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Parameter Expansion and Efficient
Inference
Andrew Lewandowski, Chuanhai Liu and Scott Vander Wiel

Abstract. This EM review article focuses on parameter expansion, a simple
technique introduced in the PX-EM algorithm to make EM converge faster
while maintaining its simplicity and stability. The primary objective concerns
the connection between parameter expansion and efficient inference. It re-
views the statistical interpretation of the PX-EM algorithm, in terms of ef-
ficient inference via bias reduction, and further unfolds the PX-EM mystery
by looking at PX-EM from different perspectives. In addition, it briefly dis-
cusses potential applications of parameter expansion to statistical inference
and the broader impact of statistical thinking on understanding and develop-
ing other iterative optimization algorithms.

Key words and phrases: EM algorithm, PX-EM algorithm, robit regression,
nonidentifiability.

1. INTRODUCTION

The expectation maximization (EM) algorithm of
Dempster, Laird and Rubin (1977) has proven to be a
popular computational method for optimization. While
simple to implement and stable in its convergence, the
EM algorithm can converge slowly. Many variants of
the original EM algorithm have also been proposed
in the last 30+ years in order to overcome shortcom-
ings that are sometimes seen in implementations of the
original method. Among these EM-type algorithms are
the expectation-conditional maximization (ECM) al-
gorithm of Meng and Rubin (1993), the expectation-
conditional maximization either (ECME) algorithm of
Liu and Rubin (1994), the alternating ECM (AECM)
algorithm of Meng and van Dyk (1997) and, more re-
cently, the dynamic ECME (DECME) algorithm of He
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and Liu (2009). This review article focuses on parame-
ter expansion as a way of improving the performance
of the EM algorithm through a discussion of the para-
meter expansion EM (PX-EM) algorithm proposed by
Liu, Rubin and Wu (1998).

The EM algorithm is an iterative algorithm for max-
imum likelihood (ML) estimation from incomplete
data. Let Xobs be the observed data and let f (Xobs; θ)

denote the observed-data model with unknown pa-
rameter θ , where Xobs ∈ Xobs and θ ∈ �. Suppose
that the observed-data model can be obtained from
a complete-data model, denoted by g(Xobs,Xmis; θ),
where Xobs ∈ Xobs, Xmis ∈ Xmis, and θ ∈ �. That is,

f (Xobs; θ) =
∫

Xmis

g(Xobs,Xmis; θ) dXmis.

Given a starting point θ(0) ∈ �, the EM algorithm it-
erates for t = 0,1, . . . between the expectation (E) step
and maximization (M) step:

E step. Compute the expected complete-data log-like-
lihood

Q
(
θ |θ(t))

(1.1)
= E

(
lng(Xobs,Xmis; θ)|Xobs, θ = θ(t))

as a function of θ ∈ �; and
M step. Maximize Q(θ |θ(t)) to obtain

θ(t+1) = arg max
θ∈�

Q
(
θ |θ(t)).(1.2)
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Two EM examples are given in Section 2.
Roughly speaking, the E step can be viewed as creat-

ing a complete-data problem by imputing missing val-
ues, and the M step can be understood as conducting
a maximum likelihood-based analysis. More exactly,
for complete-data models belonging to the exponential
family, the E step imputes the complete-data sufficient
statistics with their conditional expectations given the
observed data and the current estimate θ(t) of the pa-
rameter θ . This to some extent explains the simplic-
ity of EM. The particular choice of (1.1) together with
Jensen’s inequality implies monotone convergence of
EM.

The PX-EM algorithm is essentially an EM algo-
rithm, but it performs inference on a larger full model.
This model is obtained by introducing extra parame-
ters into the complete-data model while preserving the
observed-data sampling model. Section 3.1 presents
the structure used in PX-EM. The theoretical results
established by Liu, Rubin and Wu (1998) show that
PX-EM converges no slower than its parent EM. This
is somewhat surprising, as it is commonly believed
that optimization algorithms generally converge slower
as the number of dimensions increases. To help un-
derstand the behavior of PX-EM, Liu, Rubin and Wu
(1998) provided a statistical interpretation of the PX-
M step in terms of covariance adjustment. This is re-
viewed in Section 3.2 in terms of bias reduction using
the example of binary regression with a Student-t link
(see Mudholkar and George, 1978; Albert and Chib,
1993; Liu, 2004), which serves as a simple robust al-
ternative to logistic regression and is called robit re-
gression by Liu (2004).

To help further understand why PX-EM can work so
well, several relevant issues are discussed in Section 4.
Section 4.1 provides additional motivation behind why
PX-EM can improve upon EM or ECM. In Section 4.2
we argue that parameter expansion can also be used for
efficient data augmentation in the E step. The resulting
EM is effectively the PX-EM algorithm.

