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1 IntrodutionThe logisti and probit regression models are ommonly used in pratie to analyze binary responsedata, but many authors (see, Pregibon (1982) and the referenes therein) have shown that theirmaximum likelihood estimators are not robust. This paper onsiders a robit regression, whihreplaes the normal distribution in probit regression with a t-distribution with known or unknowndegrees of freedom. The use of the t-distribution for robust estimation in the di�erent ontextwhere the response variables are typially modeled with the normal distribution has been addressedby many authors (e.g., Rubin, 1983; Lange, Little, and Taylor 1989; Liu and Rubin, 1995). Asan alternative to logisti regression, this model has been previously suggested in the literatureby Mudholkar and George (1978) and Albert and Chib (1993). Mudholkar and George (1978)disovered that a t-distribution with 9 degrees of freedom has the same kurtosis as the logistiregression. Albert and Chib (1993) suggested the use of a t-distribution with 8 degrees of freedomand provided the detailed implementation of the Gibbs sampler for Bayesian estimation.It is shown that (i) the maximum likelihood estimators are robust if the number of degreesof freedom is known; (ii) the robit regression model with about seven degrees of freedom providesan exellent approximation to the logisti regression model; and (iii) the robit regression modelwith a large number of degrees of freedom approximates the probit regression model. Thus, ina ertain sense, the robit regression model provides a rih lass of models, inluding logisti andprobit regression models as speial ases, for analysis of binary response data.This paper also provides eÆient EM-type algorithms (Dempster, Laird, and Rubin, 1977; Liu,Rubin, and Wu, 1998) for �nding the maximum likelihood estimates of the regression oeÆientsin the robit model. These algorithms provide information that an be used to identify outliers withtoo muh inuene on the maximum likelihood estimates of the regression oeÆient under thelogisti and probit models. EÆient Data-Augmentation (DA) algorithm (Tanner and Wong, 1987;Liu and Wu, 1999; Liu 1999) an be used to obtain estimates under a Bayesian robit model. TheDA algorithm for the robit regression model is muh simpler to implement than the existing Gibbssampler (see, for example, Zeger and Karim (1991)) for the logisti regression model. Furthermore,the eÆient DA algorithm an be extended to handle multivariate binary responses, as disussedbriey in end of the paper.The rest of the paper is arranged as follows. Setion 2 desribes the robit model and its rela-2



tionship with the probit and logisti models. Setion 3 shows that the robust maximum likelihoodestimators of the regression oeÆients are robust. Setion 4 formulates a omplete data modelfor robit regression that an be used for maximum likelihood estimation using EM-type algorithmsand for identifying outliers under logisti and probit models. Setion 5 provides detailed imple-mentation of the EM, ECME, and PX-EM algorithm for maximum likelihood estimation of therobit model. Setion 6 desribes the DA algorithms for �tting a Bayesian robit model. Setion 7illustrates the methodology with an example. Finally, Setion 8 onludes with a few remarks.2 The Robit Model2.1 The logisti and probit modelsSuppose that the observed data onsist of n independent observations f(xi; yi) : i = 1; :::; ng with ap-dimensional ovariate vetor xi and binary response yi that is either 0 or 1. The logisti regressionmodel is spei�ed bylogit (pr(yi = 1jxi; �)) = ln pr(yi = 1jxi; �)1� pr(yi = 1jxi; �) = x0i� (i = 1; :::; n): (1)The logisti regression model an also be derived by assuming that there are latent variables zi =x0i� + ei, where ei logisti with distribution funtionFlogisti(x) = expfxg1 + expfxg (2)and densityflogisti(x) = expfxg(1 + expfxg)2 = 1(expf�x=2g + expfx=2g)2 = 12(1 + osh(x)) (3)and yi is one if zi > 0 and zero otherwise. Then, the logisti regression model (1) is obtained asthe marginal distribution of yi. The maximum likelihood estimates of � an be obtained using theiterative re-weighted least-squares.The probit model (e.g., Albert and Chib, 1993), for whihpr(yi = 1jxi; �) = 1� pr(yi = 0jxi; �) = �(x0i�) (i = 1; :::; n);is obtained by replaing the logisti distribution for the latent error terms ei with the standardnormal distribution, where �(x) and �(x) are the density and distribution funtions of the standard3



