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Abstract: Factor analysis is a standard method for multivariate analysis. The sam-

pling model in the most popular factor analysis is Gaussian and has thus often been

criticized for its lack of robustness. A simple robust extension of the Gaussian factor

analysis model is obtained by replacing the multivariate Gaussian distribution with

a multivariate t-distribution. We develop computational methods for both maxi-

mum likelihood estimation and Bayesian estimation of the factor analysis model.

The proposed methods include the ECME and PX-EM algorithms for maximum

likelihood estimation and Gibbs sampling methods for Bayesian inference. Numer-

ical examples show that use of multivariate t-distribution improves the robustness

for the parameter estimation in factor analysis.
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1. Introduction

Factor analysis (FA) as a popular statistical method to analyze the underly-

ing relations among multivariate random variables has been extensively used in

such areas as psychology, psychometrics, and educational testing. It has proven

to be a useful tool in big data analysis. Examples of its most recent applica-

tions include Bossé et al. (2007), Banerjee and Gupta (2012), and Dickinson et

al. (2011). It should be noted that the method of principal component analy-

sis, which plays the role of exploratory data analysis for formal factor analysis, is

used routinely in big data analysis (see, e.g., Witten et al. (2010)). The sampling

model in the standard factor analysis is Gaussian and has often been criticized

for its lack of robustness. It is of particular importance to develop simple robust

alternatives for very high dimensional statistical problems.

Technically, the starting point is a linear model in which the observed vari-

ables are expressed as linear functions of a vector of unobservable factors and

random errors. The number of underlying factors is strictly less than the num-
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ber of observed variables. The most commonly used FA model for continuous

response variables, namely the Gaussian FA (GFA) model, can be written as, see

Johnson and Wichern (2001) or Anderson (2003),

yi = µ+ βzi + εi, i = 1, ..., n, (1.1)

where yi is the p-dimensional ith observation, µ is a p-dimensional column vec-

tor, β is the p × q (q < p) factor loading matrix, zi is a q-dimensional vector of

unobserved factor scores, and zi ∼ Nq(0, Iq), where Iq denotes the q × q identity

matrix. The error term εi ∼ Np(0,Ψ), where Ψ = Diag(ψ2
1 , ..., ψ

2
p) is a diag-

onal matrix whose components are called uniquenesses. The parameters to be

estimated are θ = (µ, β,Ψ).

Since the unobserved factor scores and errors in GFA are assumed to be

Gaussian, the usual maximum likelihood (ML) or Bayesian estimation is not

robust to outliers in the data. The classical technique can be thought of as

computing the sample covariance matrix or the sample correlation matrix and

making inference based on the matrix obtained. This approach is not robust to

outliers since they have a large effect on the estimate of the covariance matrix.

There are two main streams of robust estimation methods for FA models: get

robust estimates of the covariance matrix (see Hayashi and Yuan (2003) and

Pison and Rousseeuw (2003)); replace the normal distribution by longer-tailed

distributions to accommodate outliers (see Lee and Press (1998) and Polasek

(2000)).

Lange, Little, and Taylor (1989) proposed replacing the normal distribution

in linear regression models by the multivariate t-distribution for robust estima-

tion. The use of t distribution for robust estimation dates back to Andrews

and Mallows (1974) and Zellner (1976) and has been applied in various fields.

Liu (1996) developed Bayesian robust multivariate linear regression with incom-

plete data, and Liu (2004) studied robust logistic regression. Pinheiro, Liu, and

Wu (2001) worked on robust estimation in mixed-effects models. A Bayesian

treatment of their model can be found in Lin and Lee (2007). The multivariate

t-distribution in factor analysis has not been developed, although Yuan et al.

(2002) mentioned its possible use.

We propose a multivariate-t factor analysis (TFA) model that replaces the

normal assumption with the t-distribution. We show that the robustness is im-
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proved in TFA. We study ML estimation via the ECME (Liu and Rubin (1994))

and PX-EM (Liu et al. (1998)) algorithms. We also consider Bayesian estimation

using the Gibbs sampling method (see Gelfand and Smith (1990)).

The remainder of this paper is arranged as follows. The TFA model is

described in Section 2. Section 3 describes the EM-type algorithms for ML

estimation of the TFA model. Section 4 considers the Bayesian estimation of the

TFA model. Section 5 presents some numerical examples, including a simulation

to examine the robustness of the TFA model and an application of the TFA

model to a US bond indexes data. Different algorithms are compared in terms

of computational efficiency. Conclusions and a few remarks are given in Section

6.

2. A Multivariate t Factor Analysis Model

The GFA model (1.1) can be written as:

[

yi

zi

]

iid
∼ Np+q

([

µ

0

]

,

[

ββ′ + Ψ β

β′ Iq

])

, i = 1, · · · , n, (2.1)

where (y′i, z
′

i)
′ is the ith sample with zi unobservable. For robust estimation of

θ, we replace the multivariate normal distribution in (2.1) with the multivariate

t-distribution:
[

yi

zi

]

iid
∼ tp+q

([

µ

0

]

,

[

ββ′ + Ψ β

β′ Iq

]

, v

)

, i = 1, · · · , n, (2.2)

where v is the degrees of freedom (df). This model can also be expressed in a

hierarchical structure:
[

yi

zi

]

| τi
ind
∼ Np+q

([

µ

0

]

,
1

τi

[

ββ′ + Ψ β

β′ Iq

])

, (2.3)

τi
iid
∼ Gamma

(v

2
,
v

2

)

(2.4)

for i = 1, ..., n, where τi’s are the weights. In (2.4), Gamma(a, b) is the gamma

distribution with density

f(τ) = baτ (a−1)exp(−bτ)/Γ(a), τ > 0, a > 0, b > 0, (2.5)
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where Γ(a) =
∫

∞

0 ta−1exp(−t)dt denotes the gamma function. The TFA model

can then be written as

yi = µ+ βzi + εi, i = 1, ..., n, (2.6)

zi
ind
∼ tq(0, Iq, v), εi

ind
∼ tp(0,Ψ, v), (2.7)

where zi and εi are uncorrelated, but dependent. Thus, the GFA and TFA models

have the structure (2.6), but have different distributions for the factor loading

matrix and error term. When v goes to infinity, the TFA model reduces to the

GFA model.