In addition to the models discussed here, parame-
ter expansion has now been shown to have computa-
tional advantages in applications such as factor analy-
sis (Liu, Rubin and Wu, 1998) and the analysis of both
linear (Gelman et al., 2008) and nonlinear (Lavielle
and Meza, 2007) hierarchical models. However, Gel-
man (2004) shows that parameter expansion offers
more than a computational method to accelerate EM.
He points out that parameter expansion can be viewed
as part of a larger perspective on iterative simulation
(see Liu and Wu, 1999; Meng and van Dyk, 1999; van

Dyk and Meng, 2001; Liu, 2003) and that it suggests a
new family of prior distributions in a Bayesian frame-
work discussed by Gelman (2006). One example is the
folded noncentral Student-t distribution for between-
group variance parameters in hierarchical models. This
method exploits a parameter expansion technique com-
monly used in hierarchical models, and Gelman (2006)
shows that it can be more robust than the more com-
mon inverse-gamma prior. Inspired by Gelman (2004),
we briefly discuss other potential applications of para-
meter expansion to statistical inference in Section 5.

2. TWO EM EXAMPLES

2.1 The Running Example: A Simple
Poisson–Binomial Mixed-Effects Model

Consider the complete-data model for the observed
data Xobs = X and the missing data Xmis = Z:

Z|λ ∼ Poisson(λ)

and

X|(Z,λ) ∼ Binomial(Z,π),

where π ∈ (0,1) is known and λ > 0 is the unknown
parameter to be estimated.

The observed-data model f (X;λ) is obtained from
the joint sampling model of (X,Z):

g(X,Z;λ)
(2.1)

= λZ

Z! e
−λ Z!

X!(Z − X)!π
X(1 − π)Z−X,

where X = 0,1, . . . ,Z, Z = 0,1, . . . , and λ ≥ 0. That
is, f (X;λ) is derived from g(X,Z;λ) by integrating
out the missing data Z as follows:

f (X;λ) =
∞∑

z=X

λz

z! e
−λ z!

X!(z − X)!π
X(1 − π)z−X

= λXπX

X! e−λ
∞∑

z=X

λz−X

(z − X)!(1 − π)z−X

k=z−X= (λπ)X

X! e−λ
∞∑

k=0

[λ(1 − π)]k
k!

= (λπ)X

X! e−λeλ(1−π)

= (λπ)X

X! e−λπ .

Alternatively, one can get the result from the well-
known fact related to the infinite divisibility of the
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Poisson distribution; namely, if X1 = X and X2 =
Z − X are independent Poisson random variables with
rate λ1 = λπ and λ2 = λ(1 − π), then X1 + X2 ∼
Poisson(λ1 + λ2) and conditional on X1 + X2, X1 ∼
Binomial(X1 + X2, λ1/(λ1 + λ2)).

It follows that the observed-data model is X|λ ∼
Poisson(πλ). Thus, the ML estimate of λ has a closed-
form solution, λ̂ = X/π. This artificial example serves
two purposes. First, it is easy to illustrate the general
EM derivation. Second, we use this example in Sec-
tion 3.3 to show an extreme case in which PX-EM
can converge dramatically faster than its parent EM;
PX-EM converges in one-step, whereas EM converges
painfully slowly.

The complete-data likelihood is given by the joint
sampling model of (X,Z) found in equation (2.1). It
follows that the complete-data model belongs to the
exponential family with sufficient statistic Z for λ. The
complete-data ML estimate of λ is given by

λ̂com = Z.(2.2)

To derive the E step of EM, the conditional distribution
of the missing data Z given both the observed data and
the current estimate of the parameter λ is used. It is
determined as follows:

h(Z|X,λ) = g(X,Z;λ)∑∞
z=X g(X, z;λ)

= [λ(1 − π)]Z−X/(Z − X)!∑∞
z=X([λ(1 − π)]z−X/(z − X)!)

= [λ(1 − π)]Z−X

(Z − X)! eλ(1−π).

Thus, Z|{X,λ} ∼ X + Poisson(λ(1 − π)). This yields

E(Z|X,λ) = X + λ(1 − π).

Thus, the EM algorithm follows from the discussion
of Dempster, Laird and Rubin (1977) on exponential
complete-data models. Specifically, given the updated
estimate λ(t) at the t th iteration, EM follows these two
steps:

E step. Compute Ẑ = E(Z|X,λ = λ(t)) = X + λ(t) ×
(1 − π).

M step. Replace Z in (2.2) with Ẑ to obtain λ(t+1) =
Ẑ.

It is clear that the EM sequence {λ(t) : t = 0,1, . . .} is
given by

λ(t+1) = X + λ(t)(1 − π) (t = 0,1, . . .)(2.3)

converging to the ML estimate

λ̂ = X/π.

Rewrite (2.3) as

λ(t+1) − λ̂ = (1 − π)
(
λ(t) − λ̂

)
to produce a closed-form expression for the conver-
gence rate of EM:

|λ(t+1) − λ̂|
|λ(t) − λ̂| = 1 − π.

This indicates that EM can be very slow when π ≈ 0.