normal distribution, respetively. The maximum likelihood estimates of � in the probit model anbe obtained using the EM algorithm (Dempster, Laird, and Rubin, 1977) or the PX-EM algorithm(Liu, Rubin, and Wu, 1998).2.2 The robit model: a simple extension of the probit modelTo have a robust model, following Lange, Little, and Taylor (1989), who replaed the normal distri-bution in linear regression model with a t-distribution to obtain robust estimators of linear regres-sion oeÆients, replae the normal distribution in probit regression model with the t-distributionwith � number of degrees of freedom. For omputational simpliity, whih itself is important in theurrent state of the art in statistis as disussed by Liu (2000), Albert and Chib (1993) suggestedthe use of a t-distribution with 8 degrees of freedom and provided the detailed implementation ofthe Gibbs sampler for Bayesian estimation.We all this model robit regression, and denote by robit(�) the robit regression model with �degrees of freedom. More formally, the robit regression model for the data f(xi; yi) : i = 1; :::; ng ispr(yi = 1jxi; �) = 1� pr(yi = 0jxi; �) = F�(x0i�) (i = 1; :::; n);where F�(x) denotes the df of the t random variable with enter zero, sale parameter one, and �degrees of freedom. F�(x) has the density funtionf�(x) � �((� + 1)=2)(��)1=2�(�=2)(1 + x2=�)(�+1)=2 (x 2 (�1;1)):As � !1, the robit(�) model beomes the probit regression model.2.3 The robit regression model with seven degrees of freedom: an approxima-tion to the logisti modelEmpirially, the robit link with about seven degrees of freedom approximates the logisti link,as Figure 1 suggests (The sale parameter � = 1:5484 in Figure 1 was hosen by numeriallyminimizing maxxifjF�(xi=�) � Flogisti(xi)j : xi = �10 + 0:002i; i = 1; :::; 1000g over �. For� = 1:5484, the maximum distane is about 0.0006). The quantiles below the 0.01 and 0.99 quantilesswing away from the referene line (dotted diagonal line), suggesting that the tail probabilities ofthe robit regression model are heavier than those of the logisti distribution. It is this tail property4



that distinguishes the robit and logisti links in terms of robust estimation. To balane robustnessand approximation to the logisti model, one may like to use the t-distribution with even smallernumber of degrees of freedom, suh as 6 and 5.3 Robustness of Likelihood-based Inferene Using Logisti, Pro-bit, and Robit Regression ModelsConsider the e�ets of a potential observation (x; y) on the estimates of pr(yijxi; �) for all i, or onthe estimate of the regression oeÆient vetor � and onsider the e�etive sample size s (s > 0)of the potential observation. Without loss of generality, take y = 1: Let s (s > 0) be the e�etivesample size. Denote by �̂+(x;y);s the ML estimate of � with (y; x) inluded, that is,�̂+(x;y);s = argmax� f`+(x;y);s(�) � `(�) + s ln(pr(yjx; �))g;where `(�) denotes the log-likelihood given the observed data. If the ML estimates �̂ and �̂+(x;y);sare unique and �nite, the potential inuene of (x; y) is de�ned asI(x; y) � lims!+0 �̂+(x;y);s � �̂s : (4)If the Hessian matrix H(�̂) = �2`(�̂)=(����0) is negative de�nite, thenI(x; y) = �H�1(�̂)� ln pr(yjx; �̂)�� :Given the observed-data, H(�̂) is �xed and an be viewed as a saling matrix for the fator� ln pr(yjx; �̂)=��: Given the observed-data, �̂ is also onstant. To avoid the trivial ases, assumethat all the omponents of �̂ are non-zero so�̂0 � ln pr(yjx; �̂)��is a onvenient salar fator. For the logisti regression model, �̂0� ln pr(yjx; �̂)=�� = x0�̂=(1+ex0�̂);implying that the inuene an be unbounded. For the probit regression model,� ln pr(yjx; �̂)�� = �(x0�̂)�(x0�̂)x0�̂:5



