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Abstract. A new method for quasi-Newton minimization outperforms BFGS by combining
least-change updates of the Hessian with step sizes estimated from a Wishart model of uncertainty.
The Hessian update is in the Broyden family but uses a negative parameter, outside the convex range,
that is usually regarded as the safe zone for Broyden updates. Although full Newton steps based on
this update tend to be too long, excellent performance is obtained with shorter steps estimated from
the Wishart model. In numerical comparisons to BFGS the new statistical quasi-Newton (SQN)
algorithm typically converges with about 25% fewer iterations, functions, and gradient evaluations
on the top 1/3 hardest unconstrained problems in the CUTE library. Typical improvement on the
1/3 easiest problems is about 5%. The framework used to derive SQN provides a simple way to
understand differences among various Broyden updates such as BFGS and DFP and shows that
these methods do not preserve accuracy of the Hessian, in a certain sense, while the new method
does. In fact, BFGS, DFP, and all other updates with nonnegative Broyden parameters tend to
inflate Hessian estimates, and this accounts for their observed propensity to correct eigenvalues that
are too small more readily than eigenvalues that are too large. Numerical results on three new test
functions validate these conclusions.
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1. Introduction. Quasi-Newton methods for unconstrained optimization are
important computational tools in many scientific fields and are a standard subject
in textbooks on computation. The BFGS method, proposed individually in [6], [14],
[20], and [30], is implemented in most optimization software and is widely recognized
as efficient. Generalizations of BFGS are available for large problems with memory
limitations, for problems with bound constraints, and for a parallel computing envi-
ronment. In theoretical investigations BFGS is known as a special case of the Broyden
class [5]. Some Broyden updates with negative Broyden parameters have been found
to produce faster convergence than BFGS updates [31], [8] but, for various reasons,
have not been widely adopted. Indeed, Byrd et. al. conclude that “practical al-
gorithms that preserve the excellent properties of the BFGS method are difficult to
design.” Nocedal and Wright [29] state that “the BFGS formula. . . is presently consid-
ered to be the most effective of all quasi-Newton updating formulae.” In our opinion,
BFGS remains the most popular front-runner because of two important unanswered
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questions: What is the “best” negative Broyden parameter? and What initial step
sizes should be used with negative Broyden parameters? This paper answers these
questions by solving a least-change problem to approximate Newton directions and
by estimating step sizes through a statistical model of Hessian uncertainty. We call
the new algorithm statistical quasi-Newton (SQN).

1.1. Quasi-Newton methods. Quasi-Newton methods solve the unconstrained
optimization problem

min
x

f(x), x ∈ Rn,

in which both the objective function f(x) and its gradient g(x) ≡ ∇f(x) are easy
to compute but Newton’s method is not applicable because direct evaluation of the
Hessian matrix G(x) ≡ ∇2f(x) is practically infeasible. Quasi-Newton methods build
up an approximate Hessian matrix using successive gradient evaluations. The general
method iterates between a minimization (M-) step consisting of a one-dimensional
search for a good point along an approximate Newton direction and an estimation
(E-) step consisting of an update to the Hessian estimate. A more specific definition
follows.

Generic quasi-Newton algorithm. Select a starting point x0 ∈ Rn and a symmet-
ric positive definite estimate, B0, of the Hessian matrix G(x0). Evaluate g0 = g(x0)
and iterate over k = 0, 1, 2, . . . the following two steps.
M-Step. Search in the direction −B−1

k gk for a step size sk > 0 to obtain a new
evaluation point and gradient,

xk+1 = xk − skB
−1
k gk, gk+1 = g(xk+1),

that satisfy the Wolfe conditions for sufficient decrease of the function and
for curvature (see (2) and (3) below).

E-Step. Estimate the Hessian matrix at xk+1 using the quantities Bk, xk, xk+1, gk,
and gk+1. The estimate, Bk+1, must be symmetric and positive definite and
must satisfy the quasi-Newton condition

(1) Bk+1δk = γk,

where

δk ≡ xk+1 − xk and γk ≡ gk+1 − gk.

Condition (1) requires the vector of estimated second derivatives in the current step
direction, Bk+1δk/sk, to agree with the corresponding numerical second derivatives
γk/sk. Various principles have been used to derive Hessian update formulae, but the
general goal has been to minimize the change from Bk to Bk+1 in some sense. This
paper derives an update that minimizes change in a canonical sense and provides a
model-based estimate for the step size sk.

The Wolfe conditions referenced in the M-step are two standard requirements to
ensure that sufficient progress is made toward the optimum even when the line search
is not required to find the exact minimum in the given search direction. The Wolfe
sufficient decrease condition,

(2) f(xk+1) ≤ f(xk) − ρ1skg
′
kB

−1
k gk (ρ1 ∈ (0, 1), say ρ1 = 10−4),
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requires a reduction in f(x) that is at least a fraction ρ1 of that predicted by the
directional derivative −gkB

−1
k gk. The Wolfe strong curvature condition,

(3) |g′k+1(B
−1
k gk)| ≤ ρ2g

′
k(B

−1
k gk) (ρ2 ∈ (ρ1, 1), say ρ2 = 0.9),

requires at least a proportional decrease in the magnitude of the derivative in the
search direction. Some algorithms impose a weaker curvature condition in which the
absolute value is removed from the left-hand side of (3). Nocedal and Wright [29]
discuss the importance of the Wolfe conditions in ensuring that sufficient progress is
made on each iteration.

The best-known class of Hessian estimates used in the E-step are the rank-two
Broyden updates [5]:

(4) Bk+1 = Bk − Bkδkδ
′
kBk

δ′kBkδk
+

γkγ
′
k

δ′kγk
+ ckωkω

′
k,

where

(5) ωk ≡ γk
δ′kγk

− Bkδk
δ′kBkδk

and ck is a scalar parameter to be specified. The usual parameterization takes ck =
φk (δ′kBkδk), where φk is known as the Broyden parameter. However, our exposition
is more natural with the parameterization

(6) ck = (λk − 1) (δ′kγk) ,

where the parameter λk is shown in section 3 to regulate the inflation of Bk+1 relative
to Bk. BFGS is the Broyden update with λk = 1 (i.e., φk = ck = 0).