2.2 ML Estimation of Robit Regression via EM

Consider the observed data consisting of n ob-
servations Xobs = {(xi, yi) : i = 1, . . . , n} with a p-
dimensional covariate vector xi and binary response
yi that takes on values of 0 and 1. The binary regres-
sion model with Student-t link assumes that, given the
covariates, the binary responses yi ’s are independent
with the marginal probability distributions specified by

Pr(yi = 1|xi, β) = 1 − Pr(yi = 0|xi, β)
(2.4)

= Fν(x
′
iβ) (i = 1, . . . , n),

where Fν(·) denotes the c.d.f. of the Student-t distri-
bution with center zero, unit scale and ν degrees of
freedom. With ν ≈ 7, this model provides a robust ap-
proximation to the popular logistic regression model
for binary data analysis. Here we consider the case with
known ν.

The observed-data likelihood

f (Xobs;β)

=
n∏

i=1

[Fν(x
′
iβ)]yi [1 − Fν(x

′
iβ)]1−yi (β ∈ R

p)

involves the product of the c.d.f. of the Student-t dis-
tribution Fν(·) evaluated at x′

iβ for i = 1, . . . , n. The
MLE of β does not appear to have a closed-form so-
lution. Here we consider the EM algorithm for finding
the MLE of β .

A complete-data model for implementing EM to find
the ML estimate of β is specified by introducing the
missing data consisting of independent latent variables
(τi, zi) for each i = 1, . . . , n with

τi |β ∼ Gamma(ν/2, ν/2)(2.5)

and

zi |(τi, β) ∼ N(x′
iβ,1/τi).(2.6)



536 A. LEWANDOWSKI, C. LIU AND S. VANDER WIEL

Let

yi =
{

1, if zi > 0,
0, if zi ≤ 0

(i = 1, . . . , n).(2.7)

Then the marginal distribution of yi is preserved and
is given by (2.4). The complete-data model belongs to
the exponential family and has the following sufficient
statistics for β:

Sτxx′ =
n∑

i=1

τixix
′
i and Sτxz =

n∑
i=1

τixiz
′
i .(2.8)

The complete-data ML estimate of β is given by

β̂com = S−1
τxx′Sτxz,(2.9)

leading to the following EM algorithm.
Starting with β(0), say, β(0) = (0, . . . ,0), EM iterates

for t = 0,1, . . . with iteration t + 1 consisting of the
following E and M steps:

E step. Compute Ŝτxx′ = E(Sτxx′ |β = β(t),Xobs) and
Ŝτxz = E(Sτxz|β = β(t),Xobs).

M step. Update the estimate of β to obtain β(t+1) =
Ŝ−1

τxx′ Ŝτxz.

Let fν(·) denote the p.d.f. of Fν(·). The E step can
be coded by using the following results derived in Liu
(2004):

τ̂i = E
(
τi |β = β(t),Xobs

)
(2.10)

= yi − (2yi − 1)Fν+2(−(1 + 2/ν)1/2x′
iβ

(t))

yi − (2yi − 1)Fν(−x′
iβ

(t))
,

ˆτizi = E
(
τizi |β = β(t),Xobs

) = τ̂i ẑi ,(2.11)

where

ẑi ≡ x′
iβ

(t)

+ (2yi − 1)fν(x
′
iβ

(t))

yi − (2yi − 1)Fν+2(−(1 + 2/ν)1/2x′
iβ

(t))

for i = 1, . . . , n.
However, the EM algorithm can also converge slowly

in this example. This is discussed in Section 3.2, where
it is shown that PX-EM can greatly improve the con-
vergence rate.

3. THE PX-EM ALGORITHM

3.1 The Algorithm

Suppose that the EM complete-data model can be
embedded in a larger model g∗(Xobs,Xmis; θ∗, α) with
the expanded parameter (θ∗, α) ∈ � × A. Assume that

the observed-data model is preserved in the sense that,
for every (θ∗, α) ∈ � × A,

f (Xobs; θ) = f∗(Xobs; θ∗, α)(3.1)

holds for some θ ∈ �, where f∗(Xobs; θ∗, α) =∫
Xmis

g∗(Xobs,Xmis; θ∗, α) dXmis. The condition (3.1)
defines a mapping θ = R(θ∗, α), called the reduc-
tion function, from the expanded parameter space
� × A to the original parameter space �. For con-
venience, assume that the expanded parameters are
represented in such a way that the original complete-
data and observed-data models are recovered by fix-
ing α at α0. Formally, assume that there exists a null
value of α, denoted by α0, such that θ = R(θ,α0)

for every θ ∈ �. When applied to the parameter-
expanded complete-data model g∗(Xobs,Xmis; θ∗, α),
the EM algorithm, called the PX-EM algorithm, cre-
ates a sequence {(θ(t)∗ , α(t))} in � × A. In the origi-
nal parameter space �, PX-EM generates a sequence
{θ(t) = R(θ

(t)∗ , α(t))} and converges no slower than the
corresponding EM based on g(Xobs,Xmis; θ); see Liu,
Rubin and Wu (1998).