When x0�̂ ! �1, this fator is approximately �(x0�̂)2. This quadrati funtion in x indiatesthat the inuene of (y; x) is unbounded and is more extreme than the inuene under the logistiregression model.For the robit regression model,� ln pr(yjx; �̂)�� = f�(x0�̂)F�(x0�̂)x0�̂:This fator is bounded, and thereby the I(x; y) is bounded beauselimx0�̂!�1 f�(x0�̂)F�(x0�̂)x0�̂ = limu!�1 f�(u)F�(u)u = � limu!�1 (� + 1)u� + u2 u = � + 1and limx0�̂!1 f�(x0�̂)F�(x0�̂)x0�̂ = lim�!1 f�(�)F�(�)� = 0:4 Complete Data for Simple Maximum Likelihood EstimationLet yi denote the univariate binary response of the i-th individual, and let xi denote the p-dimensional vetor of ovariates for i = 1; :::; n. Let�ij� � Gamma(�=2; �=2) and zij(�i; �) � N(x0i�; 1=�i) (i = 1; :::; n);where � = (�; �) with � being the p-dimensional vetor of regression oeÆients and � being thenumber of degrees of freedom. In the literature, �i is alled weight, for example, in the ontext ofiterative re-weighted least-squares. Then the robit regression model is ompleted by speifyingyi = 8><>: 1; if zi > 0;0; if zi � 0: (5)This omplete-data model belongs to the exponential family. The suÆient statistis for � areS� = nXi=1 �i; S�xx = nXi=1 �ixix0i; S�zz = nXi=1 �iz2i ; S�xz = nXi=1 �ixizi; and Sln ��� = nXi=1(ln �i� �i); (6)and the omplete-data maximum likelihood estimate of � = (�; �) is given by�̂ = S�1�xxS�xz and �̂ = argmax� [�n ln�(�=2) + n(�=2) ln(�=2) + (�=2)Sln ��� ℄ :6



Let �i = x0i�, denote by t� the t-deviate with loation zero, sale parameter one, and thenumber of degrees of freedom �, and denote by ft� (:) the probability density of t� , i.e.,ft� (z) = �(1 + z2=�)�(�+1)=2with the normalizing onstant � = (��)�1=2�((� + 1)=2)��1(�=2):Then �̂i � E(�ijYobs; �) = E(E(�ijzi; Yobs; �)) = E � 1 + 1=�1 + (zi � �i)2=� ����Yobs; ��= � + 1� Rfz:I(z���i)=yig �(1 + z2=�)�(�+3)=2dzRfz:I(z���i)=yig ft� (z)dz= 8><>: pr(t�+2<�(1+2=�)1=2�i)pr(t�<��i) ; if yi = 0;pr(t�+2>�(1+2=�)1=2�i)pr(t�>��i) ; if yi = 1= yi � (2yi � 1)pr(t�+2 < �(1 + 2=�)1=2�i)yi � (2yi � 1)pr(t� < ��i) ; (7)E(�i(zi � �i)jYobs; �) = � + 1� E � zi � �i1 + (zi � �i)2=� ����Yobs; ��= � + 1� Rfz:I(z���i)=yig �z(1 + z2=�)�(�+3)=2dzRfz:I(z���i)=yig ft� (z)dz= (2yi � 1)ft� (�i)yi � (2yi � 1)pr(t� < ��i)= �̂i (2yi � 1)ft� (�i)yi � (2yi � 1)pr(t�+2 < �(1 + 2=�)1=2�i) ;E(�i(zi � �i)2jYobs; �) = � + 1� E  (zi � �i)21 + (zi � �i)2=� �����Yobs; �!= (� + 1)Rfz:I(z���i)=yig �(z2=�)(1 + z2=�)�(�+3)=2dzRfz:I(z���i)=yig ft� (z)dz= � + 1� ��̂i:With ẑi � �i + (2yi � 1)ft� (�i)yi � (2yi � 1)pr(t�+2 < �(1 + 2=�)1=2�i) ; (8)it follows then E(�izijYobs; �) = E(�i(zi � �i)jYobs; �) + �iE(�ijYobs; �) = �̂iẑi;7



