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tLogisti
 and probit regression models are 
ommonly used in pra
ti
e to analyze binaryresponse data, but the maximum likelihood estimators of these models are not robust to outliers.This paper 
onsiders a robit regression model, whi
h repla
es the normal distribution in theprobit regression model with a t-distribution with a known or unknown number of degrees offreedom. It is shown that (i) the maximum likelihood estimators of the robit model with aknown number of degrees of freedom are robust; (ii) the robit link with about seven degrees offreedom provides an ex
ellent approximation to the logisti
 link; and (iii) the robit link witha large number of degrees of freedom approximates the probit link. The maximum likelihoodestimates 
an be obtained using eÆ
ient EM-type algorithms. EM-type algorithms also provideinformation that 
an be used to identify outliers, to whi
h the maximum likelihood estimatesof the logisti
 and probit regression 
oeÆ
ient would be sensitive. The EM algorithms forrobit regression are easily modi�ed to obtain eÆ
ient Data Augmentation (DA) algorithmsfor Bayesian inferen
e with the robit regression model. The DA algorithms for robit regressionmodel are mu
h simpler to implement than the existing Gibbs sampler for the logisti
 regressionmodel. A numeri
al example illustrates the methodology.Key Words: Bayesian methods; the EM algorithm; the tobit model; Markov 
hain Monte Carlo;the PX-EM algorithm. 1



1 Introdu
tionThe logisti
 and probit regression models are 
ommonly used in pra
ti
e to analyze binary responsedata, but many authors (see, Pregibon (1982) and the referen
es therein) have shown that theirmaximum likelihood estimators are not robust. This paper 
onsiders a robit regression, whi
hrepla
es the normal distribution in probit regression with a t-distribution with known or unknowndegrees of freedom. The use of the t-distribution for robust estimation in the di�erent 
ontextwhere the response variables are typi
ally modeled with the normal distribution has been addressedby many authors (e.g., Rubin, 1983; Lange, Little, and Taylor 1989; Liu and Rubin, 1995). Asan alternative to logisti
 regression, this model has been previously suggested in the literatureby Mudholkar and George (1978) and Albert and Chib (1993). Mudholkar and George (1978)dis
overed that a t-distribution with 9 degrees of freedom has the same kurtosis as the logisti
regression. Albert and Chib (1993) suggested the use of a t-distribution with 8 degrees of freedomand provided the detailed implementation of the Gibbs sampler for Bayesian estimation.It is shown that (i) the maximum likelihood estimators are robust if the number of degreesof freedom is known; (ii) the robit regression model with about seven degrees of freedom providesan ex
ellent approximation to the logisti
 regression model; and (iii) the robit regression modelwith a large number of degrees of freedom approximates the probit regression model. Thus, ina 
ertain sense, the robit regression model provides a ri
h 
lass of models, in
luding logisti
 andprobit regression models as spe
ial 
ases, for analysis of binary response data.This paper also provides eÆ
ient EM-type algorithms (Dempster, Laird, and Rubin, 1977; Liu,Rubin, and Wu, 1998) for �nding the maximum likelihood estimates of the regression 
oeÆ
ientsin the robit model. These algorithms provide information that 
an be used to identify outliers withtoo mu
h in
uen
e on the maximum likelihood estimates of the regression 
oeÆ
ient under thelogisti
 and probit models. EÆ
ient Data-Augmentation (DA) algorithm (Tanner and Wong, 1987;Liu and Wu, 1999; Liu 1999) 
an be used to obtain estimates under a Bayesian robit model. TheDA algorithm for the robit regression model is mu
h simpler to implement than the existing Gibbssampler (see, for example, Zeger and Karim (1991)) for the logisti
 regression model. Furthermore,the eÆ
ient DA algorithm 
an be extended to handle multivariate binary responses, as dis
ussedbrie
y in end of the paper.The rest of the paper is arranged as follows. Se
tion 2 des
ribes the robit model and its rela-2