There is a critical value λc
k such that Bk+1 is positive definite for any λk > λc

k ≡
1 − r−1

k , where

(7) rk ≡ γ′
kB

−1
k γk

γ′
kδk

− δ′kγk
δ′kBkδk

.

It can be shown that rk ≥ 0 by making use of the curvature condition (3) and the
Cauchy–Schwarz inequality. If rk = 0, then λc

k is taken to be −∞.

1.2. Preview of SQN. The SQN method is remarkably simple and effective.
This section briefly defines SQN and demonstrates its superiority to BFGS. Deriva-
tions and additional experimental results are provided in the following sections.

SQN algorithm. Follow the generic quasi-Newton algorithm with the following
additional specifications. Initialize ŝ0 = 1.
M-Step. Begin the line search from an initial evaluation point xk − ŝkB

−1
k gk.

E-Step. Estimate the Hessian using a Broyden update (4)–(6) with parameter

(8) λk = max{0, 1 − (1 − ε)r−1
k },

where ε is a small positive constant (e.g., ε = 10−6) and if rk = 0, the max is
taken to be 0. Estimate the next step size as

(9) ŝk+1 =
g′k+1B

−1
k+1gk+1

g′k+1B
−1
k+1gk+1 + (1 − λk)(δ′kγk)(g

′
k+1B

−1
k+1ωk)2

< 1.
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Fig. 1. Improvement in SQN efficiency with problem difficulty for iterations, function evalua-
tions, and gradient evaluations. Each point represents performance of SQN and BFGS on a given
problem from the standard starting point.

All the quantities needed to calculate ŝk+1 are readily available from the preceding
M-step with no extra function or gradient evaluations required. Using ε > 0 guaran-
tees that Bk+1 remains positive definite. The Broyden parameter corresponding to λk

is φk = (λk − 1) (δ′kγk) / (δ′kBkδk), and this is negative because (3) implies δ′kγk > 0.
Equation (9) is written in terms of the inverse Hessian estimate because Broyden
updates are typically implemented on the inverse scale using the well-known dual
form of (4). Similarly, Bkδk = −skgk can be substituted into (7) for computational
efficiency. See, for example, [29].

The shortened initial step size, ŝk, is crucial to improving the performance of
Broyden updates with negative Broyden parameters. Zhang and Tewarson [31] use
ŝ = 1 and comment that their negative Broyden algorithm improves iteration counts
but that “less or no savings are achieved on the number of function evaluations”
because initial steps are often too long to provide a sufficient decrease in the function
value. SQN corrects this problem by effectively estimating the optimal step size for
the given search direction.

Figure 1 shows that SQN typically converges with substantially fewer iterations
and function evaluations than BFGS on 248 unconstrained optimization problems in
the CUTE [3] suite. The left panel plots SQN iterations as a percent of BFGS it-
erations against BFGS iterations. The right panel shows the same information for
function evaluations. SQN becomes more efficient relative to BFGS on the more diffi-
cult problems, as additional iterations offer additional opportunities for improvement.
Performance on easy problems with few iterations is often dominated by the first iter-
ation in which a poor choice of B0 produces a poor search vector for any quasi-Newton
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Table 1

Median percent improvement of SQN relative to BFGS by difficulty of problem.

Easy Medium Hard
Iterations 8 14 26

Function evaluations 4 9 23

algorithm. In harder problems these start-up effects wash out so that the advantage
of SQN over BFGS becomes more apparent. The trend curves in Figure 1 highlight
this tendency. The smooth curves are robust local regressions [11] that follow the
data without being unduly influenced by the low outlying points that would tend to
make the trends even stronger.

Table 1 summarizes the improvement by splitting the test problems into three
equal groups, easy, medium, and hard, according to the number of iterations for
BFGS to converge. SQN’s median improvement over BFGS is largest for the hardest
1/3 of the test problems, 25% in round numbers.

Our setup uses the line search [28] available from Argonne National Lab at
ftp://info.mcs.anl.gov/pub/MINPACK-2/csrch in MINPACK-2. This line search eval-
uates the function value and gradient an equal number of times. The starting point
x0 is as given in the CUTE collection, and the initial Hessian estimate is B0 = c · In,
where c is the geometric mean of the positive diagonal elements of the true Hessian
at x0. This is similar to the usual choice of B0 = In, but scaling by c provides a more
fair comparison because the true Hessian at x0 tends to be much larger than In on
the CUTE problems, and this gives an unfair advantage to BFGS, which has a bias
toward inflating the Hessian estimate, as explained in section 3 below. For each test
problem and starting point both SQN and BFGS are run until no valid step is found
due to finite numerical precision. Then the best point x∗ achieved by either algorithm
is identified, and convergence is retrospectively declared at the first k for which
(10)
[f(xk) − f(x∗)] + |(xk − x∗)

′g(x∗)|+ |(xk − x∗)
′G(x∗)(xk − x∗)| < 10−9 [1 + |f(x∗)|] .

This generalization of the assessment criterion [19] ensures that both the optima and
the optimizers match.

The comparisons reported in Figure 1 and Table 1 are based on 248 problems in
the CUTE collection. The test set consists of all unconstrained problems with maxi-
mum dimension of 500 that have continuous analytic second derivatives and compile
with the default “large” version of the CUTE software. Of the 306 that fit these cri-
teria, 15 appear to start at the optimum, 23 converge to a better local minimum with
SQN than with BFGS, and 20 converge to a better minimum with BFGS. Removing
these 58 cases leaves 248 test problems that support clean comparisons between SQN
and BFGS.

We also conducted an initial study of the SQN algorithm, patterned after [31]
using 20 of the test problems [27], each with 10 starting points. The results were
similar: about 20% fewer iterations and gradient evaluations and about 10% fewer
function evaluations compared to BFGS. This initial study used Fletcher’s line search
algorithm [15] with the tunable parameters set as suggested and utilizing his “sensible”
choices for trial step lengths based on minimizing interpolating polynomials.

SQN compares favorably to other studies that have used negative Broyden pa-
rameters. Zhang and Tewarson [31] report 21% and 13% fewer iterations for their
SDQN method relative to BFGS on problems of small and “increasing” dimension,
respectively. However, their improvements were smaller using the EFE metric that
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incorporates the number of function evaluations. Byrd, Liu, and Nocedal [8] report
improvements of 18% on iterations and 12% on function evaluations for a smaller set
of tests using their Method I, which is not practical as a quasi-Newton update because
it requires evaluation of G(x).