and E(�iz2i jYobs; �) = E(�i(zi � �i)2jYobs; �) + 2�iE(�i(zi � �i)jYobs; �) + �2iE(�ijYobs; �)= � + 1� ��̂i + �̂i h�2i + 2�i(ẑi � �i)i : (9)When the onditional expetation of the suÆient statistis is alulated at the ML estimateof �, �̂ =  nXi=1 �̂ixix0i!�1 nXi=1 �̂ixiẑi! ;whih is the ML estimate of � in the linear regression ẑi � N(x0i�; �̂i):Letting � !1 gives the omplete-data probit regression model and the onditional expeta-tions of the assoiated suÆient statistis:lim�!1 �̂i = 1; lim�!1 ẑi = �i + (2yi � 1)�(�i)yi � (2yi � 1)�(��i) ; and lim�!1E(z2i jYobs; �) = 1 + �iẑi:The last equality is obtained using the fat that � + 1� ��̂i ! 1� �izi + �2i as � !1.5 Maximum Likelihood Estimation Using EM-type Algorithms5.1 MLE of the regression oeÆients � with known number of degrees of free-dom � using EMWith the omplete-data f(xi; yi; zi; �i) : i = 1; :::; ng desribed in Setion 4, the EM algorithm for�nding the MLE of � with known � is as follows. At iteration t+ 1 with input �(t),E-step of EM: Compute �̂i and ẑi for all i = 1; :::; n in (7) and (8) with � = (�(t); �), and thenthe expeted suÆient statistis Ŝ�xx =Pni=1 �̂ixix0i and Ŝ�xy =Pni=1 �̂ixiẑi:M-step of EM: Update �: �(t+1) = Ŝ�1�xxŜ�xy.5.2 MLE of � = (�; �) with unknown number of degrees of freedom � usingECMETo use the EM algorithm to �nd the MLE of � = (�; �) when the number of degrees of freedom �is unknown, omputeE((ln �i � �i)jYobs; �) = �((� + 1)=2) � ln((� + 1)=2) + E �ln � + 1� + (zi � �i)2 ����Yobs; ��� �̂i (10)8



for all i = 1; :::; n; where �(�) � d ln (�(�)) =d� = �0(�)=�(�) is the digamma funtion. Beausethere are no (obvious) numerial methods for omputing the onditional expetation term in (10)and ECME typially onverges dramatially faster than EM, we use ECME with two onstrainedmaximization (CM) steps: one CM step maximizes the expeted omplete-data log-likelihood over� with � �xed at its urrent estimate; and the other CM step maximizes the onstrained atuallikelihood over � with � �xed at its urrent estimate, where the onstrained likelihood funtion of� given � is `(�j�; Yobs) = nXi=1 ln (yi(1� pr(t� < ��i)) + (1� yi)pr(t� < ��i)) : (11)The ECME algorithm for �nding the MLE of � = (�; �) is as follows. At iteration t+ 1 withinput �(t) = (�(t); �(t)),E-step of ECME: The same as the E-step of EM: ondition on the urrent parameter estimates,�(t) = (�(t); �(t)).CM-step 1 of ECME: The same as the M-step of EM.CM-step 2 of ECME: Searh for the �(t+1) that maximizes `(�j�(t+1); Yobs).Then update � using, for example, the half-interval method (Carnahan, Luther, and Wilks,1969) to maximize `(�j�; Yobs) in the likelihood funtion (11).5.3 MLE of the robit model using PX-EM: a more eÆient algorithm for om-puting (�̂; �̂)Liu, Rubin, and Wu (1998) show that the PX-EM algorithm, whih makes use of the extra infor-mation aptured in the imputed omplete data, onverges muh faster than the EM algorithm for�nding the MLE of the t-distribution and the probit regression model. Here PX-EM is used to �ndthe MLE of the robit model, whih involves both the t-distribution and the probit model. To makeuse of the extra information aptured in the omplete data, following Liu, Rubin, and Wu (1998),the omplete-data model is extended as(�i=�)j�� � Gamma(��=2; ��=2); zij(�i; ��) � N(xi��; �2=�i);9



and yi = I(zi � 0)for i = 1; :::; n, where �� = (��; ��; �; �) with � > 0 and � > 0. The observed-data model ispreserved with the redution funtion� = (�=�)�� and � = ��: (12)The omplete-data suÆient statistis for the expanded parameters �� are given in (6). Theomplete-data MLE of �� is given by�̂ = n�1 nXi=1 �i; �̂2 = n�1(S�zz � S0�xzS�1�xxS�xz);and �̂� and �̂� are the same as �̂ and �̂, respetively. Compared to the EM algorithm in Setion5.1 and the ECME algorithm in Setion 5.2, the orresponding PX-EM and PX-ECME algorithmsrequire only simple extra omputation, namely, the onditional expetations of S� and S�zz. ThePX-EM algorithm for �nding the regression oeÆients � with known number of degrees of freedom� is then a simple extension of the EM algorithm and is given as follows. At iteration t + 1 withinput �(t),E-step of PX-EM: The same as the E-step of EM, exept for the extra alulation of the on-ditional expetations Ŝ� =Pni=1 �̂i and Ŝ�zz = n(� + 1)� �Pni=1 �̂i +Pni=1 �̂i(2�iẑi � �2i ):M-step of PX-EM: Compute �̂� = Ŝ�1�xxŜ�xy, �̂ = n�1Ŝ� , and �̂2 = n�1(Ŝ�zz � Ŝ0�xzŜ�1�xxŜ�xz)and then apply the redution funtion to update �: �(t+1) = (�̂=�̂)�̂�With unknown number of degrees of freedom �, the ECME algorithm is then extended to thefollowing PX-ECME algorithm. At iteration t+ 1 with input �(t) = (�(t); �(t)),E-step of PX-ECME: The same as the E-step of PX-EM, just onditioning on the parameterestimates, �(t) = (�(t); �(t)).CM-step 1 of PX-ECME: The same as the M-step of PX-EM.CM-step 2 of PX-ECME: The same as the CM-step 2 of ECME.10