tionship with the probit and logisti
 models. Se
tion 3 shows that the robust maximum likelihoodestimators of the regression 
oeÆ
ients are robust. Se
tion 4 formulates a 
omplete data modelfor robit regression that 
an be used for maximum likelihood estimation using EM-type algorithmsand for identifying outliers under logisti
 and probit models. Se
tion 5 provides detailed imple-mentation of the EM, ECME, and PX-EM algorithm for maximum likelihood estimation of therobit model. Se
tion 6 des
ribes the DA algorithms for �tting a Bayesian robit model. Se
tion 7illustrates the methodology with an example. Finally, Se
tion 8 
on
ludes with a few remarks.2 The Robit Model2.1 The logisti
 and probit modelsSuppose that the observed data 
onsist of n independent observations f(xi; yi) : i = 1; :::; ng with ap-dimensional 
ovariate ve
tor xi and binary response yi that is either 0 or 1. The logisti
 regressionmodel is spe
i�ed bylogit (pr(yi = 1jxi; �)) = ln pr(yi = 1jxi; �)1� pr(yi = 1jxi; �) = x0i� (i = 1; :::; n): (1)The logisti
 regression model 
an also be derived by assuming that there are latent variables zi =x0i� + ei, where ei logisti
 with distribution fun
tionFlogisti
(x) = expfxg1 + expfxg (2)and densityflogisti
(x) = expfxg(1 + expfxg)2 = 1(expf�x=2g + expfx=2g)2 = 12(1 + 
osh(x)) (3)and yi is one if zi > 0 and zero otherwise. Then, the logisti
 regression model (1) is obtained asthe marginal distribution of yi. The maximum likelihood estimates of � 
an be obtained using theiterative re-weighted least-squares.The probit model (e.g., Albert and Chib, 1993), for whi
hpr(yi = 1jxi; �) = 1� pr(yi = 0jxi; �) = �(x0i�) (i = 1; :::; n);is obtained by repla
ing the logisti
 distribution for the latent error terms ei with the standardnormal distribution, where �(x) and �(x) are the density and distribution fun
tions of the standard3



normal distribution, respe
tively. The maximum likelihood estimates of � in the probit model 
anbe obtained using the EM algorithm (Dempster, Laird, and Rubin, 1977) or the PX-EM algorithm(Liu, Rubin, and Wu, 1998).2.2 The robit model: a simple extension of the probit modelTo have a robust model, following Lange, Little, and Taylor (1989), who repla
ed the normal distri-bution in linear regression model with a t-distribution to obtain robust estimators of linear regres-sion 
oeÆ
ients, repla
e the normal distribution in probit regression model with the t-distributionwith � number of degrees of freedom. For 
omputational simpli
ity, whi
h itself is important in the
urrent state of the art in statisti
s as dis
ussed by Liu (2000), Albert and Chib (1993) suggestedthe use of a t-distribution with 8 degrees of freedom and provided the detailed implementation ofthe Gibbs sampler for Bayesian estimation.We 
all this model robit regression, and denote by robit(�) the robit regression model with �degrees of freedom. More formally, the robit regression model for the data f(xi; yi) : i = 1; :::; ng ispr(yi = 1jxi; �) = 1� pr(yi = 0jxi; �) = F�(x0i�) (i = 1; :::; n);where F�(x) denotes the 
df of the t random variable with 
enter zero, s
ale parameter one, and �degrees of freedom. F�(x) has the density fun
tionf�(x) � �((� + 1)=2)(��)1=2�(�=2)(1 + x2=�)(�+1)=2 (x 2 (�1;1)):As � !1, the robit(�) model be
omes the probit regression model.2.3 The robit regression model with seven degrees of freedom: an approxima-tion to the logisti
 modelEmpiri
ally, the robit link with about seven degrees of freedom approximates the logisti
 link,as Figure 1 suggests (The s
ale parameter � = 1:5484 in Figure 1 was 
hosen by numeri
allyminimizing maxxifjF�(xi=�) � Flogisti
(xi)j : xi = �10 + 0:002i; i = 1; :::; 1000g over �. For� = 1:5484, the maximum distan
e is about 0.0006). The quantiles below the 0.01 and 0.99 quantilesswing away from the referen
e line (dotted diagonal line), suggesting that the tail probabilities ofthe robit regression model are heavier than those of the logisti
 distribution. It is this tail property4