The remainder of the article is arranged as follows. Section 2 gives a select history
of ideas in quasi-Newton development with emphasis on the least-change principle
and argues for a particular scale-free matrix as the most appropriate measure of the
change between consecutive Hessian estimates. Section 3 introduces a transformation
into canonical coordinates, derives (4)–(8) as the new least-change update, and shows
that it preserves Hessian accuracy from one iteration to the next in a certain sense.
Section 4 introduces a Wishart model to describe Hessian uncertainty and derives (9)
as an estimate of the optimal step size. Section 5 compares performance on three new
test functions designed to verify our understanding of why SQN is better than other
Broyden methods. Section 6 explores connections to other least-change derivations
and mentions ideas for future research.

2. Least-change updates. Fletcher’s overview [17] of methods for unconstrained
optimization is an excellent introduction to the huge literature on quasi-Newton meth-
ods. This section briefly reviews the historical ideas that led to the least-change
principle on which the most influential quasi-Newton methods are based. A line of
reasoning is then given to suggest a certain relative-change matrix as being the most
appropriate measure of change for the goal of approximating Newton search direc-
tions. This leads to the SQN update that was introduced in section 1.2. Although
the SQN update happens to be in the Broyden class, it is derived in section 3 by
minimizing change over all possible quasi-Newton updates.

2.1. Historical developments. Crockett and Chernoff [12] stated the idea of
building up a Hessian estimate iteratively so as to approximate the Newton method:

. . ., it is possible to obtain, from the successive approximations, cer-
tain relevant information about terms of order higher than those ac-
tually computed, and to conveniently use this information to improve
the rate of convergence.

The basic idea of Broyden [4] as articulated in [7] was that the Hessian update “should
therefore require, if possible,. . ., no change to Bk in any direction orthogonal to δk.”
Broyden was solving a system of differential equations, and his mathematical formu-
lation [Bk+1δk = γk and (Bk+1 − Bk)q = 0 ∀q : q′δk = 0] produces an asymmetric
update that is not appropriate for the problem min f(x).

Taking a more mathematical approach, Broyden [5] dropped the “orthogonality”
part of his original intuition and sought instead a low-rank Hessian update. This led
to the Broyden class (4) of symmetric rank-two updates. Subsequent researchers also
focused on making small modifications to the Hessian without explicit concern for the
space orthogonal to the search direction. Greenstadt [21], for example, wrote,

Let us ask for the “best” correction in some sense. There are many
possible choices to make, but a good one is to ask for the smallest
correction, in the sense of some norm. To a certain extent, this
would tend to keep the elements of [B−1

k ] from growing too large,
which might cause an undesirable instability.

The extensive review [25] emphasizes the importance of the least-change principle in
deriving many of the most effective quasi-Newton methods.

The important special case of a Broyden update with λk = 1 is called BFGS after
the four authors who individually published the update formula in 1970. Goldfarb [20]
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worked with the scaled difference of inverse Hessian estimates

(11) E∗
W ≡ W 1/2

(
B−1

k+1 −B−1
k

)
W 1/2,

where the symmetric matrix W satisfies Wδk = γk. He derived the BFGS update by

using the results in [21] to minimize the Frobenius norm ‖E∗
W ‖F ≡ [tr (E∗

WE∗
W )]

1/2

over the class of symmetric matrices Bk+1 that satisfy the Newton condition (1).
Thus, BFGS is a least-change update. But the metric of change is important. For
example, using the same W but minimizing the Frobenius norm of

(12) EW ≡ W−1/2 (Bk+1 −Bk)W
−1/2

produces the Broyden update with λk = 1+δ′kBkδk/(δ
′
kγk). This is known as DFP [13],

[18] and is generally regarded as inferior to BFGS.
Fletcher [14] advocated restricting attention to Broyden updates that are convex

combinations of the BFGS and DFP updates because such updates satisfy a monotone
eigenvalue property when used to minimize quadratic functions. Recently, however,
various choices of negative Broyden parameters (φk < 0 corresponding to λk < 1) have
been studied. See, for example, [31], [8], [23], [17], and [26]. These authors report
that negative Broyden parameters can reduce iteration counts, although in some cases
this comes at the cost of increased numbers of function evaluations. The potential
for improvement relative to BFGS seems to be best if the initial Hessian estimate is
much too large. Robust improvement over BFGS has been elusive. Indeed, Zhang
and Tewarson [31] concluded that such investigations have not shaken the position of
BFGS as the most popular front-runner.

2.2. A new measure for least change. Minimizing the change from Bk to
Bk+1 is a generally accepted principle. There is no agreement, however, on how to
measure that change. Zhao [32] derives 10 different optimal updates by considering
five possible matrix norms applied to two different matrices that measure change. The
function for measuring change is empirically important: BFGS outperforms DFP even
though the two are least-change duals derived from E∗

W and EW , respectively.
A sensible matrix measure of change that has received little attention in the

literature is the difference Bk+1 −Bk scaled by the current estimate Bk, namely

(13) EB ≡ B
−1/2
k (Bk+1 −Bk)B

−1/2
k .

Normalizing a difference is appropriate because, in every direction, EB measures
change of the Hessian estimate relative to current nominal value, and this produces a
scale-free method. Greenstadt [22] states that such normalization “renders harmless
the accidents of coordinate selection in a given problem.” One possible danger in mak-
ing EB small is that Bk+1 could become singular (or even indefinite if allowed), and
this could produce unstable quasi-Newton search vectors, based on B−1

k+1. However,
applying no direct penalty to large differences on the inverse scale is more aggressive
than BFGS, in the same spirit as employing negative values of the Broyden parameter.
In fact, the next section will demonstrate that minimizing ‖EB‖F produces exactly a
negative Broyden update.

Interestingly, minimizing EB (with respect to commonly used scalar measures of
matrices) is equivalent to minimizing

(14) E∗
B ≡ B

1/2
k+1(B

−1
k −B−1

k+1)B
1/2
k+1
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because E∗
B and EB have the same eigenvalues, as shown in Appendix C. The matrix

E∗
B scales the difference in inverse estimates by the still-to-be-determined update.