3. Efficient EM-type Algorithms For ML Estimation

Dempster, Laird, and Rubin (1977) and Rubin and Thayer (1982) use the

EM algorithm for ML estimation of the GFA model, while Liu and Rubin (1998)

use the ECME algorithm for ML estimation of the GFA model. Note that the

missing data in the EM algorithm for ML estimation of GFA consist of the latent

factors zi’s, while the EM algorithm for ML estimation of TFA involves both the

missing weights τi’s and the latent factors zi’s. As a result, the EM algorithm

for TFA can be slow, especially when the number of degrees of freedom ν is to

be estimated. In this section, we consider the ML estimation of the TFA model

using the ECME and PX-EM algorithms.

The ECME algorithm is an extension of ECM (Meng and Rubin (1993)),

which itself is an extension of the EM algorithm. The rate of convergence of

ECME, at least judged by the number of iterations, is often substantially better

than either EM or ECM, yet it retains the stable monotone convergence of EM,

and can be only modestly more difficult to implement.

The ECME algorithm shares the simplicity of the EM and the efficiency of

the Newton-Raphson. Like EM, ECME uses simple updates of parameters that

can be very high dimensional and, thereby, can make it difficult to apply Newton-

Raphson. Although stable, EM can be painfully slow. When Newton-Raphson

is used to update the parameter over a low-dimensional subspace that dominates

the rate of convergence of EM, ECME can have a dramatically improved rate of

convergence.

To accelerate the EM algorithm, we consider the PX-EM algorithm; it shares
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the simplicity and stability of ordinary EM, but has a faster rate of convergence.

Technically, the PX-EM algorithm is simply the EM algorithm applied to a pa-

rameter expanded model with the M-step followed by a reduction step that maps

the estimate of the expanded parameter to the original parameter space.

3.1 The Identifiability Problem

The factor loading matrix β is not fully identifiable, because it is invariant

under transformation of the form β∗ = βQ and z∗ = Q′z for all q× q orthogonal

matrix Q. There are several ways to impose constraints on β to deal with the

indeterminacy. One way is to add the restriction that Γ = βΨ−1β′ is diagonal

(see, e.g ., Anderson (2003)). If the diagonal elements of Γ are ordered and dif-

ferent, β is uniquely determined. Another way is to constrain β to be a block

lower triangular matrix of full rank, with diagonal elements strictly positive (see,

e.g., Lopes and West (2004)). We use the latter when using the information

matrix to estimate the standard errors of ML estimates. When using ECME and

PX-EM, an unrestricted β is assumed, since without fully identifiable parame-

ters EM-type algorithms converge to likelihood-equivalent points subject to an

orthogonal transformation.

3.2 MLE With Unknown Degrees of freedom

Let Y = [y1, y2, ..., yn]′ be the n× p data matrix and Z = [z1, z2, · · · , zn]′ be

the n × q factor score matrix. If Z and τ = {τ1, τ2, · · · , τn} are observed, the

log-likelihood function for the complete data with unknown degrees of freedom

v is

L(µ, β,Ψ, v|Y,Z, τ) = L1(µ, β,Ψ|Y,Z, τ) + L2(v | τ) + constant, (3.1)

where

L1(µ, β,Ψ | Y,Z, τ)

= −
n

2
log|Ψ| −

1

2
tr(Ψ−1

n
∑

i=1

τiyiy
′

i) + µ′Ψ−1
n
∑

i=1

τiyi + tr(Ψ−1β
n
∑

i=1

τiziy
′

i)

−µ′Ψ−1β(

n
∑

i=1

τizi) −
1

2
tr(β′Ψ−1β

n
∑

i=1

τiziz
′

i) −
1

2
µ′Ψ−1µ

n
∑

i=1

τi,
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L2(v | τ) =
vn

2
log

v

2
+
v

2

n
∑

i=1

logτi −
v

2

n
∑

i=1

τi − nlogΓ(
v

2
). (3.2)

The sufficient statistics for L1(µ, β,Ψ|Y, τ) are Sτ =
∑n

i=1 τi, SτY =
∑n

i=1 τiyi,

SτZ =
∑n

i=1 τizi, SτY Y =
∑n

i=1 τiyiy
′

i, SτZY =
∑n

i=1 τiziy
′

i, and SτZZ =
∑n

i=1 τiziz
′

i.

The conditional distribution of yi given weight τi is

yi | τi ∼ Np

(

µ,
1

τi
(ββ′ + Ψ)

)

, (3.3)

Applying Bayes theorem, the conditional distribution of τi given yi is

τi | yi ∼ Gamma

(

v + p

2
,
v + d(yi, µ, ββ

′ + Ψ)

2

)

, (3.4)

where d(yi, µ, ββ
′+Ψ) = (yi−µ)′(ββ′+Ψ)−1(yi−µ) denotes the Mahalanobis dis-

tance between yi and its expectation µ. We then have that E(τi|yi) = v+p
v+d(yi,µ,ββ′+Ψ)

and E(log τi|yi) = ψ
( v+p

2

)

− log
( v+d(yi,µ,ββ′+Ψ)

2

)

, where ψ(s) is the digamma

function ∂Γ(s)/∂s
Γ(s) .