that distinguishes the robit and logisti
 links in terms of robust estimation. To balan
e robustnessand approximation to the logisti
 model, one may like to use the t-distribution with even smallernumber of degrees of freedom, su
h as 6 and 5.3 Robustness of Likelihood-based Inferen
e Using Logisti
, Pro-bit, and Robit Regression ModelsConsider the e�e
ts of a potential observation (x; y) on the estimates of pr(yijxi; �) for all i, or onthe estimate of the regression 
oeÆ
ient ve
tor � and 
onsider the e�e
tive sample size s (s > 0)of the potential observation. Without loss of generality, take y = 1: Let s (s > 0) be the e�e
tivesample size. Denote by �̂+(x;y);s the ML estimate of � with (y; x) in
luded, that is,�̂+(x;y);s = argmax� f`+(x;y);s(�) � `(�) + s ln(pr(yjx; �))g;where `(�) denotes the log-likelihood given the observed data. If the ML estimates �̂ and �̂+(x;y);sare unique and �nite, the potential in
uen
e of (x; y) is de�ned asI(x; y) � lims!+0 �̂+(x;y);s � �̂s : (4)If the Hessian matrix H(�̂) = �2`(�̂)=(����0) is negative de�nite, thenI(x; y) = �H�1(�̂)� ln pr(yjx; �̂)�� :Given the observed-data, H(�̂) is �xed and 
an be viewed as a s
aling matrix for the fa
tor� ln pr(yjx; �̂)=��: Given the observed-data, �̂ is also 
onstant. To avoid the trivial 
ases, assumethat all the 
omponents of �̂ are non-zero so�̂0 � ln pr(yjx; �̂)��is a 
onvenient s
alar fa
tor. For the logisti
 regression model, �̂0� ln pr(yjx; �̂)=�� = x0�̂=(1+ex0�̂);implying that the in
uen
e 
an be unbounded. For the probit regression model,� ln pr(yjx; �̂)�� = �(x0�̂)�(x0�̂)x0�̂:5



When x0�̂ ! �1, this fa
tor is approximately �(x0�̂)2. This quadrati
 fun
tion in x indi
atesthat the in
uen
e of (y; x) is unbounded and is more extreme than the in
uen
e under the logisti
regression model.For the robit regression model,� ln pr(yjx; �̂)�� = f�(x0�̂)F�(x0�̂)x0�̂:This fa
tor is bounded, and thereby the I(x; y) is bounded be
auselimx0�̂!�1 f�(x0�̂)F�(x0�̂)x0�̂ = limu!�1 f�(u)F�(u)u = � limu!�1 (� + 1)u� + u2 u = � + 1and limx0�̂!1 f�(x0�̂)F�(x0�̂)x0�̂ = lim�!1 f�(�)F�(�)� = 0:4 Complete Data for Simple Maximum Likelihood EstimationLet yi denote the univariate binary response of the i-th individual, and let xi denote the p-dimensional ve
tor of 
ovariates for i = 1; :::; n. Let�ij� � Gamma(�=2; �=2) and zij(�i; �) � N(x0i�; 1=�i) (i = 1; :::; n);where � = (�; �) with � being the p-dimensional ve
tor of regression 
oeÆ
ients and � being thenumber of degrees of freedom. In the literature, �i is 
alled weight, for example, in the 
ontext ofiterative re-weighted least-squares. Then the robit regression model is 
ompleted by spe
ifyingyi = 8><>: 1; if zi > 0;0; if zi � 0: (5)This 
omplete-data model belongs to the exponential family. The suÆ
ient statisti
s for � areS� = nXi=1 �i; S�xx = nXi=1 �ixix0i; S�zz = nXi=1 �iz2i ; S�xz = nXi=1 �ixizi; and Sln ��� = nXi=1(ln �i� �i); (6)and the 
omplete-data maximum likelihood estimate of � = (�; �) is given by�̂ = S�1�xxS�xz and �̂ = argmax� [�n ln�(�=2) + n(�=2) ln(�=2) + (�=2)Sln ��� ℄ :6