6 Bayesian Estimation of the Robit Regression Model with KnownNumber of Degrees of Freedom Using DA AlgorithmsFor Bayesian estimation of the robit regression model, this paper uses the multivariate t-distributionpr(�) = tp(0; S�10 ; �0) (13)as the prior distribution for the regression oeÆients �, where S0 is a known (p� p) non-negativede�nite satter matrix and �0 is the known degrees of freedom. When S0 is positive de�nite, theposterior distribution of � is proper beause the likelihood is bounded. When S0 = 0 the prior distri-bution for � is at and � may have an improper posterior in the sense that R� pr(�)`(�jYobs)d� =1.Chen and Shao (1999) disuss this issue.The t-distribution (13) an be represented as the marginal distribution of � in the followingwell-known hierarhial struture�0 � Gamma(�0=2; �0=2) and �j�0 � Np(0; S�10 =�0): (14)Like the missing weights �i (i = 1; :::; n), in the sequel �0 is treated as missing. Correspondingto the omplete data augmented for implementation of the EM algorithms, the omplete datafor generating draws of � from its posterior distribution using the DA algorithm onsist of Yobs,z = (z1; :::; zn) and � = (�0; �1; :::; �n).6.1 Simulating the posterior of � using the DA algorithmSimilar to the implementation of the EM algorithm for �nding the ML estimates of �, the imple-mentation of the DA algorithm for simulating the posterior of � onsists of an Imputation (I) stepand a Posterior simulation (P) step, whih are given as follows.I-step of DA: Conditioning on the observed data and the urrent draw of �, draw f(zi; �i) : i =1; :::; ng by �rst taking a draw of zi from the trunated t(�i = x0i�; 1; �), whih is either left(yi = 1) or right (yi = 0) trunated at 0, and then taking a draw of �i fromGamma � + 12 ; � + (zi � �i)22 !for all i = 1; :::; n, and a draw of �0 from its distribution given in (14).11



P-step of DA: Conditioning on the urrent draws of f(zi; �i) : i = 1; :::; ng, draw � from thep-variate normal distribution Np ��̂; (�0S0 + S�xx)�1� ;where �̂ = (�0S0 + S�xx)�1S�xz; (15)and S�xx and S�xz are de�ned in (6).6.2 Simulating the posterior of � via eÆient DA algorithmsLike the EM algorithm, the DA algorithm an onverge very slowly. The DA algorithm an beaelerated by using the ideas of the PX-EM algorithm. Two approahes, whih are pratiallyequivalent, an be taken. One is the PX-DA algorithm (Liu and Wu, 1999; see also Meng andvan Dyk, 1999), whih extends the PX-EM algorithm by making use of the group transformationindexed by the expanded parameters used in the PX-EM algorithm. Tehnially, what is neededis a prior on the group transformation. This prior spei�ation an be avoided by using theCA-DA algorithm (Liu, 1999), whih adjusts the urrent draws of the parameters and missingdata by redrawing the suÆient statistis of the expanded parameters and the original parametersonditioning on their omplements. Typially, the omplements take the form of residuals, or moreexatly, pivotal quantities. Here, we take the CA-DA approah.First, adjust individual sores zi for their ommon sale parameter �. The suÆient statistifor �, after integrating out the regression oeÆients �, iss2 = nXi=1 �i �zi � x0i�̂�2 + �̂0�0S0�̂;where �̂ = (�0S0 + S�xx)�1S�xz. To draw (s2; �) with zi (i = 1; :::; n) �xed up to a proportionalityonstant (i.e., the sale of zis), take the re-saling transformationz�i = zi=s (i = 1; :::; n): (16)with the onstraint nXi=1 �i �z�i � x0i�̂��2 + (�̂�)0�0S0�̂� = 1; (17)12