Given Ψ, µ, β, and τ , (yi, zi) is (p+q)-normal. Thus, the conditional distribu-

tion of zi given yi,τi, and the parameter is q-variate normal with mean δ(yi − µ)

and covariance ∆i, where the regression coefficient δ and residual covariance

matrix ∆i are

δ = (
1

τi
β′)[

1

τi
(Ψ + ββ′)]−1 = β′(Ψ + ββ′)−1, (3.5)

∆i =
1

τi
Iq −

1

τi
β′(Ψ + ββ′)−1β =

1

τi
∆. (3.6)

For implementation, we note that the E-step of EM and ECME algorithms

are the same. As well, the EM and ECM are the same if we partition the

parameter as θ = (θ1, θ2), where θ1 = (µ, β,Ψ) and θ2 = v, since θ1 and θ2 are

optimized independently of each other in the M-step.

EM and ECME algorithms:

E step: Let θ(t) = (µ(t), β(t),Ψ(t), v(t)) be the current estimate of θ. Then

τ
(t+1)
i = E(τi | θ

(t), Y ) = v(t)+p

v(t)+d(Yi,µ(t),β(t)β(t)′+Ψ(t))
, δ(t+1) = β(t)′(Ψ(t)+β(t)β(t)′)−1,

and ∆
(t+1)
i = 1

τ
(t+1)
i

Iq −
1

τ
(t+1)
i

β(t)′(Ψ(t) + β(t)β(t)′)−1β(t) = ∆(t+1)

τ
(t+1)
i

.
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These lead to the conditional expectation of the sufficient statistics:

Ŝ(t+1)
τ = E(Sτ | θ(t), Y ) =

n
∑

i=1

τ
(t+1)
i ,

Ŝ
(t+1)
τY = E(SτY | θ(t), Y ) =

n
∑

i=1

τ
(t+1)
i yi,

Ŝ
(t+1)
τZ = E(SτZ | θ(t), Y ) =

n
∑

i=1

τ
(t+1)
i δ(t+1)(yi − µ(t)) = δ(t+1)(Ŝ

(t+1)
τY − Ŝ(t+1)

τ µ(t)),

Ŝ
(t+1)
τY Y = E(SτY Y | θ(t), Y ) =

n
∑

i=1

τ
(t+1)
i yiy

′

i,

Ŝ
(t+1)
τZY = E(SτZY | θ(t), Y ) =

n
∑

i=1

τ
(t+1)
i δ(t+1)(yi − µ(t))y′i = δ(t+1)(Ŝ

(t+1)
τY Y − µ(t)Ŝ′

(t+1)
τY )

Ŝ
(t+1)
τZZ = E(SτZZ | θ(t), Y )

= δ(t+1)(Ŝ
(t+1)
τY Y − Ŝ

(t+1)
τY µ(t)′ − Ŝ′

(t+1)
τY µ(t) + Ŝ(t+1)

τ µ(t)µ(t)′)δ(t+1) ′ + n∆(t+1).

M step: Rewrite the FA model by combining the mean vector and the factor

loading matrix so that

yi = µ+ βzi + εi =⇒ yi =
(

µ β
)

(

1

zi

)

+ εi =⇒ yi = αxi + εi, (3.7)

where α is a p× (q + 1) matrix, and xi is a (q + 1)× 1 column vector. Then the

log-likelihood becomes

−
n

2
log|Ψ| −

1

2
tr(

n
∑

i=1

Ψ−1τi(yi − αxi)(yi − αxi)
′)

= −
n

2
log|Ψ| −

1

2
tr(Ψ−1SτY Y ) + tr(Ψ−1αSτXY ) −

1

2
tr(Ψ−1αSτXXα

′),

where

SτXX =

n
∑

i=1

τixix
′

i =

(

Sτ S′

τZ

SτZ SτZZ

)

, SτXY =

n
∑

i=1

τixiy
′

i =

(

S′

τY

SτZY

)

.

From the results in the E-step and standard regression arguments, the MLE of

µ, β, and Ψ are updated as follows.
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CM step 1: By maximizing the conditional expectation of L1(µ, β,Ψ|Y,Z, τ),

vec(α(t+1)) = (Ψ(t) ⊗ T̂
(t)
τXX) · vec(A), (3.8)

where A = Ŝ
(t)
τXY Ψ(t)−1

and T̂
(t)
τXX is the inverse of Ŝ

(t)
τXX , which is the conditional

expectation of SτXX given (Y, θ(t)); vec(X) denotes the vector formed by stacking

the column vectors of the matrix X, and ⊗ stands for the Kronecker product

operator. The uniquenesses are updated as

Ψ(t+1) =
1

n
Diag

(

E
[

n
∑

i=1

τ
(t+1)
i (yi − α(t+1)xi)(yi − α(t+1)xi)

′|Y, θ(t)
]

)

=
1

n
Diag(Ŝ

(t)
τY Y − 2α(t+1)Ŝ

(t)
τXY + α(t+1)Ŝ

(t)
τXXα

(t+1)′).

CM step 2: Update v(t+1) by maximizing the conditional expectation of

L2(v|τ) over v to obtain

v(t+1) = arg max
v

{

v

2

[

log
v

2
+

n
∑

i=1

(log τ
(t)
i −τ

(t)
i )/n+ψ

(v(t) + p

2

)

−log
(v(t) + p

2

)

]

−log Γ(
v

2
)

}

.

(3.9)

Finding v(t+1) only requires a one-dimensional search and can be done, for exam-

ple, using the Newton-Raphson method or the bisection method. Alternatively, in

this CM step, we can apply ECME by maximizing the actual log-likelihood over v

with (α,Ψ) being fixed at their most recent estimates. Since yi ∼ tp(µ, ββ
′+Ψ, v)

independently for i = 1, · · · , n, we have the following.