Let �i = x0i�, denote by t� the t-deviate with lo
ation zero, s
ale parameter one, and thenumber of degrees of freedom �, and denote by ft� (:) the probability density of t� , i.e.,ft� (z) = 
�(1 + z2=�)�(�+1)=2with the normalizing 
onstant 
� = (��)�1=2�((� + 1)=2)��1(�=2):Then �̂i � E(�ijYobs; �) = E(E(�ijzi; Yobs; �)) = E � 1 + 1=�1 + (zi � �i)2=� ����Yobs; ��= � + 1� Rfz:I(z���i)=yig 
�(1 + z2=�)�(�+3)=2dzRfz:I(z���i)=yig ft� (z)dz= 8><>: pr(t�+2<�(1+2=�)1=2�i)pr(t�<��i) ; if yi = 0;pr(t�+2>�(1+2=�)1=2�i)pr(t�>��i) ; if yi = 1= yi � (2yi � 1)pr(t�+2 < �(1 + 2=�)1=2�i)yi � (2yi � 1)pr(t� < ��i) ; (7)E(�i(zi � �i)jYobs; �) = � + 1� E � zi � �i1 + (zi � �i)2=� ����Yobs; ��= � + 1� Rfz:I(z���i)=yig 
�z(1 + z2=�)�(�+3)=2dzRfz:I(z���i)=yig ft� (z)dz= (2yi � 1)ft� (�i)yi � (2yi � 1)pr(t� < ��i)= �̂i (2yi � 1)ft� (�i)yi � (2yi � 1)pr(t�+2 < �(1 + 2=�)1=2�i) ;E(�i(zi � �i)2jYobs; �) = � + 1� E  (zi � �i)21 + (zi � �i)2=� �����Yobs; �!= (� + 1)Rfz:I(z���i)=yig 
�(z2=�)(1 + z2=�)�(�+3)=2dzRfz:I(z���i)=yig ft� (z)dz= � + 1� ��̂i:With ẑi � �i + (2yi � 1)ft� (�i)yi � (2yi � 1)pr(t�+2 < �(1 + 2=�)1=2�i) ; (8)it follows then E(�izijYobs; �) = E(�i(zi � �i)jYobs; �) + �iE(�ijYobs; �) = �̂iẑi;7



and E(�iz2i jYobs; �) = E(�i(zi � �i)2jYobs; �) + 2�iE(�i(zi � �i)jYobs; �) + �2iE(�ijYobs; �)= � + 1� ��̂i + �̂i h�2i + 2�i(ẑi � �i)i : (9)When the 
onditional expe
tation of the suÆ
ient statisti
s is 
al
ulated at the ML estimateof �, �̂ =  nXi=1 �̂ixix0i!�1 nXi=1 �̂ixiẑi! ;whi
h is the ML estimate of � in the linear regression ẑi � N(x0i�; �̂i):Letting � !1 gives the 
omplete-data probit regression model and the 
onditional expe
ta-tions of the asso
iated suÆ
ient statisti
s:lim�!1 �̂i = 1; lim�!1 ẑi = �i + (2yi � 1)�(�i)yi � (2yi � 1)�(��i) ; and lim�!1E(z2i jYobs; �) = 1 + �iẑi:The last equality is obtained using the fa
t that � + 1� ��̂i ! 1� �izi + �2i as � !1.5 Maximum Likelihood Estimation Using EM-type Algorithms5.1 MLE of the regression 
oeÆ
ients � with known number of degrees of free-dom � using EMWith the 
omplete-data f(xi; yi; zi; �i) : i = 1; :::; ng des
ribed in Se
tion 4, the EM algorithm for�nding the MLE of � with known � is as follows. At iteration t+ 1 with input �(t),E-step of EM: Compute �̂i and ẑi for all i = 1; :::; n in (7) and (8) with � = (�(t); �), and thenthe expe
ted suÆ
ient statisti
s Ŝ�xx =Pni=1 �̂ixix0i and Ŝ�xy =Pni=1 �̂ixiẑi:M-step of EM: Update �: �(t+1) = Ŝ�1�xxŜ�xy.5.2 MLE of � = (�; �) with unknown number of degrees of freedom � usingECMETo use the EM algorithm to �nd the MLE of � = (�; �) when the number of degrees of freedom �is unknown, 
omputeE((ln �i � �i)jYobs; �) = �((� + 1)=2) � ln((� + 1)=2) + E �ln � + 1� + (zi � �i)2 ����Yobs; ��� �̂i (10)8