For simplicity and stability, Liu, Rubin and Wu
(1998) use (θ(t), α0) instead of (θ

(t)∗ , α(t)) for the
E step. As a result, PX-EM shares with EM its E step
and modifies its M step by mapping (θ

(t+1)∗ , α(t+1))

to the original space θ(t+1) = R(θ
(t+1)∗ , α(t+1)). More

precisely, the PX-EM algorithm is defined by replacing
the E and M steps of EM with the following:

PX-E step. Compute

Q
(
θ∗, α|θ(t), α0

)
= E

(
lng∗(Xobs,Xmis; θ∗, α)|Xobs, θ∗ = θ(t),

α = α0
)

as a function of (θ∗, α) ∈ � × A.
PX-M step. Find(

θ(t+1)∗ , α(t+1)) = arg max
θ∗,α

Q
(
θ∗, α|θ(t), α0

)

and update

θ(t+1) = R
(
θ(t+1)∗ , α(t+1)).

Since it is the ordinary EM applied to the parame-
ter expanded complete-data model, PX-EM shares with
EM its simplicity and stability. Liu, Rubin and Wu
(1998) established theoretical results to show that PX-
EM can converge no slower than EM. Section 3.2 uses
the robit regression example to give the statistical inter-
pretation of Liu, Rubin and Wu (1998) in terms of co-
variance adjustment. With the toy example, Section 3.3
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demonstrates that PX-EM can be dramatically faster
than its parent EM. A discussion of why PX-EM can
perform better than EM is given in Section 4.

3.2 Efficient Analysis of Imputed Missing Data:
Robit Regression

The E step of EM imputes the sufficient statistics
Sτxx′ and Sτxz with their expectations based on the pre-
dictive distribution of the missing (τi, zi) data condi-
tioned on the observed data Xobs and β(t), the current
estimate of β at the t th iteration. Had the ML estimate
of β , β̂ , been used to specify the predictive distribution,
EM would have converged on the following M step,
which in this case performs correct ML inference. We
call the predictive distribution using β̂ the correct im-
putation model. Before convergence, that is, β(t) �= β̂ ,
the E step imputes the sufficient statistics Sτxx′ and
Sτxz using an incorrect imputation model. The M step
also uses a wrong model since it does not take into
account that the data were incorrectly imputed based
on an assumed parameter value β(t) �= β̂ . The M step
moves the estimate β(t+1) toward β̂ , but the difference
between β(t+1) and β̂ can be regarded as bias due to
the use of the β(t).

The bias induced by the E step can be reduced by
making use of recognizable discrepancies between im-
puted statistics and their values under the correct im-
putation model. To capture such discrepancies, Liu,
Rubin and Wu (1998) considered parameters that are
statistically identified in the complete-data model but
not in the observed-data model. These parameters are
fixed at their default values to render the observed-data
model identifiable. In the context of EM for robit re-
gression, these parameters are the scale parameters of
τi and zi , denoted by α and σ . In the observed-data
model, they take the default values α0 = 1 and σ0 = 1.

When activated, the extra parameters are estimated
by the M step and these estimates converge to the de-
fault values to produce ML parameter estimates for
the observed data model. Thus, in the robit regression
model, we identify the default values of the extra para-
meters as MLEs: α0 = α̂ = 1 and σ0 = σ̂ = 1. Denote
the corresponding EM estimates by α(t+1) and σ (t+1).
The discrepancies between (α(t+1), σ (t+1)) and (α̂, σ̂ )

reveal the existence of bias induced by the wrong im-
putation model. These discrepancies can be used to ad-
just the estimate of the parameter of interest, β , at each
iteration. This is exactly what PX-EM is formulated to
do, and the resulting algorithm converges faster than
the original EM.

Formally, the extra parameter (α,σ ) introduced to
capture the bias in the imputed values of τi and zi

is called the expansion parameter. The complete-
data model is thus both data-augmented as well as
parameter-augmented. For correct inference at con-
vergence, data augmentation is required to preserve
the observed-data model after integrating out miss-
ing data. Likewise, parameter expansion needs to sat-
isfy the observed-data model preservation condition
(3.1). In the robit regression model, let (β∗, α, σ ) be
the expanded parameter with β∗ playing the same role
as β in the original model. The preservation condi-
tion states that for every expanded parameter value
(β∗, α, σ ), there exists a value of β such that the sam-
pling model of the yi ’s obtained from the parame-
ter expanded model is the same as the original sam-
pling model given β . This condition defines a mapping
β = R(β∗, α, σ ), the reduction function. This reduc-
tion function is used in PX-EM to adjust the value of
β(t+1) produced by the M step.

The detailed implementation of PX-EM for ro-
bit regression is as follows. The parameter-expanded
complete-data model is obtained by replacing (2.5) and
(2.6) with

(τi/α)|(β∗, α, σ ) ∼ Gamma(ν/2, ν/2)(3.2)

and

zi |(τi, β∗, α, σ ) ∼ N(x′
iβ∗, σ 2/τi)(3.3)

for i = 1, . . . , n. Routine algebraic operation yields the
reduction function

β = R(β∗, α, σ )
(3.4)

= (α1/2/σ)β∗ (β∗ ∈ Rp;α > 0;σ > 0).