CML step 2: Update v(t+1) as

v(t+1) = arg max
v

{ n
∑

i=1

[

log Γ(
v + p

2
) − log Γ(

v

2
) +

v

2
log v −

v + p

2
log(v + di)

]

}

,

(3.10)

where di = d(yi, µ
(t+1), β(t+1)β(t+1)′ + Ψ(t+1)). This step requires only a one-

dimensional optimization.

To implement the PX-EM algorithm, we expand the covariance matrix of zi

to a diagonal matrix R. Then the TFA model becomes

yi|zi, τi ∼ Np(µ+ β∗zi,
1

τi
Ψ), (3.11)
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zi|τi ∼ Np(0,
1

τi
R), τi ∼ Gamma

(v

2
,
v

2

)

, i = 1, . . . , n. (3.12)

Thus, the many-to-one mapping ζ reduces to β = ζ(β∗, R), with a little abuse of

notation.

PX-EM algorithm:

PX-E step: This is the E-step of EM algorithm except for a few changes.

Specifically, the covariance matrix in Mahalanobis distance is β∗Rβ
′

∗
+ Ψ; δ in

(3.5) is Rβ′
∗
(Ψ + β∗Rβ

′

∗
)−1; and ∆ in (3.6) is R−Rβ′

∗
(Ψ + β∗Rβ

′

∗
)−1β∗R.

PX-M step: The computations for µ(t+1) and Ψ(t+1) stay the same as those

in EM. For β(t+1), obtain β
(t+1)
∗ in the same way as that in EM, then update R

as R(t+1) = diag(Ŝ
(t+1)
τZZ )/n and set β(t+1) as β

(t+1)
∗ R(t+1)1/2

.

A numerical comparison of the computational efficiencies of these algorithms

is given in Section 5.3.

4. Bayesian Approach

We study the Bayesian estimation of the TFA model via the Gibbs sampling

method. We first specify prior distributions for the parameters, and calculate the

conditional posterior distributions. Then Gibbs sampling is applied to obtain the

posterior distributions of the parameters.

4.1 Prior Distributions

We assume that the prior distribution for the parameters θ = (µ, β,Ψ, v) has

the form

Pr(θ) = Pr(µ, β,Ψ, v) = Pr(µ)Pr(β|Ψ)Pr(Ψ)Pr(v). (4.1)

This form of prior is usually adopted for highly structured models such as factor

analysis model (see Rowe (2003)). Independent priors are used, partially at

least for simplicity. The particular choice of the prior for β dependent on Ψ

has also been used in the context of linear regression with censored data; see

Hamada and Wu (1995) and Liu and Sun (2000). For specification of Pr(µ),

Pr(β|Ψ), and Pr(Ψ)Pr(v), diffuse but conjugate priors are often preferred. Here

a flat prior is used for the location parameter µ. For the factor loading matrix
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β = [β1, β2, · · · , βq]p×q, we take

βi|Ψ
ind
∼ Np

(

β0,
Ψ

κ

)

, i = 1, · · · , q, (4.2)

where the hyper-parameter κ, is usually taken to be as small as possible.

The uniquenesses are assumed to be iid inverse gamma IG(a/2, b/2) a priori,

with a, b taken to be small. The adoption of inverse gamma prior instead of the

standard noninformative prior can help avoid the Bayesian analogue of the so-

called Heywood cases (see Martin and McDonald (1981)).

For the degrees of freedom v, a brief discussion on how to choose a prior

is given in Liu (1995). A recent critical discussion can be found in Fonseca,

Goldberg, and Migon (2008). In order to obtain a proper posterior of v, the

basic rule is that the prior should satisfy Pr(v) = o(v−1) as v → +∞. We adopt

the flat prior distribution for v−1, Pr(v) ∝ v−2I(v ≥ 1).

4.2 Full Conditionals

The full conditional distributions are derived as follows. Given (2.3), the

conditional posteriors for factor scores are independently normal,

zi|yi, τi, θ ∼ Nq(β
′(ββ′ + Ψ)−1(yi − µ), [Iq − β′(ββ′ + Ψ)−1β]/τi). (4.3)

Similar to (3.4), the conditional posteriors for the weights τis are indepen-

dently gamma,

τi|yi, zi, θ ∼ Gamma(
v + p+ q

2
,
v + d([y′i, z

′

i]
′, [µ′, 0]′,Ψyz)

2
), (4.4)

where Ψyz =

[

ββ′ + Ψ β

β′ Iq

]

.

It is easy to derive that the conditional posterior for µ is multivariate normal

distribution,

µ|Y,Z, τ, β,Ψ, v ∼ Np(µ, V ) (4.5)

where µ =
Pn

i=1 τi(yi−βzi)
Sτ

= SτY −βSτZ

Sτ
and V = Ψ

Sτ
.

Theorem 1 The conditional posterior distribution of vec(β), given Y,Z, τ, µ,Ψ,

and v, is normal with mean (D1 + D2)
−1(D1vec(β̂) + D2β0) and covariance

matrix (D1 + D2)
−1, where D1 = S′

τZZ ⊗ Ψ−1, D2 = n1Iq×q ⊗ Ψ−1, and β̂ =

(
∑n

i=1 τi(yi − µ)z′i)(SτZZ)−1 = (S′

τZY − µS′

τZ)(SτZZ)−1.
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With the joint prior distribution of the uniquenesses

Pr(Ψ) ∝ |Ψ|−
a+2
2 exp{−

1

2
tr(Ψ−1A)}, (4.6)

where A = bIq, the posterior distribution of Ψ conditional on the observations is

Pr(Ψ|Y,Z, τ, µ, β, v) ∝ Pr(Y,Z, τ |θ)Pr(θ)

∝ Pr(Y |Z, τ, µ, β,Ψ)Pr(β|Ψ)Pr(Ψ)

∝ |Ψ|−
a+n+q+2

2 exp{−
1

2
tr(Ψ−1(A+B + C))},

where B =
∑n

i=1 τi(yi−µ−βzi)(yi−µ−βzi)
′ and C = n1

∑q
i=1(βi−β0)(βi−β0)

′.