for all i = 1; :::; n; where �(�) � d ln (�(�)) =d� = �0(�)=�(�) is the digamma fun
tion. Be
ausethere are no (obvious) numeri
al methods for 
omputing the 
onditional expe
tation term in (10)and ECME typi
ally 
onverges dramati
ally faster than EM, we use ECME with two 
onstrainedmaximization (CM) steps: one CM step maximizes the expe
ted 
omplete-data log-likelihood over� with � �xed at its 
urrent estimate; and the other CM step maximizes the 
onstrained a
tuallikelihood over � with � �xed at its 
urrent estimate, where the 
onstrained likelihood fun
tion of� given � is `(�j�; Yobs) = nXi=1 ln (yi(1� pr(t� < ��i)) + (1� yi)pr(t� < ��i)) : (11)The ECME algorithm for �nding the MLE of � = (�; �) is as follows. At iteration t+ 1 withinput �(t) = (�(t); �(t)),E-step of ECME: The same as the E-step of EM: 
ondition on the 
urrent parameter estimates,�(t) = (�(t); �(t)).CM-step 1 of ECME: The same as the M-step of EM.CM-step 2 of ECME: Sear
h for the �(t+1) that maximizes `(�j�(t+1); Yobs).Then update � using, for example, the half-interval method (Carnahan, Luther, and Wilks,1969) to maximize `(�j�; Yobs) in the likelihood fun
tion (11).5.3 MLE of the robit model using PX-EM: a more eÆ
ient algorithm for 
om-puting (�̂; �̂)Liu, Rubin, and Wu (1998) show that the PX-EM algorithm, whi
h makes use of the extra infor-mation 
aptured in the imputed 
omplete data, 
onverges mu
h faster than the EM algorithm for�nding the MLE of the t-distribution and the probit regression model. Here PX-EM is used to �ndthe MLE of the robit model, whi
h involves both the t-distribution and the probit model. To makeuse of the extra information 
aptured in the 
omplete data, following Liu, Rubin, and Wu (1998),the 
omplete-data model is extended as(�i=�)j�� � Gamma(��=2; ��=2); zij(�i; ��) � N(xi��; �2=�i);9



and yi = I(zi � 0)for i = 1; :::; n, where �� = (��; ��; �; �) with � > 0 and � > 0. The observed-data model ispreserved with the redu
tion fun
tion� = (�=�)�� and � = ��: (12)The 
omplete-data suÆ
ient statisti
s for the expanded parameters �� are given in (6). The
omplete-data MLE of �� is given by�̂ = n�1 nXi=1 �i; �̂2 = n�1(S�zz � S0�xzS�1�xxS�xz);and �̂� and �̂� are the same as �̂ and �̂, respe
tively. Compared to the EM algorithm in Se
tion5.1 and the ECME algorithm in Se
tion 5.2, the 
orresponding PX-EM and PX-ECME algorithmsrequire only simple extra 
omputation, namely, the 
onditional expe
tations of S� and S�zz. ThePX-EM algorithm for �nding the regression 
oeÆ
ients � with known number of degrees of freedom� is then a simple extension of the EM algorithm and is given as follows. At iteration t + 1 withinput �(t),E-step of PX-EM: The same as the E-step of EM, ex
ept for the extra 
al
ulation of the 
on-ditional expe
tations Ŝ� =Pni=1 �̂i and Ŝ�zz = n(� + 1)� �Pni=1 �̂i +Pni=1 �̂i(2�iẑi � �2i ):M-step of PX-EM: Compute �̂� = Ŝ�1�xxŜ�xy, �̂ = n�1Ŝ� , and �̂2 = n�1(Ŝ�zz � Ŝ0�xzŜ�1�xxŜ�xz)and then apply the redu
tion fun
tion to update �: �(t+1) = (�̂=�̂)�̂�With unknown number of degrees of freedom �, the ECME algorithm is then extended to thefollowing PX-ECME algorithm. At iteration t+ 1 with input �(t) = (�(t); �(t)),E-step of PX-ECME: The same as the E-step of PX-EM, just 
onditioning on the parameterestimates, �(t) = (�(t); �(t)).CM-step 1 of PX-ECME: The same as the M-step of PX-EM.CM-step 2 of PX-ECME: The same as the CM-step 2 of ECME.10



