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Abstract

A probabilistic inferential model is developed for large-scale simultaneous

hypothesis testing. For a large set of hypotheses, a sequence of assertions

concerning the total number of true alternative hypotheses are proposed. Using

a data generating mechanism, the inferential model produces probability triplet

(p, q, r) for an assertion conditional on observed data. The probabilities p and

q are for and against the truth of the assertion, whereas r = 1 − p − q is the

remaining probability called the probability of “don’t know”. The inferential

model is used for hypotheses of many-normal-means and applied in identifying

differentially expressed genes in microarray data analysis. The probabilistic

inference offers a new way for hypothesis testing and particularly large-scale

multiple testing.

KEY WORDS: False discovery rate; Inferential model; Multiple testing; Ran-

dom set.

1 Introduction

There have been tremendous research efforts made in last decade on solving large-

scale simultaneous hypothesis testing, where one is concerned with a large number

n of pairs of competing hypotheses: H
(i)
0 versus H

(i)
a for i = 1, ..., n. The multiple

testing problem is introduced by modern scientific techniques, for example, gene

expression microarray in identifying differentially expressed genes from a large number

of candidates or even the whole genome. Existing efforts have been made mainly by

using the concept of false discovery rate (Benjamini and Hochberg, 1995; Efron et

al., 2001; Efron, 2004; Storey, 2002, 2003; and Liang, Liu, and Wang, 2007), which
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controls the expected proportion of falsely rejected hypotheses. An alternative way

of thinking about this problem is to consider a sequence of assertions:

Ak = {there are at least k H
(i)
a ’s that are true}

for k = 1, 2, ..., n. In our application of identifying significantly expressed genes, we

further consider a similar type of assertions as “there are at least j true H
(i)
a in a given

interval [x1, x2]”. We will develop probabilistic inference for this type of assertions.

We start with a single test for a null hypothesis H0 versus an alternative hypothesis

Ha.

The classic frequency theory of hypothesis testing developed by Neyman, Pearson,

and Fisher has been known as the twentieth century’s most influential piece of applied

mathematics (Berger 2003 and Efron 2008). However, there is a fundamental issue

with these existing methods. Fisher (1959) emphasized that p-value, computed from

an observed test statistic under the truth of the null hypothesis, provided evidence

against H0. Since the p-value does not have a desirable probability interpretation of

whether or not the null hypothesis is true, Fisher (1959) had to argue for the use of

p-values by “the force of logic disjunction”. In the context of Bayesian hypothesis

testing, Bayes factors are often computed to measure evidence in favor one over the

other hypothesis. However, like Fisher’s p-value, Bayes factors do not have a desirable

probability interpretation.

Following Dempster (2008), we view that probabilistic inference for the truth of

H0 or Ha amounts to producing a probability p for the truth of H0, a probability q for

the truth of Ha, and a residual probability r, called the probability of “don’t know”,

for neither H0 nor Ha. That is, the triplet (p, q, r) is our uncertainty assessment of H0

and Ha. Unlike the classic theory of hypothesis testing, this new framework provides
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direct statistical evidence for H0 and Ha. For an analogy with Neyman’s hypothesis-

testing procedure, with this new framework we could “reject” H0 by confirming Ha,

and “reject” Ha by confirming H0. Most important is that the (p, q, r) triplet is

calculated from the specification of our uncertainty on unknown model parameters

but is not the conditional probability under either the truth of H0 or the truth of Ha.

We introduce the new framework of probabilistic inference, called inferential mod-

els, that produce (p, q, r) for single hypothesis testing in Section 2. The (p, q, r) triplet

is calculated based on a data generating mechanism for the observed data. Section

3 considers the many-normal-means problem, where the inferential model is used for

multiple testing. Section 4 applies the inferential model of multiple testing in mi-

croarray data analysis, to identify differentially expressed genes. Finally, Section 5

concludes with a few remarks.

2 A new framework of probabilistic inference

2.1 A demonstration example

We assume that a set of observed data X is available and that model fθ(X) for X ∈ X

is specified, usually with unknown parameter θ ∈ Θ. We use the following example

to explain the new framework of probabilistic inference. The key idea is to use an

unobserved auxiliary random variable to represent fθ(X).

Example 1. Let X be a dichotomous observation with X ∈ X = {0, 1}. Assume a

Bernoulli model

Pθ(X = 1) = θ and Pθ(X = 0) = 1 − θ
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with unknown θ ∈ Θ = [0, 1]. The problem is to infer θ from X. We consider a data

generating mechanism using an auxiliary random variable U ∼ Unif (0, 1):

X =











1, if U ≤ θ;

0, if U > θ.

This sampling mechanism preserves the model for X given θ. Moreover, it creates a

random set for the parameter θ given the observation X

SX =











U ≤ θ ≤ 1, if X = 1;

0 ≤ θ < U, if X = 0,
(U ∼ Unif (0, 1))

In other words, we think θ ∈ [U, 1] if we observe X = 1 and θ ∈ [0, U) if X = 0, where

U is a random variable from Unif (0, 1). This relationship among the parameter of

interest θ, the observation X, and the auxiliary random variable U is critical in our

construction of the probabilistic inferential model, where inference about the parameter

θ will be derived from prediction of the auxiliary random variable U .