Let H = A+B+C with the diagonal elements (h2
1, · · · , h

2
p), and let d = a+n+q.

Then

ψ−2
i

ind
∼

χ2
d

h2
i

(i = 1, · · · , p), (4.7)

which are independent inverse gamma distributions.

For the degrees of freedom v, the fact that τi|v ∼ Gamma(v
2 ,

v
2 ) leads to the

conditional posterior

Pr(v|Y,Z, τ, µ, β,Ψ) ∝ Pr(Y,Z, τ |θ)Pr(θ)

∝ exp{log(Pr(v)) + nv log
v

2
− n log Γ(

v

2
) +

v

2

n
∑

i=1

(log τi − τi)}I(v > 1).

The implementation of Gibbs sampling is straightforward. All the unknown

quantities except v can be drawn directly according to their conditional distribu-

tions. For drawing the degree of freedom v, a Metropolis sampler with truncated

normal proposal performs well, where the standard deviation of the normal de-

viate is 0.1. The (t+ 1)-th iteration of Gibbs sampler is as follows

Step 1: Draw z
(t+1)
i independently from f(zi|yi, τ

(t)
i , θ(t)) for i = 1, . . . , n;

Step 2: Draw τ
(t+1)
i independently from f(τi|yi, z

(t+1)
i , θ(t)), for i = 1, . . . , n;

Step 3: Draw µ(t+1) from f(µ|Y,Z(t+1), τ (t+1), β(t),Ψ(t), v(t));

Step 4: Draw β(t+1) from f(β|Y,Z(t+1), τ (t+1), µ(t+1),Ψ(t), v(t));

Step 5: Draw ψ2
j
(t+1)

independently from f(ψ2
j |Y,Z

(t+1), τ (t+1), µ(t+1), β(t+1), v(t));

Step 6: Draw v(t+1) from f(v|Y,Z(t+1), τ (t+1), µ(t+1), β(t+1),Ψ(t+1)),

where f(·|·) denotes the corresponding conditional posterior distribution.

4.3 Partially Collapsed Gibbs Sampler
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The ordinary Gibbs sampler is straightforward given that the corresponding

conditional posterior distribution is available at each step. However, it can have

slow convergence given the complex structured model. As a Bayesian counterpart

of the ECME algorithm, we consider a version of the so-called partially collapsed

Gibbs (PCG) sampler proposed recently by van Dyk and Park (2008). The idea

of PCG is to replace some steps of the ordinary Gibbs sampler by drawing the

components from the conditional distributions under some marginal distributions

instead of that under the joint posterior distribution. Such changes often generate

samples of a set of incompatible conditional distributions, but van Dyk and Park

(2008) design a recipe through marginalization, permutation, and trimming of

the modified sampler to achieve correct and faster convergence.

As an analogue to the ECME algorithm, we replace the draw of the degree-

of-freedom v in Step 6 of the ordinary Gibbs sampler with a draw (together with

Z and τ) from the posterior distribution conditioning only on Y and the other

parameters

Modified-Step 6: Draw (Z, τ, v) from f(Z, τ, v|Y, µ, β,Ψ).

We also replace Step 2 of the ordinary Gibbs sampler by not conditioning

on Z

Modified-Step 2: Draw (Z, τ) from f(Z, τ |Y, θ, v).

Note that this creates the draw of Z and τ in the first step of the ordinary

Gibbs sampler because only the most recent values are conditioned upon for

the next iteration. By moving Step 1 and the modified-Step 2 to the end and

trimming the intermediate quantities Z and τ produced in the modified Step 2

and modified Step 6, and combining (blocking) the last three steps together, we

obtain the following.

Step 1: Draw µ(t+1) from f(µ|Y,Z(t), τ (t), β(t),Ψ(t), v(t));

Step 2: Draw β(t+1) from f(β|Y,Z(t), τ (t), µ(t+1),Ψ(t), v(t));

Step 3: Draw ψ2
j
(t+1)

independently from f(ψ2
j |Y,Z

(t), τ (t), µ(t+1), β(t+1), v(t));

Step 4: Draw v(t+1) from f(v|Y, µ(t+1), β(t+1),Ψ(t+1)),

Draw τ
(t+1)
i independently from f(τi|yi, θ

(t+1)), for i = 1, . . . , n;

Draw z
(t+1)
i independently from f(zi|yi, τ

(t+1)
i , θ(t+1)) for i = 1, . . . , n.

Note that Step 4 of PCG is nothing but the joint distribution of (Z, τ, v)

conditioning on the other quantities, leading to a blocked sampler. Similar to



ROBUST FACTOR ANALYSIS 13

the ordinary Gibbs sampler, all the quantities except v can be drawn easily, while

the degrees of freedom v is updated via a Metropolis sampler.

5. Numerical Examples

In this section, we use two numerical examples to show the improvement

of robustness in TFA comparing with GFA. Computational efficiencies for MLE

and Gibbs sampling are also discussed.

5.1 A Simulation Study

We generated the data Y from

(1 − π)N(0, ββ′ + Ψ) + πN(0, w(ββ′ + Ψ))

for different combinations of π and f . We set the parameters as Ψ = 0.1 ∗ I5 and

β =

[

2 0 2 0 0

0 3 0 4 5

]

′

.

All eight combinations of π = 0.05, 0.1, 0.15, 0.2 and w = 2, 5 were used in the

simulation study. The w = 2 case corresponds to a slight contamination pattern,

while w = 5 illustrates a more distant contamination pattern. A total of 100

Monte Carlo replications were obtained for each combination. The sample size

in each replication was n = 300. The ML estimates via ECME were obtained for

GFA and TFA models.

