variables. Suppose,
for example, that X = 0 is observed, i.e., that the outcomes of the fight and coin flip are
the same; the case with X = 1 is analogous. When X is observed, the outcome of the fight
determines the coin flip, and vice versa, so there’s no need to consider both Y1 and Y2 after
X is observed. We start with the case of Y2, the fight’s outcome. A generic (u1, u2) is pushed
through the assertion, with X = 0, to a set in the (y2, θ)-space:

Q0(u1, u2) =

{
{(1, θ) : u2 ≤ θ1|1} if u1 ≤ 0.5

{(0, θ) : u2 > θ1|0} if u1 > 0.5.

Since we’re only interested in Y2, our assertions about (Y2, θ) take the form {y2}× [0,1]2, for
y2 ∈ {0,1}. We’ll leave out the details here, but it can be shown that, for any suitable random
set U ⊆ [0,1]2, the probabilistic predictor for Y2 returned by the IM is vacuous, i.e., its lower
and upper probabilities are 0 and 1, respectively. As we showed above, this is the only valid
solution.

Finally, if interest was in predicting Y1, the outcome of the coin flip, then we could pro-
ceed very much like in the three prisoners example. That is, the general theory of marginal
inference in Martin and Liu (2015c) allows us to ignore everything except Y1, hence valid and
efficient inference is achieved by using the marginal distribution of Y1 to construct a valid and
efficient probabilistic predictor. This agrees with the solution based on Dempster’s rule and is
more efficient than that based on the generalized Bayes rule.
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5. CONCLUSION

The examples in Gong and Meng’s paper are simultaneously both simple and challenging,
making them ideal cases to test our understanding and to highlight the benefits of our perspec-
tive that focuses specifically on the construction of data-dependent beliefs that are both valid
and efficient. This note is already too long, so we’ll present our IM analysis of Simpson’s
paradox elsewhere.

It’s interesting to see that, at least in cases where the imprecise model is known to be cor-
rectly specified, generalized Bayes is valid. But even in these relatively simple examples, we
find that the IM solution can lead to more efficient prediction. In more complex settings, there
the generalized Bayes solution faces certain challenges, in particular, specifying an impre-
cise model that is both sufficiently flexible and simple enough to compute the lower/upper
envelopes. So there are ample reasons to consider alternative solutions. For example, Cella
and Martin (2020) established a connection between valid IMs and the powerful conformal
prediction machinery (Vovk, Gammerman and Shafer, 2005).

Finally, as we were preparing this discussion piece, it occurred to us that the failure of
Fisher’s fiducial argument and Dempster’s extension thereof to achieve valid inference and
prediction in general could possibly be understood in terms of the contraction, dilation, and/or
sure loss examined by Gong and Meng. This claim, too, will be investigated further and our
results will be presented elsewhere.
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