The expanded parameterization in (3.2) and (3.3) is a
natural choice if the missing data are viewed as real and
a parameterization is sought that provides a model that
is flexible while preserving the observed data model
and allowing the original parameterization to be recov-
ered through the reduction function. For example, if
τi is treated as fixed, the model for zi is a regression
model with fixed variance. Adding σ 2 and α allows the
variance of zi and the scale of τi to be estimated freely
in the expanded model.

The sufficient statistics for the expanded parameter
(β∗, α, σ ) now become

Sτ =
n∑

i=1

τi, Sτxx′ =
n∑

i=1

τixix
′
i ,

(3.5)

Sτz2 =
n∑

i=1

τiz
2
i , Sτxz =

n∑
i=1

τixiz
′
i .
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The complete-data ML estimate of β∗ is the same as
that of β in the original complete-data model. The
complete-data ML estimates of α and σ are given by

α̂com = 1

n
Sτ and

(3.6)

σ̂ 2
com = 1

n
(Sτz2 − SτxzS

−1
τxx′Sτxz).

The PX-EM algorithm is simply an EM applied to
the parameter expanded complete-data model with an
M step followed by (or modified to contain) a reduction
step. The reduction step uses the reduction function to
map the estimate in the expanded parameter space to
the original parameter space. For the robit example,
PX-EM is obtained by modifying the E and M steps
as follows.

PX-E step. This is the same as the E step of EM except
for the evaluation of two additional expected suffi-
cient statistics:

Ŝτ = E
(
Sτ |β = β(t),Xobs

) =
n∑

i=1

τ̂i

and

Ŝτz2 = E
(
Sτz2 |β = β(t),Xobs

)
= n(ν + 1)

− ν

n∑
i=1

τ̂i +
n∑

i=1

τ̂ix
′
iβ

(t)(2ẑi − x′
iβ

(t)),

where τ̂i’s and ẑi ’s are available from the E step of
EM.

PX-M step. Compute β̂∗ = Ŝ−1
τxx′ Ŝτxz, σ̂ 2∗ = n−1 ×

(Ŝτz2 − ŜτxzŜ
−1
τxx′ Ŝτxz), and α̂∗ = n−1Ŝτ and then

use the reduction to obtain β̂(t+1) = (α̂
1/2∗ /σ̂∗)β̂∗.

For a numerical example, consider the data of Finney
(1947), which consist of 39 binary responses denot-
ing the presence (y = 1) or absence (y = 0) of vaso-
constriction of the skin of the subjects after inspiration
of a volume V of air at inspiration rate R. The data
were obtained from repeated measurements on three
individual subjects, the numbers of observations per
subject being 9, 8 and 22. Finney (1947) found no evi-
dence of inter-subject variability, treated the data as 39
independent observations, and analyzed the data using
the probit regression model with V and R in the log-
arithm scale as covariates. This data set was also ana-
lyzed by Liu (2004) to illustrate robit regression. Due
to three outlying observations, the MLE of the degrees
of freedom ν is very small, ν̂ = 0.11.

Here we use this data set with ln(V ) and ln(R) as the
covariates and take the fixed ν = 2 as a numerical ex-
ample to compare EM and PX-EM. Numerical results
comparing the rates of convergence of EM and PX-EM
are displayed in Figure 1. PX-EM shows a clear and
dramatic convergence gain over EM. For convenience
we choose to report the detailed results over iterations.
The algorithms were coded in R, which makes CPU
comparison unreliable. Since extra computation for the
PX-EM implementation is minor, we believe the same
conclusion holds in terms of CPU times.

3.3 PX-EM with Fast Convergence:
The Toy Example

The model X|(Z,λ) ∼ Binomial(Z,π) may not fit
the imputed value of missing data Z very well in the
sense that X/Ẑ is quite different from π . This mis-
match can be used to adjust λ(t+1). To adjust λ(t+1),
we activate π and let α denote the activated parameter
with α0 = π . Now the parameter-expanded complete-
data model becomes

Z|(λ∗, α) ∼ Poisson(λ∗)
and

X|(Z,λ∗, α) ∼ Binomial(Z,α),

where λ∗ > 0 and α ∈ (0,1). If the missing data were
treated as being observed, this model allows the mean
parameters for both X and Z to be estimated. The two
corresponding observed-data models are Poisson(λπ)

and Poisson(λ∗α), giving the reduction function

λ = R(λ∗, α) = α

π
λ∗.(3.7)

The complete-data sufficient statistics are Z and X.
The complete-data ML estimates of λ∗ and α are given
by

λ̂∗,com = Z and α̂com = X

Z
.(3.8)

The resulting PX-EM has the following E and M steps:

PX-E step. This is the same as the E step of EM.
PX-M step. Replace Z in (3.8) with Ẑ to obtain

λ
(t+1)∗ = Ẑ and α(t+1) = X/Ẑ. Update λ using the

reduction function and obtain

λ(t+1) = X

πẐ
Ẑ = X

π
.