We compare the estimated factor loadings with their respective true values

by evaluating

r =

100
∑

i=1

(θ̂T i − θ0)
2/

100
∑

i=1

(θ̂Gi − θ0)
2, (5.1)

where θ0 is the true value of the parameter of interest, and θ̂T and θ̂G are the

ML estimates under TFA and GFA models, respectively. A similar method of

comparison can be found in Pinheiro et al. (2001). Figure 5.1 presents the

simulation results for some selected factor loadings. There are substantial gains

in terms of accuracy under the distant contamination pattern (w = 5) with

respect to the slight contamination pattern (w = 2). As the chance of outliers

increases, the TFA is favorable in the sense that the estimated factor loadings are
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closer to the true value under both contamination patterns. This demonstrates

the robustness of the TFA model.

π
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Figure 5.1: The ratio of empirical mean square error under TFA model with respect to

GFA model for selected factor loadings.

5.2 US Bond Indexes Data Set

We considered monthly log-returns of US bond indexes with maturities in 30

years, 20 years, 10 years, 5 years, and 1 year. The data consist of 696 observations

from Jan. 1942 to Dec. 1999. It is well-known that financial data are serially

correlated. Tsay (2005) fitted the GFA model to the same data and argued that
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the original data could be used because the correlation matrix changed little after

fitting a multivariate ARMA model. To be comparable with Tsay’s results, we

adjusted the data by dividing each component by its sample standard deviation.

Figure 5.2 (a) shows the Q-Q normal plots of the five US bond indexes in terms

of log-return. Heavy tails are clearly present in all five variables, and the p-

value of the Shapiro-Wilk test is close to zero for each index. As a result, the

normal distribution is not appropriate for this data set. Instead, we used the

t-distribution to capture the pattern of heavy tails. Figure 5.2 (b) shows the Q-

Q Student-t plots using the estimated degrees of freedom, evidently supporting

the use of the t-distribution. In Section 4.2.2, we compare the ML estimates and

Bayesian estimates based on the GFA and TFA models.
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Figure 5.2: (a) Q-Q normal plots for log-return of each US-bond index, (b) Q-Q Student-t

plots with degrees of freedom 3.5 for log-return of each US-bond index.

5.2.1 Application to Analyzing US Bond Indexes Data

We applied our method for robust factor analysis to the US bond indexes data

set using Model N5 where the observations are assumed to follow the Gaussian

distribution and Model t5 where the observations are assumed to follow the t-

distribution. We found that simple exploratory data analysis supports the use of
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Table 5.1: Test results of model N5 and t5 with different number of factors, where NA

means the degrees-of-freedom is calculated as negative.

Model # of factors 1 2 3 4

max log-likelihood -2509.16 -2213.65 -2209.66 2209.64

N5 Likelihood Ratio 599.03(df=5) 8.02 (df=1) 0.04(df=NA) 0.04(df=NA)

AIC 5048.32 4465.32 4463.33 4467.33

BIC 5116.50 4551.68 4563.32 4576.42

max log-likelihood -1842.05 -1605.97 -1601.62 -1601.62

t5 Likelihood Ratio 240.42(df=5) 8.78 (df=1) 0.02(df=NA) 0.02(df=NA)

AIC 3716.10 3251.94 3249.24 3253.24

BIC 3788.83 3342.85 3353.78 3362.87

distribution having heavier tails than the normal distribution, and that the use

of Model t5 results in a substantially improved fit to the observed data.

The likelihood ratio test can be used to help select the number of factors.

The null hypothesis that the current factor analysis model has the covariance

matrix structure Σ = ββ′ + Ψ is tested against the alternative in which the co-

variance matrix structure is unconstrained. Under some regularity conditions,

the likelihood ratio test statistic has chi-squared distribution asymptotically with

degree-of-freedom max{[(p−q)2−(p+q)]/2, 0}. To assure the degrees-of-freedom

is a positive integer, there is an upper bound for the number of factors (see Lopes

and West (2004)). Usually, one starts with a small number of factors, say q = 1,

testing goodness-of-fit until a nonsignificant result occurs, or the degree of free-

dom becomes non-positive. We refer to Jöreskog (1967) and Anderson (2003) for

more details about this procedure. This procedure was criticized by Krzanowski

and Marriott (1995) because no adjustment is made to the significance level to

allow for its sequential nature. AIC and BIC are in general considered to be

better by taking into account the trade-off between goodness-of-fit and number

of parameters. With the given output, AIC preferred 3 factors under both nor-

mal and t assumptions, while BIC preferred 2 factors in both cases. Considering

model parsimony, we chose to focus on 2 factor models. Tasy (2005) also fit the

2 factor GFA model.

5.2.2 Comparing the Gaussian and the Multivariate t MLEs
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To run ECME, we chose the initial values µ(0) the sample mean of observed

data, β(0) a p×q matrix with all the components 1, ψ(0) the p×p identity matrix

Ip, and v(0) = 20. The convergence criterion was that the difference of the log-

likelihood between two iterations was less than 10−4. For identifiability of the

factor loading β, the estimate of β was rotated in such a way that the upper-

right triangle was 0 and the diagonal elements positive. This rotation makes the

comparison meaningful.

The ML estimates of two FA models are shown in Tables 5.2, 5.3, and 5.4.

The estimate of the degrees of freedom of the model t5 is 2.275 with standard

deviation 0.1661. The associated variance-covariance matrix was computed via

numerical differentiation. The mean vector shifts to left in the model t5 because

the data present a slight skewness to the left that cannot be accounted for by us-

ing symmetric distributions such as normal and t distributions. Table 5.3 shows

a dramatic difference between ML estimates of the factor loading matrix under

the two models. Although the estimated factor loading matrices are significantly

different, the components in the estimated matrices have a similar pattern. The

factor loadings for the first factor are roughly proportional to the time to bond

maturity, whereas the factor loadings of the second factor are inversely propor-

tional to the time to bond maturity.