6 Bayesian Estimation of the Robit Regression Model with KnownNumber of Degrees of Freedom Using DA AlgorithmsFor Bayesian estimation of the robit regression model, this paper uses the multivariate t-distributionpr(�) = tp(0; S�10 ; �0) (13)as the prior distribution for the regression 
oeÆ
ients �, where S0 is a known (p� p) non-negativede�nite s
atter matrix and �0 is the known degrees of freedom. When S0 is positive de�nite, theposterior distribution of � is proper be
ause the likelihood is bounded. When S0 = 0 the prior distri-bution for � is 
at and � may have an improper posterior in the sense that R� pr(�)`(�jYobs)d� =1.Chen and Shao (1999) dis
uss this issue.The t-distribution (13) 
an be represented as the marginal distribution of � in the followingwell-known hierar
hi
al stru
ture�0 � Gamma(�0=2; �0=2) and �j�0 � Np(0; S�10 =�0): (14)Like the missing weights �i (i = 1; :::; n), in the sequel �0 is treated as missing. Correspondingto the 
omplete data augmented for implementation of the EM algorithms, the 
omplete datafor generating draws of � from its posterior distribution using the DA algorithm 
onsist of Yobs,z = (z1; :::; zn) and � = (�0; �1; :::; �n).6.1 Simulating the posterior of � using the DA algorithmSimilar to the implementation of the EM algorithm for �nding the ML estimates of �, the imple-mentation of the DA algorithm for simulating the posterior of � 
onsists of an Imputation (I) stepand a Posterior simulation (P) step, whi
h are given as follows.I-step of DA: Conditioning on the observed data and the 
urrent draw of �, draw f(zi; �i) : i =1; :::; ng by �rst taking a draw of zi from the trun
ated t(�i = x0i�; 1; �), whi
h is either left(yi = 1) or right (yi = 0) trun
ated at 0, and then taking a draw of �i fromGamma � + 12 ; � + (zi � �i)22 !for all i = 1; :::; n, and a draw of �0 from its distribution given in (14).11



P-step of DA: Conditioning on the 
urrent draws of f(zi; �i) : i = 1; :::; ng, draw � from thep-variate normal distribution Np ��̂; (�0S0 + S�xx)�1� ;where �̂ = (�0S0 + S�xx)�1S�xz; (15)and S�xx and S�xz are de�ned in (6).6.2 Simulating the posterior of � via eÆ
ient DA algorithmsLike the EM algorithm, the DA algorithm 
an 
onverge very slowly. The DA algorithm 
an bea

elerated by using the ideas of the PX-EM algorithm. Two approa
hes, whi
h are pra
ti
allyequivalent, 
an be taken. One is the PX-DA algorithm (Liu and Wu, 1999; see also Meng andvan Dyk, 1999), whi
h extends the PX-EM algorithm by making use of the group transformationindexed by the expanded parameters used in the PX-EM algorithm. Te
hni
ally, what is neededis a prior on the group transformation. This prior spe
i�
ation 
an be avoided by using theCA-DA algorithm (Liu, 1999), whi
h adjusts the 
urrent draws of the parameters and missingdata by redrawing the suÆ
ient statisti
s of the expanded parameters and the original parameters
onditioning on their 
omplements. Typi
ally, the 
omplements take the form of residuals, or moreexa
tly, pivotal quantities. Here, we take the CA-DA approa
h.First, adjust individual s
ores zi for their 
ommon s
ale parameter �. The suÆ
ient statisti
for �, after integrating out the regression 
oeÆ
ients �, iss2 = nXi=1 �i �zi � x0i�̂�2 + �̂0�0S0�̂;where �̂ = (�0S0 + S�xx)�1S�xz. To draw (s2; �) with zi (i = 1; :::; n) �xed up to a proportionality
onstant (i.e., the s
ale of zis), take the re-s
aling transformationz�i = zi=s (i = 1; :::; n): (16)with the 
onstraint nXi=1 �i �z�i � x0i�̂��2 + (�̂�)0�0S0�̂� = 1; (17)12