The PX-EM algorithm in this case converges in one
step. Although artificial, this toy example shows again
that PX-EM can converge dramatically faster than its
parent EM.
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FIG. 1. EM (solid) and PX-EM (dashed) sequences of the regression coefficients β0 (a), β1 (b), β2 (c), and log-likelihood in
the robit regression with x = (1, ln(V ), ln(R)). The rates of convergence of EM (solid) and PX-EM (dashed) are shown in (e) by

|�(t+1) − �(∞)|/|�(t) − �(∞)|, where �(t) denotes the log-likelihood value at the t th iteration, and in (f) by |β(t+1)
j − β

(∞)
j |/|β(t)

j − β
(∞)
j |

for j = 0,1 and 2.

4. UNFOLDING THE MYSTERY OF PX-EM

The statistical interpretation in terms of covariance
adjustment, explained by the robit example above and
the Student-t example in Liu, Rubin and Wu (1998),
and the theoretical results of Liu, Rubin and Wu (1998)
help reveal the PX-EM magic. To further unfold the
mystery of PX-EM, we discuss the nonidentifiability
of expanded parameters in the observed-data model

in Section 4.1 and take a look at PX-EM from the
point of view of efficient data augmentation in Sec-
tion 4.2.

4.1 Nonidentifiability of Expanded Parameters and
Applicability of PX-EM

It is often the case in PX-EM that, even though
the expanded parameter (θ∗, α) is identifiable from
Q(θ∗, α|θ(t), α0) (the expected parameter-expanded
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complete-data log-likelihood), it is not identifiable
from the corresponding observed-data loglikelihood

L∗(θ∗, α) = lnf∗(Xobs; θ∗, α).

It is helpful to consider L∗(θ∗, α) for understanding
PX-EM, as the PX-M step directly increases L∗(θ∗, α)

through maximizing Q(θ∗, α|θ(t), α0). Naturally, from
a mathematical point of view, unfolding the actual like-
lihood in the larger or expanded parameter space �×A
shows how PX-EM steps can lead to increases in the
likelihood function faster than can moves in the origi-
nal space �.

4.1.1 The observed-data log-likelihood surface over
� × A. The observed-data log-likelihood, as a func-
tion of (θ∗, α), is determined by the actual log-likeli-
hood L(θ) = lnf (Xobs; θ) with θ replaced by θ =
R(θ∗, α) so that

L∗(θ∗, α) = L(R(θ∗, α))
(
(θ∗, α) ∈ � × A

)
.(4.1)

Thus, each point θ ∈ � corresponds to a subspace
{(θ∗, α) ∈ �× A,R(θ∗, α) = θ}, over which L∗(θ∗, α)

is constant.
For example, when θ and α are one-dimensional pa-

rameters, L(θ) can be represented by a curve in the
two-dimensional space � × L(�), whereas L∗(θ∗, α)

is a family of curves indexed by α. The family of
curves L∗(θ∗, α) form a surface in the style of a moun-
tain range in the three-dimensional space � × A ×
L(�). For the toy example, this is depicted in Figure 2
by the top panel 3-D perspective plot and in Figure 3
by the image with dashed contours or “elevation” lines.
The mode of L(θ) now becomes a set of modes of the
same “altitude,” one for each fixed α. That is, the mode
of L(θ) is expanded into the “ridge” shown, for exam-
ple, by the thick line in Figure 3.

4.1.2 Likelihood maximization in PX-EM. The E
step in PX-EM implicitly computes a family of ex-
pected complete-data log-likelihood functions, which
are the Q-functions used in (1.1), over the original pa-
rameter space indexed by the expansion parameter α.
This is because PX-EM introduces no additional or dif-
ferent missing data in the larger complete-data model.
In other words, the parent E step effectively computes
a surface over � × A that can be used as a Q-function
to approximate the expanded loglikelihood L∗(θ∗, α)

defined in (4.1). This Q-function for the toy example
is shown in Figure 2 by the bottom panel 3-D perspec-
tive plot and in Figure 3 by the nearly-elliptical con-
tours. For this one-step convergence PX-EM example,

FIG. 2. Perspective plots of the parameter-expanded ob-
served-data log-likelihood L(λ∗, α) (top) and the parame-
ter-expanded complete-data log-likelihood Q(λ∗, α|λ(t)) (bottom)
in the toy example with X = 8, π = 0.25, and λ(t) = 8.

the mode of this Q-function is on the ridge of the ex-
panded loglikelihood L∗(θ∗, α). We note that this is
typically not the case in more realistic examples. In the
general case, the mode of the Q-function would typi-
cally be located on one elevation line that is higher than
the elevation line where the update (θ(t), α0) found by
EM is located.