Lange et al. (1989) considered diagnostics to check model assumptions. For

the GFA model, a natural measure is the Mahalanobis-like distance δ2i = (yi −

µ̂i)
′(β̂β̂′ + Ψ̂)−1(yi − µ̂i), which has an asymptotic chi-squared distribution with

degrees of freedom p. The normality assumption can be checked by trans-

forming each δ2i to an asymptotically standard normal deviate using the well-

known cube-root of Wilson and Hilferty, or a fourth-root transformation. Here,

we use the fourth-root transformation (Hawkins and Wixley (1986)) because

it performs well when the degrees-of-freedom p is small. For the TFA model,

d2
i /p has an asymptotic F -distribution with degrees of freedom p and v, where

d2
i = (yi − µ̂i)

′(β̂β̂′ + Ψ̂)−1(yi − µ̂i). The normality approximation is available

by first transforming the numerator and denominator chi-squared deviates in the

F-statistic using fourth-root transformation into normal-like deviates, then ap-

plying Geary’s (1930) approximation to the ratio of normal deviates; the explicit

formula is given by Little (1990). Figure 5.3 shows the normal quantile-quantile
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Table 5.2: Estimation of mean and their standard deviation.
N5 0.1719 0.1865 0.2273 0.3301 0.8298

S.d. 3.808e-2 3.808e-2 3.808e-2 3.809e-2 3.807e-2

t5 0.1135 0.1269 0.1500 0.2234 0.5706

S.d. 2.490e-2 2.439e-2 2.464e-2 2.353e-2 2.761e-2

Table 5.3: Estimation of the factor loading matrix and their standard deviation.

N5 S.d. t5 S.d.

0.9979 0 2.742e-2 0 0.5839 0 2.456e-2 0

0.9893 0.0291 2.764e-2 3.072e-2 0.5731 0.0107 2.387e-2 2.365e-2

0.9285 0.2034 1.064e-2 2.101e-2 0.5432 0.1165 0.570e-2 1.524e-2

0.8636 0.5158 2.915e-2 3.435e-2 0.4645 0.2992 2.414e-2 2.572e-2

0.6434 0.5244 1.552e-2 2.960e-2 0.3083 0.3308 1.046e-2 2.385e-2

Table 5.4: Estimation of the covariance matrix of the error terms and their standard

deviation.
N5 0.0135 0.0299 0.1066 0.0006 0.3192

S.d. 4.478e-3 4.229e-3 6.152e-3 1.541e-2 2.215e-2

t5 0.0074 0.0044 0.0303 0.0002 0.1463

S.d. 3.963e-3 3.422e-3 7.059e-3 1.709e-2 3.413e-2

plots of the two distances under normal and t distributions, respectively. The

left panel suggests that the GFA model is inadequate. The plot for the TFA

model, with most of the points lying close to the reference line, is much better

than that for the normal model.

5.2.3 Comparing the Results with those Obtained from Gibbs Sam-

pling

Bayesian methods with the incorporation of proper prior information can

eliminate the problem of indeterminacy. For example, the unimodality and the

symmetry of the prior make the posterior distribution of β unimodal. To compare

the results with those obtained via ECME, we obtain an identifiable pattern by

converting the factor loading into a lower block triangle matrix in each iteration.

We followed Gelman and Rubin (1992) in monitoring the convergence of

sampling. Starting from three initial points, we ran three independent chains

simultaneously and stopped (at 3̃0000 iterations) when all the parameters had
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Figure 5.3: Normal Quantile-Quantile (QQ) plots for the GFA model (left), and the TFA

model (right).

R close to 1. To be conservative, we used the second half of the samples for

inference. The estimated values are listed in Table 5.5, 5.6 and 5.7, consistent

with the ML results. The estimation of the degrees of freedom of Model t5 is

2.3931 with standard deviation 0.1954.

5.3 Comparison of computational efficiency

5.3.1 Comparison of EM, ECME and PX-EM

We report some numerical results on computational efficiency of the three

algorithms. Performance depends on such factors as data structure, initial value,

and missing information. Meng and van Dyk (1997) reported that, in a multivariate-

t model, the performance of ECME was better than that of the multi-cycle ECM

in one dataset in term of the number of iterations, but similar in the other, given

that the initial values were the same. However, the CPU time of ECME was at

least 2 times of that of the multi-cycle ECM.

For our bond index dataset, we considered different initial values. Numer-

ical experiments showed that the PX-EM generally performed best in terms of

number of iterations and CPU time, while ECME was slightly better than EM
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Table 5.5: Estimation of mean vector and its standard deviation(in parenthesis).
H

H
H

H
H

H
model

µ̂
µ̂1 µ̂2 µ̂3 µ̂4 µ̂5

N5 0.1637 0.1781 0.2189 0.3212 0.8225

(4.079e-2) (4.077e-2) (4.056e-2) (4.038e-2) (3.963e-2)

t5 0.1115 0.1253 0.14820 0.2231 0.5752

(2.573e-2) (2.512e-2) (2.517e-2) (2.335e-2) (2.784e-2)

Table 5.6: Estimation of the factor loading matrix and its standard deviation(in paren-

thesis).
H

H
H

H
H

H
model

β̂
β̂11 β̂21 β̂31 β̂41 β̂51

N5 1.0012 0.9886 0.9273 0.8610 0.6411

(3.013e-2) (3.148e-2) (3.240e-2) (3.356e-2) (3.618e-2)

t5 0.5953 0.5833 0.5524 0.4711 0.3110

(2.463e-2) (2.443e-2) (2.443e-2) (2.394e-2) (2.665-2)
H

H
H

H
H

H
model

β̂
- β̂22 β̂32 β̂42 β̂52

N5 0 0.0359 0.2091 0.5080 0.5311

- (1.488e-2) (2.566e-2) (4.757e-2) (5.437e-2)

t5 0 0.0133 0.1184 0.2823 0.3365

- (0.576e-2) (2.888e-2) (5.920e-2) (7.637e-2)