Greenstadt [21] minimized a weighted change of the inverse estimates. In deriving
BFGS, Goldfarb [20] writes, “If, instead, [Bk+1] is substituted for [the weight matrix]
in [Greenstadt’s result], then [BFGS] is obtained.” Although this sounds like mini-
mizing E∗

B , Goldfarb in fact minimized E∗
W with a fixed weight matrix that satisfied

the quasi-Newton condition required of Bk+1, namely Wδk = γk. SQN, on the other
hand, can be viewed as directly using the unknown Bk+1 as the weight matrix in
Greenstadt’s objective function.

3. SQN: Least relative change. The form of EB in (13) as a measure of change

motivates transforming the coordinates of x by B
1/2
k so that the problem of updating

the Hessian estimate takes a simple form. This section uses Broyden’s original idea of
making no change to the portion of Bk that is orthogonal to δk but applies the idea
in a transformed coordinate system.

As the focus is on the kth step of the quasi-Newton algorithm, the notation is
streamlined from this point forward by dropping subscripts k and replacing subscripts
k + 1 by “+.”

3.1. Canonical coordinates. For conceptual convenience, at the kth iteration
transform x in such a way that the line search is along the first component direc-
tion and the current Hessian estimate B transforms to the identity matrix. This is
accomplished by the linear transformation

(15) x̃ = U ′B1/2x,

where U is an orthonormal rotation matrix with the first column equal to B1/2δ
(δ′Bδ)−1/2. In the transformed space the current step is strictly along the first com-
ponent direction:

x̃+ − x̃ = (δ′Bδ)1/2(1, 0, . . . , 0)′.

The objective function and gradient become

f̃(x̃) ≡ f(x) and g̃(x̃) ≡ ∇f̃(x̃) = U ′B−1/2g(x),

and the transformed Hessian is

(16) G̃(x̃) ≡ ∇2f̃(x̃) = U ′B−1/2G(x)B−1/2U.

Substituting the estimated Hessian B for G(x) in (16) produces the transformed
estimate B̃ = In, the n-dimensional identity matrix.

3.2. Observed and missing information. Define second-order numerical deri-
vatives of f̃(x̃) along the search direction as

(17)

[
a
b

]
≡ g̃(x̃+) − g̃(x̃)

(1, 0, . . . , 0)(x̃+ − x̃)
=

U ′B−1/2γ

(δ′Bδ)1/2
,

where the first element a is a scalar and b is an (n− 1)-dimensional vector. The cur-
vature condition (3) implies that a ≥ (1−ρ2)/s > 0. The quasi-Newton condition (1)
is equivalent to the intuitive idea that the numerical derivatives (17) form the first
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column of the updated Hessian matrix. Since the Hessian is symmetric, the general
form of update in transformed coordinates becomes

(18) B̃+ =

[
a b′

b C

]
,

where symmetric C is to be determined subject only to the constraint B̃+ > 0, which
is equivalent to C − a−1bb′ > 0. (The notation M > 0 indicates that the matrix M
is positive definite.) C represents curvature in the complimentary space, that is, the
space canonically orthogonal to the current search direction.

Following Broyden’s idea that no information is gained in directions orthogonal
to δ suggests the updating scheme obtained by taking C = In−1 if doing so produces
B̃+ > 0, i.e., if a > b′b. But, what does one do if a ≤ b′b? The question itself implies
that certain information on C is provided by the observed data (a, b) along with the
assumption that the Hessian matrix is positive definite. In general, C should be a
function of a and b.

The following theorem provides the least-change update based on the Frobenius
norm of EB .

Theorem 1 (SQN update). The quasi-Newton update that minimizes ‖EB‖F
(and hence also ‖E∗

B‖F ) subject to (1) and B+ ≥ 0 has canonical form

(19) B̃+ =

[
a b′

b In−1 + λSQN bb′/a

]
,

where, for r̃ ≡ b′b/a,

(20) λSQN =

{
0 if r̃ ≤ 1,
1 − r̃−1 otherwise.

B̃+ is singular for r̃ ≥ 1.
Proof. Appendix C implies that ‖EB‖F = ‖E∗

B‖F :

‖EB‖2
F =

∥∥∥B−1/2 (B+ −B)B−1/2
∥∥∥2

F
=

∥∥∥U ′B−1/2B+B
−1/2U − In

∥∥∥2

F
=

∥∥∥B̃+ − In

∥∥∥2

F

= tr

([(
a b′

b C

)
− I

] [(
a b′

b C

)
− I

])

= tr
(
Φ2

)
− 2tr (Φ) + 2b′Φb/a + (a + r̃)(a + r̃ − 2) + n,

where Φ ≡ C − bb′/a and we have used B̃+ = U ′B−1/2B+B
−1/2U from (16). B+ ≥ 0

is equivalent to Φ ≥ 0 so that minimizing ‖EB‖F over B+ ≥ 0 is equivalent to
minimizing the first three terms of the final expression over Φ ≥ 0.

Denote the eigenvalues of Φ by 0 ≤ η1 ≤ · · · ≤ ηn. Then

(21) tr
(
Φ2

)
− 2tr (Φ) + 2b′Φb/a ≥

∑
i

η2
i − 2

∑
i

ηi + 2η1b
′b/a

with equality if and only if the first eigenvector of Φ is proportional to b. The right-
hand side of (21) is minimized by η2 = · · · = ηn = 1 and

η1 = max {0, 1 − r̃} .
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Thus, the left-hand side of (21) is minimized by a matrix with the specified eigenvalues
and first eigenvector equal to b/

√
b′b. The required matrix is

Φ = I +

[
max {0, 1 − r̃} − 1

r̃

]
bb′

a
,

and this corresponds to the optimal C given in the theorem.

Theorem 1 demonstrates that making no change in the complementary space
(i.e., C = In−1) does, in fact, produce a least-change update. The theorem also
provides a larger estimate for C when needed to preserve nonnegative definiteness.
Our implementation of SQN uses a safeguarded choice of λSQN to prevent the Hessian
estimate from becoming singular. See (8).