Somewhat surprisingly, any such Q-function for
each fixed α is EM-valid. By EM-valid, we mean that
increasing the Q-function results in an increase of the
actual likelihood in the expanded space and thereby
in the original space after the reduction step. This is
due to two facts: (i) the joint Q-function is EM-valid
for L∗(θ∗, α) and, thus, for L(θ) as well, and (ii) an
M step with any fixed α, which finds

θ(t+1)∗ = arg max
θ∗

Q
(
θ∗, α|θ(t), α0

)
,

followed by the reduction θ(t+1) = R(θ
(t+1)∗ , α) is sim-

ply a conditional maximization step. Additionally, in
the context of the ECM algorithm of Meng and Ru-
bin (1993), the parent EM is an incomplete ECM with
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FIG. 3. PX-EM for the toy example with X = 8, π = 0.25, and
λ(t) = 8. The parameter-expanded observed-data log-likelihood
function L(λ∗, α) is shown by shading and dashed contours
with a maximum along the ridge indicated by a solid thick line.
The expected parameter-expanded complete-data log-likelihood
Q(λ∗, α|λ(t)) is shown by the ellipse-like solid contours. In this ex-
ample, maximization of Q(λ∗, α|λ(t)) over (λ∗, α) can be obtained
in two conditional maximization steps, labeled as the two ECM up-
dates. The PX-M step moves to a point on the ridge of L(λ∗, α),
and the subsequent reduction-step moves this point along the the
ridge of L(λ∗, α) to the point with α = π .

only one single CM step over �× A. This relationship
is explored in greater detail in the next section.

4.1.3 PX-EM vs. (efficient) ECM over � × A. In
theory, PX-EM has a single M step over the entire
space � × A. Note that

max
(θ∗,α)

Q
(
θ∗, α|θ(t), α0

) = max
α

max
θ∗

Q
(
θ∗, α|θ(t), α0

)
.

When

θ̂ (t+1)∗ = arg max
θ∗

Q
(
θ∗, α|θ(t), α0

)

does not depends on α, as is often the case in many PX-
EM examples, the PX-M step is equivalent to a cycle
of two CM steps: one is the M step of EM, and the
other updates α with θ∗ fixed at θ

(t+1)∗ . This version of
ECM for the toy example is illustrated in Figure 3. In
this case, ECM is efficient for it generates the PX-EM
update.

To summarize, denote by ECM{α,θ∗} the above ver-
sion of ECM over �× A. Typically, the algorithms can
then be ordered in terms of performance as

EM � ECM{α,θ∗} � PX − EM(4.2)

over � × A. It should be noted that by typically, we
mean the conclusion is reached in an analogy with
comparing the EM algorithm and the Generalized EM
algorithm (GEM) (Dempster, Laird and Rubin, 1977),
that is, EM typically converges faster than GEM, but
counter examples exist; see, for example, Section 5.4
of van Dyk and Meng (2010) and the alternative expla-
nation from an ECME point of view in Section 4.3 of
Liu and Rubin (1998) on why ECM can be faster than
EM. To elaborate it further with our robit example, it
may be also interesting to note that when the reduction
function (3.4) is modified by replacing the adjustment
factor (α1/2/σ) with (α/σ), a typo made in the earlier
versions of the PX-EM for the robit regression model,
the resulting (wrong) PX-EM converges actually faster
than the (correct) PX-EM for the numerical example in
Section 3.2. In general, more efficiency can be gained
by replacing the CM step of ECM over α with a CM
step maximizing the corresponding actual constrained
likelihood in the parameter expanded space. This is ef-
fectively a parameter-expanded ECME algorithm; see
such an example for the Student-t distribution given in
Liu (1997). More discussion on ECME and other state-
of-the-art methods for accelerating the EM algorithm
can be found in He and Liu (2009). Their discussion
on the method termed SOR provides a relevant expla-
nation why the above wrong PX-EM and other wrong
PX-EM versions, such as the one using the wrong re-
duction function β = (α/σ 2)β∗ in the numerical robit
example, can converge faster than the correct PX-EM.

Perhaps most importantly, the above discussion fur-
ther explains why PX-EM can perform better than EM
can, and unfolds the mystery of PX-EM, in addition to
the covariance adjustment interpretation.

4.2 Efficient Data Augmentation via Parameter
Expansion

Meng and van Dyk (1997) consider efficient data
augmentation for creating fast converging algorithms.
They search for efficient augmenting schemes by
working with the fraction of missing-data information.
Here we show that PX-EM can also be viewed as an
alternative way of doing efficient data augmentation.
Unlike Meng and van Dyk (1997), who find a fixed
augmenting scheme that works for all EM iterations,
the following procedure is a way to choose an adaptive
augmenting scheme for each EM iteration. Rather than
control the fraction of missing-data information, this
procedure reduces bias through the expansion parame-
ter. For the sake of clarity, we use the artificial example
of Section 2.1 to make our argument.
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Consider the parameter-expanded complete-data
likelihood obtained from (2.1) by activating α0 = π ,
that is,

λZ∗
Z! e

−λ∗ Z!
X!(Z − X)!α

X(1 − α)Z−X

(λ∗ > 0;0 < α < 1),

which has the canonical representation

h(X,Z)c(λ∗, α)eZ ln[λ∗(1−α)]+X lnα/(1−α)

(λ∗ > 0;0 < α < 1).