Table 5.7: Estimation of the vector of uniquenesses and its standard deviation(in paren-

thesis).
P

P
P

P
P

P
P

PP
model

Ψ̂
ψ̂2

1
ψ̂2

2
ψ̂2

3
ψ̂2

4
ψ̂2

5

N5 0.0098 0.0335 0.1080 0.0123 0.3163

(1.307e-3) (1.470e-3) (1.353e-3) (4.292e-2) (5.495e-2)

t5 0.0072 0.0051 0.0328 0.0149 0.1533

(1.786e-3) (1.125e-3) (1.127e-3) (4.120e-2) (6.834e-2)
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Table 5.8: Comparison of effective sample size (ESS) and effective sample size per second

(ESS/s) between ordinary Gibbs sampler and PCG sampler

Gibbs PCG Gibbs PCG

Par. ESS ESS/s ESS ESS/s Par. ESS ESS/s ESS ESS/s

µ1 37 0.06 69 0.13 β11 56 0.09 38 0.07

µ2 37 0.06 63 0.12 β21 50 0.08 35 0.07

µ3 25 0.04 56 0.11 β31 34 0.06 27 0.05

µ4 24 0.04 67 0.12 β41 37 0.06 56 0.11

µ5 85 0.14 148 0.28 β51 116 0.20 139 0.26

ψ2

1
343 0.58 244 0.46 β22 914 1.55 576 1.09

ψ2

2 263 0.45 188 0.35 β32 2810 4.76 2111 4.0

ψ2

3
583 0.99 385 0.73 β42 2781 4.71 2543 4.82

ψ2
4 13 0.02 24 0.05 β52 3312 5.61 2671 5.06

ψ2

5
503 0.85 567 1.07 v 621 1.05 276 0.52

in terms of number of iterations but slower than EM in running time. For ex-

ample, when the initial values were set to the results from GFA using R function

factanal, the mean was taken to be the sample mean µ, and the degrees-of-

freedom v was set to be 100, the number of iterations were 2119, 2113, 1924

for EM, ECME and PX-EM, respectively, given the the absolute tolerance of

log-likelihood to be 1e-4. The CPU times were 18.34s, 24.66s, and 17.11s, re-

spectively, on a laptop with Intel Core Duo Processor T2350 and R version 2.10.

5.3.2 Comparison of the ordinary Gibbs sampler and the PCG sampler

We ran the two samplers 30000 iterations and used the second half of the samples

to compare the effective sample size (ESS) and effective sample size per second.

Table 5.8 shows the ESS and ESS per second for all the parameters. The two

samplers performed similarly in terms of computational efficiency. In terms of

running time, the PCG sampler was slightly faster.

6. Conclusion

A most recent EM-type algorithm, the dynamic ‘expectation-conditional

maximization either’ (DECME) algorithm (He and Liu, (2012)), appears to ef-

ficient compared to existing EM-type algorithms. It would be interesting to in-

vestigate its performance for TFA and to develop its Markov chain Monte Carlo
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versions for Bayesian inference with the TFA models.

As in the case of the dataset, the TFA model cannot properly account for

the skewness of the sample. The skew-elliptical distribution (Genton (2004))

could be considered. Even in the case of symmetry, the TFA model could be

generalized by allowing different numbers of degrees of freedom for each variable.

Appendix: The Proof of Theorem 1

Let vec(β) = [β′1, β
′

2, · · · , β
′

q]
′. Then

vec(β)|Ψ ∼ Np×q

(

β0, Ip×q ⊗
Ψ

n1

)

, (6.1)

where β0 = [β′0, β
′

0, · · · , β
′

0]
′. The posterior distribution of β conditional on the

observations is of the form

Pr(β|Y,Z, τ) ∝ Pr(Y,Z, τ |θ)Pr(θ)

∝ Pr(Y |Z, τ, µ, β,Ψ)Pr(β|Ψ).

We rewrite Pr(Y |Z, τ, µ, β,Ψ) as

Pr(Y |Z, τ, µ, β,Ψ) ∝ |Ψ|−
n
2 exp{−

1

2
trΨ−1

n
∑

i=1

τi(yi − µ− βzi)(yi − µ− βzi)
′}

. With

R =
n
∑

i=1

τi(yi − µ− βzi)(yi − µ− βzi)
′, (6.2)

S =

n
∑

i=1

τi(yi − µ− β̂zi)(yi − µ− β̂zi)
′, (6.3)

then

R = S +

n
∑

i=1

τi(βzi − β̂zi)(βzi − β̂zi)
′.

trΨ−1
n
∑

i=1

τi(βzi − β̂zi)(βzi − β̂zi)
′

= trΨ−1(β − β̂)SτZZ(β − β̂)′

= vec(β − β̂)′(S′

τZZ ⊗ Ψ−1)vec(β − β̂),
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Pr(β|Y,Z, τ) ∝ Pr(Y,Z, τ |θ)Pr(θ)

∝ Pr(Y |Z, τ, µ, β,Ψ)Pr(β|Ψ)

∝ exp{−
1

2
vec(β − β̂)′(S′

τZZ ⊗ Ψ−1)vec(β − β̂)}

· exp{−
1

2
(vec(β) − β0)

′(n1Iq×q ⊗ Ψ−1)(vec(β) − β0)}

Let D1 = S′

τZZ ⊗ Ψ−1 and D2 = n1Iq×q ⊗ Ψ−1. Then the mean of vec(β) is

(D1 +D2)
−1(D1vec(β̂) +D2β0) and the covariance is (D1 +D2)

−1.
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