where �̂� = (�0S0 + S�xx)�1S�xz� with S�xz� obtained from S�xz by substituting z�i for zi. Sin
ethe transformation (16) from (z�; s) to z with the 
onstraint (17) is one-to-one, a version of theCA-DA algorithm 
an be obtained from DA by repla
ing the P-step of DA with a step that draws(�; s2), 
onditioning on z�. The Ja
obean of the transformation from (z; �) onto (z�; s; � = �) withthe 
onstraints (17), as a fun
tion of (s; �), is proportional to sn�1: The 
onditional distribution of(s; �) given z� is thenpr(s; �j�; z�; Yobs) = pr(sj�; z�; Yobs) � pr(�js; �; z�; Yobs);where pr(s2j�; z�; Yobs) = Gamma(n=2; 1=2) and pr(�js; �; z�; Yobs) = N(s�̂�; (�0S0+S�xx)�1): Thisleads to the following eÆ
ient DA algorithm, denoted by E-DA 1,I-step of E-DA 1: This is the same as the I-step of DA.P-step of E-DA 1: This is the same as the P-step of DA, ex
ept for res
aling �̂ by a fa
tor of�n= hPni=1 �i(zi � x0i�̂)2 + �̂0�0S0�̂i1=2 ; where �2n is a draw from the 
hi-square distributionwith n degrees of freedom.For the probit regression model, i.e., � = 1 and thereby �i = 1 for all i = 1; :::; n; E-DA 1 isequivalent to the PX-DA algorithm of Liu and Wu (1999), who 
onsidered a 
at prior on �. TheP-step of E-DA 1 impli
itly integrates out the s
ale of zis, whi
h explains intuitively why E-DA 1
onverges faster than DA.Se
ond, adjust the individual weights for their s
ale to obtain a DA sampling s
heme that iseven faster than E-DA 1. Letw = nXi=0 �i�i and ws2 = nXi=1 �i(zi � x0i�̂)2 + �̂0�0S0�̂;where �i = � for all i = 1; :::; n. Take the transformation�i = w��i (i = 0; :::; n;w > 0) and zi = sz�i (i = 1; :::; n;w > 0)with the 
onstraintsnXi=0 �i��i = 1 and nXi=1 ��i (z�i � x0i�̂�)2 + �̂0�0S0�̂ = 1; (18)13



where �̂� = (��0S0 + S��xx)�1S��xz� = (�0S0 + S�xx)�1S�xz� with S��xx and S��xz� obtained fromS�xx and S�xz, respe
tively, by repla
ing �i with ��i and zi with z�i : The Ja
obean of the transfor-mation from (�; z; �) to (��; z�; w; s; � = �) with the 
onstraints (18), as a fun
tion of (w; s; �) isproportional to wnsn�1. Thus, 
onditioning on z�, ��, and Yobs, (w; s; � = �) is distributed aspr(wjz�; ��; Yobs) � pr(sjw; z�; ��; Yobs) � pr(�jw; s; z�; ��; Yobs);where pr(wjz�; ��; Yobs) = Gamma((�0 + n�)=2; 1=2); pr(s2jw; z�; ��; Yobs) = Gamma(n=2; w=2),and pr(�jw; s; z�; ��; Yobs) = Np(s�̂�; w�1(��0S0 + S��xx)�1): This leads to the following eÆ
ientDA algorithm, denoted by E-DA 2,I-step of E-DA 2: This is the same as the I-step of DA.P-step of E-DA 2: This is the same as the P-step of E-DA 1, ex
ept for res
aling the draw of �by a fa
tor of �Pni=0 �i�i=�2�0+n��1=2 ; where �2�0+n� is a draw from the 
hi-square distributionwith �0 + n� degrees of freedom.The P-step of E-DA 2 impli
itly integrates out both the s
ale of zis and the s
ale of �is, whi
hexplains why E-DA 2 is 
onverges faster than both DA and E-DA 1.7 A Numeri
al ExampleThe data are taken from Finney (1947) and 
onsist of 39 binary responses denoting the presen
e(y = 1) or absen
e (y = 0) of vaso-
onstri
tion of the skin of the subje
ts after inspiration of avolume V of air at inspiration rate R. The data were obtained from repeated measurements onthree individual subje
ts, the numbers of observations per subje
t being 9, 8, and 22. Finney (1947)found no eviden
e of inter-subje
t variability, treated the data as 39 independent observations, andanalyzed the data using the probit regression model with V and R in the logarithm s
ale as
ovariates. This data set was also analyzed by Pregibon (1982), using robust pro
edures (
alledresistant �tting methods) as alternatives to logisti
 regression.The data are displayed in Figure 2. The �tted probability 
ontours obtained from the MLEindi
ate that there is little di�eren
e between the the �tted probit and logisti
 regression models.From these 
ontours, the robit(7) and logisti
 models are almost identi
al, suggesting again thatthe robit(7) model is a ni
e alternative to the logisti
 model in the sense that the robit(7) regression14



model provides results 
an be understood as those from the logisti
 model and that the MLE ofrobit(7) regression model is robust.The EM algorithm was applied to 
hoose the number of degrees of freedom. The algorithmwas stopped when the likelihood in
rement be
omes numeri
ally instable be
ause of the a