Behind the intuition that one should make small alterations to the Hessian esti-
mate in the complementary space lies a principle that accuracy obtained on previous
iterations should be preserved as much as possible. The following proposition demon-
strates that the SQN update achieves the goal of preserving Hessian accuracy in a
certain sense.

Proposition 1 (SQN accuracy preservation). If the true Hessian in canonical
coordinates is positive definite and given by

(22) B̃+ =

[
a b′

b Ctrue

]
,

then CSQN ≡ In−1 + λSQNbb
′/a is at least as accurate as In−1 for estimating Ctrue

in any direction either parallel to b or orthogonal to b. That is,

(23)
∣∣∣u′

(
CSQN − Ctrue

)
u
∣∣∣ ≤

∣∣∣u′
(
In−1 − Ctrue

)
u
∣∣∣

for any u such that either u′b = 0 or u ∝ b. Furthermore, this is not necessarily true
for any larger estimate Ĉ = CSQN + V V ′, where V is any nonzero matrix with n− 1
rows.

See Appendix A for a proof.

The following proposition provides the canonical form for the well-known Broyden
family and shows that SQN updates are particular members.

Proposition 2 (canonical Broyden updates). Under the canonical transform (15)
the Broyden update (4) transforms to

(24) B̃+ =

[
a b′

b In−1 + λbb′/a

]
,

where λ = 1 + c/(δ′γ). In particular, the usual Broyden parameter is φ = (λ − 1)a,
and important special cases are given as follows:

Method λ φ
SQN max{0, 1 − r̃−1} max{−a,−ar̃−1}
BFGS 1 0
DFP 1 + a−1 1

,

where if r̃ = 0, the max is taken to be the first argument.
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See Appendix B for a proof. The proof also provides formulae for a and b in terms
of the usual quantities δ, γ, and B and shows that r̃ = r, where r̃ = b′b/a is defined
in Theorem 1 and r is given in (7).

Although BFGS minimizes several different measures of change [16], Proposition 2
indicates that BFGS increases the lower right block (λ > 0) over its previous value of
In−1, whereas SQN leaves it unchanged if possible, or adds a fraction of the BFGS cor-
rection in order to preserve positive semidefiniteness. The conclusion of Proposition 1
is that neither BFGS nor DFP preserves accuracy of the previous Hessian estimate
(in the canonical sense of (23)) over a large class of directions. It is interesting that
DFP explodes as a becomes small.

4. Step size estimation. In trial experiments with the SQN update, we carried
out the quasi-Newton M-step using a line search in which the initial step size was
unity; that is, the line search used an initial evaluation point of x − ŝB−1g with
ŝ = 1, which is the Newton step under the assumption that B is the actual Hessian.
The experiments demonstrated that the SQN update tended to reduce the number
of iterations to convergence compared to BFGS but did not consistently reduce the
number of function evaluations required. Further investigation showed the reason:
unit steps are often too long when the SQN update is used. The steepest descent
method (SDQN) [31] also uses negative Broyden parameters, and they state, “SDQN
tends to give steps longer than BFGS steps, and therefore is more likely to violate the
[sufficient decrease] condition.” When unit steps are used, fewer iterations seem to
come with the price of more function evaluations per iteration. Some numerical results
with unit step sizes on SQN and other Broyden updates are reported in section 5.

Why do negative Broyden parameters produce steps that are too long? A rough
explanation is that a negative Broyden parameter produces a smaller Hessian estimate
than BFGS. Compare λ < 1 in Proposition 2 with λ = 1. A smaller B implies a
longer unit step −B−1g. Therefore, if unit steps are suitable for BFGS, then unit
steps may well be too long for use with negative Broyden parameters. This reasoning
is admittedly rough; it does not account for differences in the step direction and does
not provide guidance for selecting more appropriate step sizes. This section proposes
a Wishart model to describe uncertainty of the unknown Hessian and then derives
an estimate of the optimal step size as a function of the Broyden parameter used in
updating the Hessian. The SQN initial step size (9) is a special case.

4.1. A Wishart model for the Hessian matrix. The unknown Hessian G̃+ =
G̃(x̃+) can be modeled as a random matrix whose probability distribution quantifies
the plausibility of all possible canonical Hessians. It is reasonable to use a probability
model for this purpose because the true Hessian varies unpredictably from one quasi-
Newton iteration to the next and from one objective function to another. Therefore
G̃+ is never completely known. Furthermore, modeling G̃+ as a random matrix
provides a means of incorporating new curvature information obtained in a line search
and appropriately updating the distribution of the unknown Hessian. The updated
distribution is the key to determining what length of step should be taken in any
given direction.

Several properties are desirable for the distribution of G̃+. It should
(i) be centered at the previous estimate B̃ = In,
(ii) have probabilities that taper off toward zero for matrices far from In, and
(iii) describe equal uncertainty in every direction because, although G̃+ is likely

less uncertain in the directions of recent steps, these directions are not available for
use within the quasi-Newton framework.
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The simplest statistical model for symmetric positive definite matrices that has
the above properties is the Wishart distribution with expectation In:

(25) νG̃+ ∼ Wishartn (In, ν) ,

where ν ≥ n+1 is the degrees of freedom parameter. The distribution of G̃+ becomes
more concentrated around In as ν increases. See, e.g., [2] for the definition and prop-
erties of the Wishart family. The probability density function of G̃+ is proportional
to

(26)
∣∣∣G̃+

∣∣∣(ν−n−1)/2

exp
{
−ν

2
tr
(
G̃+

)}
.

Because (26) involves only G̃+ through its determinant and trace, any orthogonal
rotation, R′G̃+R where R′R = In, is distributed identically to G̃+. This directional
symmetry seems an appropriate requirement for modeling the Hessian in canonical
coordinates.

In the quasi-Newton framework, the first row and column of G̃+ are considered
to be known from the numerical second derivatives (17). Therefore

(27) G̃+ =

[
a b′

b C

]
,

where a and b are observed and C is not. Standard Wishart theory (see, e.g., [2])
provides the conditional distribution [C|a, b] through

ν

[
C − bb′

a

∣∣∣∣ a, b
]
∼ Wishartn−1 (In−1, ν − 1) .