where �̂� = (�0S0 + S�xx)�1S�xz� with S�xz� obtained from S�xz by substituting z�i for zi. Sinethe transformation (16) from (z�; s) to z with the onstraint (17) is one-to-one, a version of theCA-DA algorithm an be obtained from DA by replaing the P-step of DA with a step that draws(�; s2), onditioning on z�. The Jaobean of the transformation from (z; �) onto (z�; s; � = �) withthe onstraints (17), as a funtion of (s; �), is proportional to sn�1: The onditional distribution of(s; �) given z� is thenpr(s; �j�; z�; Yobs) = pr(sj�; z�; Yobs) � pr(�js; �; z�; Yobs);where pr(s2j�; z�; Yobs) = Gamma(n=2; 1=2) and pr(�js; �; z�; Yobs) = N(s�̂�; (�0S0+S�xx)�1): Thisleads to the following eÆient DA algorithm, denoted by E-DA 1,I-step of E-DA 1: This is the same as the I-step of DA.P-step of E-DA 1: This is the same as the P-step of DA, exept for resaling �̂ by a fator of�n= hPni=1 �i(zi � x0i�̂)2 + �̂0�0S0�̂i1=2 ; where �2n is a draw from the hi-square distributionwith n degrees of freedom.For the probit regression model, i.e., � = 1 and thereby �i = 1 for all i = 1; :::; n; E-DA 1 isequivalent to the PX-DA algorithm of Liu and Wu (1999), who onsidered a at prior on �. TheP-step of E-DA 1 impliitly integrates out the sale of zis, whih explains intuitively why E-DA 1onverges faster than DA.Seond, adjust the individual weights for their sale to obtain a DA sampling sheme that iseven faster than E-DA 1. Letw = nXi=0 �i�i and ws2 = nXi=1 �i(zi � x0i�̂)2 + �̂0�0S0�̂;where �i = � for all i = 1; :::; n. Take the transformation�i = w��i (i = 0; :::; n;w > 0) and zi = sz�i (i = 1; :::; n;w > 0)with the onstraintsnXi=0 �i��i = 1 and nXi=1 ��i (z�i � x0i�̂�)2 + �̂0�0S0�̂ = 1; (18)13



where �̂� = (��0S0 + S��xx)�1S��xz� = (�0S0 + S�xx)�1S�xz� with S��xx and S��xz� obtained fromS�xx and S�xz, respetively, by replaing �i with ��i and zi with z�i : The Jaobean of the transfor-mation from (�; z; �) to (��; z�; w; s; � = �) with the onstraints (18), as a funtion of (w; s; �) isproportional to wnsn�1. Thus, onditioning on z�, ��, and Yobs, (w; s; � = �) is distributed aspr(wjz�; ��; Yobs) � pr(sjw; z�; ��; Yobs) � pr(�jw; s; z�; ��; Yobs);where pr(wjz�; ��; Yobs) = Gamma((�0 + n�)=2; 1=2); pr(s2jw; z�; ��; Yobs) = Gamma(n=2; w=2),and pr(�jw; s; z�; ��; Yobs) = Np(s�̂�; w�1(��0S0 + S��xx)�1): This leads to the following eÆientDA algorithm, denoted by E-DA 2,I-step of E-DA 2: This is the same as the I-step of DA.P-step of E-DA 2: This is the same as the P-step of E-DA 1, exept for resaling the draw of �by a fator of �Pni=0 �i�i=�2�0+n��1=2 ; where �2�0+n� is a draw from the hi-square distributionwith �0 + n� degrees of freedom.The P-step of E-DA 2 impliitly integrates out both the sale of zis and the sale of �is, whihexplains why E-DA 2 is onverges faster than both DA and E-DA 1.7 A Numerial ExampleThe data are taken from Finney (1947) and onsist of 39 binary responses denoting the presene(y = 1) or absene (y = 0) of vaso-onstrition of the skin of the subjets after inspiration of avolume V of air at inspiration rate R. The data were obtained from repeated measurements onthree individual subjets, the numbers of observations per subjet being 9, 8, and 22. Finney (1947)found no evidene of inter-subjet variability, treated the data as 39 independent observations, andanalyzed the data using the probit regression model with V and R in the logarithm sale asovariates. This data set was also analyzed by Pregibon (1982), using robust proedures (alledresistant �tting methods) as alternatives to logisti regression.The data are displayed in Figure 2. The �tted probability ontours obtained from the MLEindiate that there is little di�erene between the the �tted probit and logisti regression models.From these ontours, the robit(7) and logisti models are almost idential, suggesting again thatthe robit(7) model is a nie alternative to the logisti model in the sense that the robit(7) regression14