Given, for example, X = 1, we have the random interval SX = [U, 1] as the region

for θ. Now consider an assertion A = {θ ≤ θ0} ⊆ Θ for a fixed θ0 ∈ (0, 1). There are

two possible cases: (i) if U > θ0, the random set SX = [U, 1] for θ provides evidence

against the truth of A; (ii) if U ≤ θ0, the random set SX = [U, 1] for θ does not have

any information about the truth or falsity of A. Note that there is no realization of

the random interval that provides evidence for the truth of A, because the random

set [U, 1] cannot be fully contained in A = {θ ≤ θ0}. As a result, the probability

triplet (p, q, r) for the assertion A are calculated in the following

p = 0, q = P{U > θ0} = 1 − θ0, and r = θ0.
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Generally, assertions about θ can be represented by subsets of Θ. An assertion

A ⊂ Θ is said to be true when the true value θ falls into A, and is said to be false

when the true value θ falls into Ac = Θ \ A, the negation of A. For example, in the

problem of testing the two competing hypotheses H0 : θ = θ0 and Ha : θ 6= θ0, where

θ0 is some known value in Θ, the assertion A = {θ0} stands for H0 and, thereby, the

assertion Ac = {θ : θ ∈ Θ; θ 6= θ0} stands for Ha. The inference problem is then to

produce our uncertainty assessment of the truth and falsity of A. That is, the output

of our inference is the probability triplet (p, q, r) for A.

2.2 Inferential models

To emphasize the fact that the (p, q, r) output is conditional on the observed data X,

we write (p, q, r) as (pX(A), qX(A), rX(A)), that is,

pX(A) — the probability for the truth of A, given X

qX(A) — the probability against the truth of A, given X

rX(A) — the probability of “don’t know” or neither for nor against the

truth of A, given X.

Formally, an inferential model for probabilistic inference about θ is given by a prob-

ability model with the sample space consisting of all subsets of Θ. Its probability

measure is defined by an auxiliary random variable, for example the uniform variable

U in Example 1. More specifically, a random set is constructed for inference about θ

using the auxiliary random variable and conditioning on the observed data X. De-

note the random set SX , as in Example 1. The probability for the truth of a given

assertation A (on the parameter θ) is computed as the probability that the random

set SX is contained in A,

pX(A) = P (SX ⊆ A).
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Based on a symmetry argument, the probability against the truth of A or for the

truth of Ac is computed as the probability that the random set SX is contained in

Ac,

qX(A) = P (SX ⊆ Ac).

The remaining probability

rX(A) = 1 − pX(A) − qX(A)

is the probability that the random set SX intersects with both A and Ac, in which

case we “don’t know” the truth or falsity of A.

In order for the probability triplet (pX(A), qX(A), rX(A)) to have desirable long-

run frequency properties, the concept of credibility is helpful.

Definition 1. The inferential model is credible for assertion A if for every α in (0, 1),

both

Pθ({X : pX(A) ≥ α}) ≤ 1 − α and Pθ({X : qX(A) ≥ α}) ≤ 1 − α (1)

hold respectively for every θ ∈ Ac = Θ \ A and for every θ ∈ A. The probabilities in

(1) are defined with respect to the random variable X following fθ(X).

In other words, credibility requires pX(A) and qX(A), as functions of the random

variable X, to be stochastically bounded by the uniform distribution over the unit

interval (0, 1) in repeated experiments. Thus, the triplet (pX(A), qX(A), rX(A)) pro-

vides strength of evidence for both A and Ac in the long-run frequency probability

scale. For those familiar with the Neyman school of thought on hypothesis testing,

thresholds for pX(A) and qX(A) can be used to confirm the truth and falsity of A.
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2.3 An inferential model for a general distribution

Now we generalize the inferential model of the Bernoulli example to any non-parametric

distributions. Suppose that we have a sample X1, ..., Xn from an unknown continuous

distribution with cdf F (x), x ∈ R. Let X(1) ≤ ... ≤ X(n) denote the order statistics

of the sample. Then inference about F (x) at values x = X(1), ..., X(n) can be made

based on the fact that F (X(i)), i = 1, ..., n, are the unobserved order statistics of a

random sample of size n from the uniform distribution Unif (0, 1). Let Sn denote the

space of the order statistics of a uniform sample of size n:

Sn = {(u1, ..., un) : 0 < u1 < ... < un < 1}.

To specify a random set, we define the following function on Sn:

g(u) =
n

∑

i=1

[ai ln ui + bi ln(1 − ui)] (u ∈ Sn) (2)

where ai = 1/(n− i + .7) and bi = 1/(i− 1 + .7) for i = 1, ..., n. This function serves

as a measurement of how close a sequence of ordered values 0 < u1 < ... < un < 1 to

the individual medians of the ordered uniform random variables U = (U(1), ..., U(n)).