The conditional expectation and mode are

E(C|a, b) =
ν − 1

ν
In−1 +

bb′

a
,(28)

Mode(C|a, b) =
ν

ν − n− 1
In−1 +

bb′

a
.(29)

The two multipliers on In−1 depend on the degrees of freedom, ν, and they differ
because the Wishart model is skewed toward large positive definite matrices. But
both coefficients approach unity as ν → ∞, the large-sample limit. Although ν could
be estimated from a and b, using the large-sample limit is an attractive simplification
that corresponds to modeling the current Hessian estimate as arbitrarily accurate
before observing a and b.

Comparing (28) and (29) to (24) in Proposition 2 shows that the large-sample con-
ditional expectation and mode under a Wishart model are exactly equal to the BFGS
update. Specifically, let B+(λ) denote the Broyden update (4)–(6) with parameter λ
and let B̃+(λ) denote the corresponding canonical form given by (24). Then

lim
ν→∞

E (G+|a, b) = B1/2U
[

lim
ν→∞

E
(
G̃+

∣∣∣ a, b)]U ′B1/2

= B1/2UB̃+(1)U ′B1/2

= B+(1),(30)

which is the BFGS update.
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Although (30) is the simplest statistical estimate of the Hessian, the SQN update
is a better choice for sequential Hessian estimation because it preserves accuracy
obtained in previous iterations (section 2.2 and Proposition 1). When estimating the
optimal step size, however, accuracy preservation is not a concern—an appropriate
step size in one iteration may or may not be appropriate in the next. Thus, while the
SQN Hessian update is derived to preserve accuracy, the SQN step size, derived in
the next section, uses conditional expectation to estimate the optimal step, given the
most recent curvature information.

4.2. Optimal step size. An estimate of the optimal step size for any given
Broyden update can be derived from the Wishart model. Let d+ represent an arbitrary
search direction to be taken in the M-step on iteration k + 1. A second-order Taylor
expansion of f(·) about the point x+ gives the quadratic approximation

(31) f(x+ + sd+) ≈ f(x+) + sd′+g+ +
s2

2
d′+G+d+

with optimum step size

(32) s∗ =
−d′+g+

d′+G+d+

obtained by differentiating (31) with respect to s and setting the result to zero. The
denominator of (32) involves the unknown Hessian, but an estimate of s∗ can be
obtained by replacing G+ with its large-sample conditional expectation from (30):

(33) lim
ν→∞

E (G+|a, b) = B+(1) = B+(λ) + (1 − λ)(δ′γ)ωω′,

where (4) has been used to express B+(1) in terms of a general Broyden update.
The resulting optimum step size is obtained by plugging (33) into (32) and taking
d+ = −B−1

+ (λ)g+, the next quasi-Newton step direction:

(34) ŝ(λ) =
g′+B

−1
+ (λ)g+

g′+B
−1
+ (λ)g+ + (1 − λ)(δ′γ)(g′+B

−1
+ (λ)ω)2

.

This is the step size formula (9) of the SQN algorithm. For BFGS (λ = 1), the
estimated optimum is ŝ(1) = 1, which suggests that unit steps may work better for
BFGS than for any other Broyden update.

Results comparing BFGS to the SQN algorithm using (34) are shown in Figure 1
and demonstrate that SQN achieves consistent reduction in function evaluations, as
well as iteration counts, compared to BFGS. Additional comparisons to SQN with
unit initial steps for three new test functions are reported next.

5. Results on three new test functions. The CUTE test problems have be-
come standard for comparing quasi-Newton algorithms, but they are not particularly
useful for empirically validating our claim that BFGS tends to inflate Bk and that
SQN is more neutral. This section uses three new test functions for that purpose.

It was found that BFGS is lopsided [8]: it can more readily increase Hessian es-
timates that are too small than shrink ones that are too large. This was surprising
in light of the strong “self-correcting” property of the BFGS update that was estab-
lished [10]: the relative error between the curvature predicted by Bk and the curvature
observed in the current line search is transmitted exactly to the relative change of the
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Table 2

Three test functions f(x) =
∑4

1 fi(xi) with simple Hessians.

fi(xi) Gii(x)

Anticipated

best λ
NOM

fdec : 1
2
x2
i + 1

12
η2
i x

4
i 1 + (ηixi)

2 negative

f inc : η−2
i

[
ηixi arctan(ηixi) − 1

2
ln(1 + η2

i x
2
i )
]

[1 + (ηixi)
2]−1 positive

f sin : 1
2
x2
i + η−2

i [ηixi − sin(ηixi)] 1 + sin(ηixi) near zero

determinant from |Bk| to |Bk+1|. Proposition 2, on the other hand, shows that BFGS
corrections actually inflate Bk in the space canonically orthogonal to the search di-
rection, whereas SQN corrections leave that part of the Hessian unchanged (subject
to positive definiteness) and therefore should cope equally well with estimates that
need to shrink as with ones that need to grow. Furthermore, choosing λk to be less
than 0 or greater than 1 should make these effects more pronounced.

To check this understanding, we employ three new test functions fdec, f inc, and
f sin with simple Hessians that respectively decrease, increase, and change sinusoidally
as xk moves in the direction of the optimum value. Each function has n = 4 dimensions
and has the form f(x) =

∑4
1 fi(xi). The functions are defined in Table 2, where

the values (η1, η2, η3, η4) ≡ (1, 2, 4, 8) scale how quickly curvature changes in each
coordinate direction. Each function is convex and has a diagonal Hessian with an ith
diagonal element as listed in the table. In each case the minimizer is x∗ = (0, 0, 0, 0),
f(x∗) = 0, and G(x∗) = I4.

For these functions we implement a range of Broyden updates with

λ = max
{
λNOM, 1 − (1 − ε)r−1

}
,

where λNOM is set between −2 and 3, ε = 10−6, and initial step sizes are given by (34).
Special cases are λNOM = 0 and 1, which correspond to SQN and BFGS, respectively.