Thus, when fixed at the given value, π , for identifia-
bility, the complete-data ML estimate α̂ = X/Z plays
the role of an ancillary statistic; see Ghosh, Reid and
Fraser (2010) for an introduction to ancillary statistics.
With the correct imputation model, or at convergence,
the imputed value Ẑ satisfies

π = X

Ẑ
or Ẑ = X

π
.(4.3)

Thus, we can consider modifying the E step of EM to
produce an imputed statistic Ẑ that satisfies (4.3).

In the context of PX-EM, the current estimate λ(t)

corresponds to the following subset of the expanded
parameter space:

�(t)∗ ≡ {
(λ∗, α) :R(λ∗, α) = R

(
λ(t), α0

)}
(4.4)

= {
(λ∗, α) :λ(t)π = αλ∗

}
.

Thus, we can use the imputation model defined by the
parameter-expanded complete-data model conditioned
on an arbitrary point (λ̃∗, α̃) ∈ �

(t)∗ . For efficient data
augmentation, we choose a particular point (λ̃∗, α̃) ∈
�

(t)∗ , if it exists, so that (4.3) holds. Since

Ẑ = E(Z|X,λ∗, α) = X + λ∗(1 − α),

to obtain the desired imputation model, we solve

X + λ̃∗(1 − α̃) = X

π
,

λ(t)π = α̃λ̃∗

for (λ̃∗, α̃). This system of equations has the solution

λ̃∗ = X
1 − π

π
+ λ(t)π

and

α̃ = λ(t)π

X((1 − π)/π) + λ(t)π
.

The E step of the EM algorithm based on the corre-
sponding imputation model produces Ẑ = X/π . The
following M step of EM gives λ(t+1) = Ẑ = X/π .

The resulting EM algorithm is effectively the PX-
EM algorithm. This implies that PX-EM can be under-
stood from the perspective of efficient data augmenta-
tion via parameter expansion. Similar arguments can
be made for other PX-EM examples having imputed
ancillary statistics. In the general case, such an effi-
cient data augmentation amounts to modifying imputed
complete-data sufficient statistics and can be viewed as
re-imputation of missing sufficient statistics.

5. DISCUSSION

Gelman (2004) notes that “progress in statistical
computation often leads to advances in statistical mod-
eling,” which opens our eyes to the broader picture.
Statistical interpretations of EM and PX-EM reveal
that statistical thinking can aid in understanding and
developing iterative algorithms. It seems natural to ap-
ply fundamental concepts from statistical inference to
address statistical problems such as ML estimation and
Bayesian estimation (see, e.g., Liu and Wu, 1999; van
Dyk and Meng, 2001; Qi and Jaakkola, 2007; Hobert
and Marchev, 2008). A recent example is the work
of Yu and Meng (2008, 2010), which uses relation-
ships motivated by the concepts of ancillarity and suf-
ficiency in order to find optimal parameterizations for
data augmentation algorithms used in Bayesian infer-
ence. However, statistical thinking can also be helpful
for general-purpose optimization algorithms such as in
the improvements to the quasi-Newton algorithm de-
veloped by Liu and Vander Wiel (2007).

Thinking outside the box, here we briefly discuss
other potential applications of parameter expansion
to statistical inference. The fundamental idea of PX-
EM—the use of expanded parameters to capture in-
formation in data—leads immediately to a possible
application of parameter expansion for “dimension-
matching” in Fisher’s conditional inference and fidu-
cial inference (see, e.g., Fisher, 1973), where diffi-
culties arise when the dimensionality of the minimal
sufficient statistics is larger than the number of free pa-
rameters to be inferred. It is well known that, while
attempting to build a solid foundation for statistical
inference, the ideas behind Fisher’s fiducial inference
have not been well developed. Nevertheless, it is ex-
pected that parameter expansion can be useful in de-
veloping new ideas for statistical inference. For exam-
ple, a Dempster–Shafer or fiducial-like method, called
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the inferential model (IM) framework, has been pro-
posed by Zhang and Liu (2011) and Martin, Zhang
and Liu (2010). Of particular interest is the parame-
ter expansion technique proposed by Martin, Hwang
and Liu (2010) for what they call weak marginal infer-
ence using IMs. Using this parameter expansion tech-
nique, they provide satisfactory resolutions to the fa-
mous Stein’s paradox and the Behrens–Fisher problem.

Although brief, the above discussion shows that pa-
rameter expansion has the potential to contribute to a
variety of applications in computation and statistical
inference. To conclude this review article, we specu-
late on one possible application of parameter expansion
to the method of maximum likelihood for which the
EM algorithm has proven to be a useful computational
tool. The prospect of applying general statistical ideas
to computational problems has also led us to thinking
about model checking or goodness of fit to solve the
unbounded likelihood problem in fitting Student-t and
mixture models, for which EM is often the first choice.
In the case with unbounded likelihood functions, for
example, a high-likelihood model may not fit the ob-
served data well and then inferential results can be non-
sensical. It would be interesting to see if the general
idea of parameter expansion for efficient inference can
be extended for “valid inference” as well. However, it
is not our intention here to discuss these open prob-
lems in depth. Based on the past success in this area, it
can be expected that parameter expansion methods will
continue to aid computation and inference.
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