model provides results an be understood as those from the logisti model and that the MLE ofrobit(7) regression model is robust.The EM algorithm was applied to hoose the number of degrees of freedom. The algorithmwas stopped when the likelihood inrement beomes numerially instable beause of the aurayin evaluation of the probability funtions of the tdistributions. The estimate of �̂ is about 0.11 withthe likelihood value -10.62. The �tted robit models with various numbers of degrees of freedom arerepresented by the probability ontours in Figure 3. The use of a small number of the degrees offreedom is intuitively suggested by the data, in whih the observations with positive responses andthose with negative responses an be almost separated by a line on the plane of ln(V ) and ln(R)exept for the three observations with i = 4, 18, and 24. These three observations are identi�edfrom the �tted individual weights. Pregibon (1982) also found that these three observations areinuential to the ML estimation of the logisti model. The �tted 0.1, 0.5, and 0.9 ontours byPregibon are similar to those obtained from the robit model with about � = 2 degrees of freedom.The Bayesian results using the prior distribution with �0 = 1 and S0 = 0:0001I, whih ispratially at for the skin vaso-onstrition data, were obtained using the DA algorithms. Figure4 displays the posterior probabilitypr(y = 1jx) = Z� pr(y = 1jx; �)f(�jYobs)d�with various known numbers of degrees of freedom, where f(�jYobs) is the posterior distributionof �. These results are similar to those obtained from the ML �tting. From Finney (1947), it isof interest to ompare the di�erene �RATE � �VOL. Figure 5 shows the posterior distributions (insolid line) of the di�erene �RATE � �VOL obtained from the robit model with � = 1; 7; 2; or 1.The posterior probability pr(d > 0jYobs) inreases from 0.68 to 0.91 as � derease to 1. Figure 5also shows the orresponding results obtained with the two most inuential observations (i = 4 and8) removed. These results suggest that the robit model with a small number of degrees of freedomprovides reliable inferene, for example, regarding the di�erene between �RATE and �VOL.8 ConlusionIt has been shown that the robit model is a useful robust alternative to the probit and logistimodels for analyzing binary response data. The advantages of using the robit model inlude (1)15



the inferene based on the robit model is robust to the presene of outlying observations, and(2) omputation for a Bayesian robit regression model using Markov hain Monte Carlo (MCMC)methods is simpler than that for the logisti model (see, for example, Zeger and Karim (1991)),espeially when the model is extended to allow for random e�ets. Sine robit(�) with small � givesmore weight to the observations that are lose to the dividing line (pr(y = 1jx) = (pr(y = 0jx) = 1=2when they agree with the �tted model, the robit model with a small number of degrees of freedomshould also be useful in lassi�ation. In addition, as with the probit model (e.g., Albert and Chib,1993; and Chib and Greenberg, 1998), the extension of the robit model to orrelated multivariateresponses is straightforward, where the eÆient DA algorithms appear to be espeially useful (Liu,2000).
AknowledgementThe author thanks Dr. Diane Lambert for her numerous insightful and onstrutive omments.
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(a) robit(infinity) = probit

log-likelihood = -14.66
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(b) robit(7) ~ logit

log-likelihood = -14.65
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(c) robit(2)

log-likelihood = -13.95
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(d) robit(1)

log-likelihood = -12.55
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(e) robit(0.5)

log-likelihood = -11.35
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(f) robit(0.25)

log-likelihood = -10.77

Figure 3: The robit models with various numbers of degrees of freedom �tted to the skin vaso-onstrition data using the methods of maximum likelihood.
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(b) robit(7) ~ logit
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(c) robit(2)
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(d) robit(1)

Figure 4: The robit models with various numbers of degrees of freedom �tted to the skin vaso-onstrition data using the Bayesian methods.
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Figure 5: The posterior distributions of the di�erene d = �RATE � �VOL obtained from the robitmodels with various numbers of degrees of freedom �tted to the skin vaso-onstrition data withand without the two individual observations with i = 4 and 8:
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