The rationale for testing with functions whose Hessians change monotonically
(fdec, f inc) or unpredictably (f sin) is to verify our claim that BFGS needlessly inflates
the previous Hessian estimate whereas SQN treats it neutrally. With f inc, for example,
the most appropriate Hessian estimate in iteration k+1 will tend to be larger than in
iteration k. BFGS could have an advantage over SQN because it tends to inflate the
Hessian beyond its previous value in the complementary space. In this case, the best
choice of λNOM should be larger than 0 and possibly even larger than 1, the BFGS
value. For fdec, on the other hand, SQN should have the advantage over BFGS and
the optimal λNOM should be negative. For f sin, there is no consistent pattern for the
Hessian on one step compared to the previous step so that λNOM = 0 (i.e., SQN)
should be nearly optimal. In each case, more extreme values of λNOM should produce
more extreme effects.

5.1. Results for different λNOM. Figure 2 plots average counts to convergence
as a function of λNOM with each panel representing one of the new test functions. Each
plotted symbol represents an average count over 1000 random starting points. The
vertical scales are set to support relative comparisons, the most obvious of which is
that λNOM has the greatest effect for fdec and the least for f sin. Iterations, func-
tion evaluations, and gradient evaluations are shown using different plotting symbols.
Fletcher’s line search [15], as discussed in section 1.2, was used in this study. The
true value is used for the starting Hessian estimate, B0 = G(x0).
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Fig. 2. Performance counts versus λ
NOM

on test functions with Hessians that are decreasing,
increasing, and sinusoidal as xk moves toward the minimum. Different symbols are used for itera-
tions (× iter), function evaluations (• feval), and gradient evaluations ( ◦ geval). Initial steps are
estimated using (9). The special value λ

NOM
= 0 is SQN, and λ

NOM
= 1 is BFGS.

The starting points x0 were chosen at random in such a way that they tend to be
oriented in the direction of (η1, η2, η3, η4). Specifically, the ith component of x0 was
drawn randomly as

x0,i = Kηi(1 + zi/3),

where the zi are independent N(0, 1) random variables and the scale was set as K =
200 for fdec, K = 50 for f inc, and K = 1000‖η‖ for f sin. These choices reflect a
little experimentation aimed at producing differences between BFGS and SQN that
are large enough to be interesting without requiring unwieldy numbers of iterations.
As far as we know, other choices produce similar results, though we have not studied
this extensively. Convergence was declared when f(xk) < 10−10.

For fdec, Figure 2 demonstrates that SQN is indeed better able to cope with a
decreasing Hessian than BFGS, and further improvement is obtained by using slightly
negative values of λNOM. The situation is reversed for f inc. BFGS handles the in-
creasing Hessian better than SQN, and further improvement is obtained by taking
λNOM as large as 2. Finally, for f sin the Hessian changes arbitrarily, and the SQN
update (λNOM = 0) is nearly optimal.

Several additional comments on these results are worth noting. First, within each
panel all three curves have nearly the same shape. But on fdec function evaluations are
always equal to gradient evaluations, whereas function evaluations are substantially
higher on f inc and f sin. This indicates that the initial step size estimate is better
for fdec than for the other two functions because, with the Fletcher line search, if
initial step sizes are too large to produce a sufficient decrease in the function value,
then the function is reevaluated at additional trial steps with no gradient evaluations.
Second, for any λNOM < 1 some values of λk will likely exceed λNOM because of the
requirement that Bk+1 remain positive definite. This produces an asymmetry in the
results so that the performance differences between λNOM = −1 and 0 are not as
great as the differences between 0 and 1. In fact, our selection of starting points that
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Fig. 3. Function evaluation counts versus λ
NOM

for three test functions. The plots compare
performance with unit initial steps (u) against estimated initial steps (•) using (9). The dots in this
figure are the same as in Figure 2.

are biased in the direction of η was made to enhance the effect of λNOM below 1 on
f incand f sin. The patterns in Figure 2 are smooth because they average across 1000
starting points. If counts from a single starting point were plotted, the patterns for
f inc and f sin would be virtually impossible to discern because of noise in the data.
Thus, it would be meaningless to compare different choices of λNOM based on only a
few test cases.

5.2. Results for different step sizes. Figure 3 demonstrates the importance
of using estimated step sizes, especially with λNOM < 1. The experiment is the same
as in Figure 2, except that the algorithm was also run with unit initial step sizes. The
plots compare average function evaluation counts for unit initial steps against those
for estimated steps. In each panel, as λNOM decreases from 1 (BFGS), the unit initial
step results eventually become much worse than the results with estimated steps. The
same appears to be true as λNOM becomes positive and large. The curves intersect at
λNOM = 1 because the estimated step size is 1.

At λNOM = 0 (SQN) the results of Figure 3 are most revealing on f inc. In this case
the SQN Hessian estimate tends to be too small so that unit step sizes are too large.
Estimated step sizes are smaller and perform much better, although they may still be
too large, as indicated in Figure 2, by the gap between the number of function and
gradient evaluations. The only case where unit steps perform substantially better than
estimated ones is on f inc with 1 < λNOM < 3. These values of λNOM inflate the Hessian
estimates more than BFGS. We suspect that the inflated Hessians are producing
estimated steps that are too short. Significantly, estimated steps are uniformly better
than unit steps on f sin, for which Hessian changes are fairly unpredictable.

6. Discussion. This paper has investigated two estimation problems that arise
in the design of quasi-Newton algorithms: (1) estimation of Newton directions by
way of sequential updates to a Hessian estimate; and (2) estimation of the optimum
along a given search direction. SQN solves the two problems rather differently, using
a least-change principle for the Hessian update and a statistical model for the step
size. This raises the question of why the statistical model is not also used for the
Hessian update.
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Straightforward application of the Wishart model leads, in fact, to the BFGS
update as is seen in (30). Another derivation of BFGS is obtained by taking the
negative logarithm of the Wishart density (26), dividing by ν/2, and taking ν → ∞.
The result is the following function:

ψ(B̃+) ≡ tr
(
B̃+

)
− ln |B̃+|.

Fletcher [16] demonstrated that BFGS minimizes ψ(B̃+) = ψ(EB + I) = ψ(E∗
B + I),

where EB and E∗
B are defined in (13) and (14), respectively. Similarly DFP minimizes

ψ(B̃−1
+ ) = ψ((EB + I)−1) = ψ((E∗

B + I)−1). Once again, the measure of change is
influential.