ura
yin evaluation of the probability fun
tions of the tdistributions. The estimate of �̂ is about 0.11 withthe likelihood value -10.62. The �tted robit models with various numbers of degrees of freedom arerepresented by the probability 
ontours in Figure 3. The use of a small number of the degrees offreedom is intuitively suggested by the data, in whi
h the observations with positive responses andthose with negative responses 
an be almost separated by a line on the plane of ln(V ) and ln(R)ex
ept for the three observations with i = 4, 18, and 24. These three observations are identi�edfrom the �tted individual weights. Pregibon (1982) also found that these three observations arein
uential to the ML estimation of the logisti
 model. The �tted 0.1, 0.5, and 0.9 
ontours byPregibon are similar to those obtained from the robit model with about � = 2 degrees of freedom.The Bayesian results using the prior distribution with �0 = 1 and S0 = 0:0001I, whi
h ispra
ti
ally 
at for the skin vaso-
onstri
tion data, were obtained using the DA algorithms. Figure4 displays the posterior probabilitypr(y = 1jx) = Z� pr(y = 1jx; �)f(�jYobs)d�with various known numbers of degrees of freedom, where f(�jYobs) is the posterior distributionof �. These results are similar to those obtained from the ML �tting. From Finney (1947), it isof interest to 
ompare the di�eren
e �RATE � �VOL. Figure 5 shows the posterior distributions (insolid line) of the di�eren
e �RATE � �VOL obtained from the robit model with � = 1; 7; 2; or 1.The posterior probability pr(d > 0jYobs) in
reases from 0.68 to 0.91 as � de
rease to 1. Figure 5also shows the 
orresponding results obtained with the two most in
uential observations (i = 4 and8) removed. These results suggest that the robit model with a small number of degrees of freedomprovides reliable inferen
e, for example, regarding the di�eren
e between �RATE and �VOL.8 Con
lusionIt has been shown that the robit model is a useful robust alternative to the probit and logisti
models for analyzing binary response data. The advantages of using the robit model in
lude (1)15



the inferen
e based on the robit model is robust to the presen
e of outlying observations, and(2) 
omputation for a Bayesian robit regression model using Markov 
hain Monte Carlo (MCMC)methods is simpler than that for the logisti
 model (see, for example, Zeger and Karim (1991)),espe
ially when the model is extended to allow for random e�e
ts. Sin
e robit(�) with small � givesmore weight to the observations that are 
lose to the dividing line (pr(y = 1jx) = (pr(y = 0jx) = 1=2when they agree with the �tted model, the robit model with a small number of degrees of freedomshould also be useful in 
lassi�
ation. In addition, as with the probit model (e.g., Albert and Chib,1993; and Chib and Greenberg, 1998), the extension of the robit model to 
orrelated multivariateresponses is straightforward, where the eÆ
ient DA algorithms appear to be espe
ially useful (Liu,2000).
A
knowledgementThe author thanks Dr. Diane Lambert for her numerous insightful and 
onstru
tive 
omments.
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Figure 1: The Q-Q plot of the robit (7) model and the logisti
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(b) robit(7) ~ logit

log-likelihood = -14.65
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(c) robit(2)

log-likelihood = -13.95
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(d) robit(1)

log-likelihood = -12.55
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(e) robit(0.5)

log-likelihood = -11.35
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(f) robit(0.25)

log-likelihood = -10.77

Figure 3: The robit models with various numbers of degrees of freedom �tted to the skin vaso-
onstri
tion data using the methods of maximum likelihood.
21



Volume of inspiration (liters)

R
at

e 
of

 in
sp

ira
tio

n 
(li

te
rs

 p
er

 s
ec

.)

0 1 2 3 4

0
1

2
3

4

0.050.1
0.5
0.90.95

(a) robit(infinity)=probit

Volume of inspiration (liters)

R
at

e 
of

 in
sp

ira
tio

n 
(li

te
rs

 p
er

 s
ec

.)
0 1 2 3 4

0
1

2
3

4

0.050.1
0.5
0.90.95

(b) robit(7) ~ logit
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(d) robit(1)

Figure 4: The robit models with various numbers of degrees of freedom �tted to the skin vaso-
onstri
tion data using the Bayesian methods.
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Figure 5: The posterior distributions of the di�eren
e d = �RATE � �VOL obtained from the robitmodels with various numbers of degrees of freedom �tted to the skin vaso-
onstri
tion data withand without the two individual observations with i = 4 and 8:
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