We argue, however, that accuracy preservation (as measured by E∗
B and EB) is

more important than achieving the best one-step statistical estimate for the problem of
sequentially estimating the Hessian matrix; this leads to the least-change formulation
of Theorem 1. But the SQN update can also be derived from a statistical approach.
We first obtained it by combining the Wishart model (25) with a prior distribution
that strongly forced C toward the identity matrix. The prior was the statistical
embodiment of the least-change principle. Details of this derivation are omitted to
save space.

There is a fascinating historical connection that ties the relative change matrices
EB in (13) and E∗

B in (14) to BFGS, DFP, and the EI method [21] from which
Goldfarb [20] derived BFGS. E∗

W and EW in (11) and (12) are well-known duals that
measure change on the inverse and nominal scales and lead to the BFGS and DFP
updates, respectively. In the same sense, the dual of EB is

EI ≡ B
1/2
k

(
B−1

k+1 −B−1
k

)
B

1/2
k ,

which is the matrix that Greenstadt minimized. Therefore the SQN update derived
from EB and E∗

B is the dual of the EI update in the same sense that BFGS is the
dual of the older DFP method. Although Greenstadt did not constrain Bk+1 to
be positive definite, minimizing ‖EI‖F over positive semidefinite updates results in
truncating Greenstadt’s solution at the critical value of the Broyden parameter. E∗

B

was used in [1] to derive an optimally scaled BFGS update. Lukšan [24] generalized
the technique to the Broyden family. Specializing Lukšan’s result to the case of no
scaling produces λ = 0 for r < 1.

Use of a statistical framework to design a quasi-Newton method motivates several
interesting topics. The numerical results on three new test functions suggest that
information on the bias of previous Hessian estimates could be captured and used to
obtain a better update that uses either varying values of λNOM within the Broyden
family or a self-scaling update outside of the Broyden family. Use of the Wishart
model to estimate the optimal step size also suggests a more general class of quasi-
Newton methods obtained by searching not in the estimated Newton direction −B−1g
but rather in an alternate direction determined from the conditional distribution
[−G(x)−1g|a, b]. We have obtained promising results in some limited tests of these
ideas.

Appendix A. Proof of Proposition 1.
Proof. If r ≤ 1, then CSQN = In−1 and (23) holds as an equality for all u. Suppose

r > 1 so that CSQN = In−1 + (1 − r−1)a−1bb′. Then for any u : u′b = 0,

u′CSQNu = u′In−1u,
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and thus (23) holds as an equality. Suppose u = ρb for some ρ �= 0. Positive
definiteness of the true Hessian implies (Ctrue − a−1bb′) > 0, and thus

u′Ctrueu > a−1u′bb′u = ρ2(b′b)r

= u′CSQNu > ρ2(b′b) = u′In−1u > 0.

That is, in the direction of u, CSQN is closer to Ctrue than In−1 is, and this implies
that (23) holds as a strict inequality.

To prove the final statement, suppose that Ctrue = In−1 so that the right-
hand side of (23) equals zero and consider two cases as follows. First, suppose that
‖V ′b‖ > 0 and take u = ρb with ρ �= 0. Then

u′(Ĉ − Ctrue)u = ρ2b′
(
λa−1bb′ + V V ′) b > 0,

and (23) is violated. On the other hand, if ‖V ′b‖ = 0, then assume, without loss of
generality, that V has full column rank and take u = V (V ′V )−1y for some vector
y �= 0. Then u′b = y′(V ′V )−1V ′b = 0 but

u′(Ĉ − Ctrue)u = y′(V ′V )−1V ′(V V ′)V (V ′V )−1y = y′y > 0,

which violates (23).

Appendix B. Proof of Proposition 2.
Proof. Using (16), the relation between B+ and B̃+ is given by B+ = B1/2U

B̃+U
′B1/2. This can be expressed as follows:

B+ = B1/2U

[
a b′

b In−1 + λbb′/a

]
U ′B1/2

= B + B1/2U

[
a− 1 b′

b λbb′/a

]
U ′B1/2

= B + B1/2U(D1 + D2 + D3)U
′B1/2,(35)

where

D1 =

[
−1 0
0 0

]
, D2 =

[
a2/a b′

b bb′/a

]
, and D3 =

[
0 0
0 a(λ− 1)bb′/a2

]
.

Denote by U [, 1] the first column of U . Then

U [, 1] =
B1/2δ

(δ′Bδ)1/2
,

[
a
b

]
=

U ′B−1/2γ

(δ′Bδ)1/2
,

a =
δ′γ

δ′Bδ
, and r ≡ b′b

a
=

γ′B−1γ

δ′γ
− δ′γ

δ′Bδ
.

Simple algebraic operations lead to the following equalities:

B1/2UD1U
′B1/2 = −B1/2U [, 1](U [, 1])′B1/2 = −Bδδ′B

δ′Bδ
,

B1/2UD2U
′B1/2 =

1

a
B1/2U

[
a
b

]
[a, b′]U ′B1/2 =

γγ′

δ′γ
,
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and

B1/2UD3U
′B1/2 =

a(λ− 1)

a2
B1/2U

([
a
b

]
−
[
a
0

])([
a
b

]
−
[
a
0

])′
U ′B1/2

= (λ− 1)(δ′γ)

(
γ

δ′γ
− Bδ

δ′Bδ

)(
γ

δ′γ
− Bδ

δ′Bδ

)′
.

From these equalities and (35), we see that the expression for B+ is identical to (4)
with c = (λ− 1)(δ′γ).

Appendix C. Equivalence of change matrices EB and E∗
B. A scalar mea-

sure is required to define the “size” of the matrix EB defined in (13). Many of
the most common scalar measures depend only on eigenvalues—for example, trace,
determinant, spectral norm, Frobenius norm, and the ψ-function [9], ψ(EB + I) =
tr (EB + I) − ln |EB + I|.

Lemma 1. The eigenvalues of EB in (13) are identical to those of E∗
B in (14).

Also, the eigenvalues of EB + I are identical to those of E∗
B + I.

Proof. Let � denote equality of eigenvalues and note that PQ � QP for square
P and Q. Thus,

E∗
B � Bk+1

(
B−1

k −B−1
k+1

)
= (Bk+1 −Bk)B

−1
k � EB

and

E∗
B + I = B

1/2
k+1B

−1
k B

1/2
k+1 � B

−1/2
k Bk+1B

−1/2
k = EB + I.
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