Figure 1 shows contours of the function in the space S2 = {(u1, u2) : 0 < u1 < u2 < 1}.

The function achieves the maximum at the marginal medians of U(i)’s and decreases

towards the boundary of Sn. Define a random set

S = {u : u ∈ Sn; g(u) ≥ g(U)}

where U = (U(1), ..., U(n)) is a vector of sorted n uniform random variables. This

random set corresponds to the inner area of the curve g(U) and predicts a region for
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the unobserved uniform vector (F (X(1)), ..., F (X(n))).
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Figure 1: Contours of the g function defined in (2) in the space of two ordered uniform
samples S2 = {(u1, u2) : 0 < u1 < u2 < 1}

For inference about the distribution function F (x), x ∈ R, we define a random

set

SX = {F : F ∈ C; g(F (X(1)), ..., F (X(n))) ≥ g(U)}, (3)

where U = (U(1), ..., U(n)) is a vector of sorted n uniform random variables and C

denotes the space consisting of all continuous cdf’s on R. Consider hypotheses H0 :

F = F0 versus Ha : F 6= F0. The inferential model gives pX(H0) = PX(SX ⊆ {F0}) =
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0,

qX(H0) = pX(Ha) = PX(SX ⊆ {F0}
c) = P (g(U) ≥ g(F0(X(1)), ..., F0(X(n)))),

and rX(H0) = 1 − qX(H0). Intuitively, for the simple hypothesis H0 : F = F0, if the

observations X(1), ..., X(n) are really from the null distribution F0, then (F0(X(1)), ..., F0(X(n)))

are the order statistics of uniform random variables and g(F0(X(1)), ..., F0(X(n)))

should have a large value. The event g(U) ≥ g(F0(X(1)), ..., F0(X(n))) provides evi-

dence against the null hypothesis hence gives the probability qX(H0). Zhang (2010)

showed that this inferential model has the desirable frequency property:

Theorem 1. The inferential model with the random set (3) is credible for any asser-

tion A ⊂ C.

He also demonstrated that when compared in terms of power, this inferential model

is more efficient than conventional methods of hypothesis testing (Zhang 2010).

3 The many-normal-means problem

The many-normal-means problem is a benchmark problem for inference about mul-

tiple testing. Suppose that the observed data set consists of n data points X1, ..., Xn

from the model:

Xi
iid
∼ N(θi, 1), i = 1, ..., n.

In the context of multiple testing, a typical assumption is that most of θi are zero

and we test for a large number of hypotheses H
(i)
0 : θi = 0 versus H

(i)
a : θi 6= 0 for

i = 1, ..., n. We refer to each non-zero θi (and the corresponding Xi) as an outlier

and want to identify the outliers presented in the data. As stated in Section 1, this
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problem is translated into producing (p, q, r) outputs for a sequence of assertions

Ak = {the number of true H(i)
a ≥ k}, k = 1, 2, ..., n.

An inferential model for the many-normal-means problem can be constructed

through the following data generating mechanism,

Xi = θi + Φ−1(Ui), i = 1, ..., n,

where U1, ..., Un are random samples from the uniform Unif (0, 1) and Φ−1(.) stands

for the inverse cdf of the standard normal N(0, 1). If U = (U1, ..., Un) were observed,

the values of θi would have been known by calculating

θi = Xi − Φ−1(Ui).

We will predict the unobserved U1, ..., Un via a random set, which leads to a random

set for the parameter θ = (θ1, ..., θn). Recall the random set from a sorted uniform

random vector U = (U(1), ..., U(n)), as discussed in Section 2, S = {u : u ∈ Sn, g(u) ≥

g(U)}. It derives a random set for inference about θ as

SX = {θ : θ ∈ R
n, g(Φ(〈X − θ〉)) ≥ g(U)} , (4)

where Φ(〈X − θ〉) represents the sorted (Φ(X1 − θ), ..., Φ(Xn − θ)). An assertion A

about the parameter θ, as a subset in the parameter space, will be evaluated by a

probability triplet with p(A) = P (SX ⊆ A), and q(A) = P (SX ⊆ Ac).
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3.1 Inference about the number of outliers

The assertion Ak means “there are at least k outliers” and thereby its negation is

Ac
k = {‖θ‖0 ≤ k − 1}, where ‖θ‖0 represents the number of non-zero components of

θ. We use the random set (4) to produce a probability triplet about Ak and Ac
k, with

p(Ak) = q(Ac
k) = P (SX ⊆ Ak), q(Ak) = p(Ac

k) = P (SX ⊆ Ac
k),

and

r(Ak) = 1 − p(Ak) − q(Ak).

To compute p(Ac
k) = P (SX ⊆ Ac

k), we note that the event SX ⊆ Ac
k is equivalent

to that ‖θ‖0 ≤ k − 1 holds for all θ ∈ SX = {θ : g(Φ(〈X − θ〉)) ≥ g(U)}. This is an

impossible event, because if we take θi = Xi − Φ−1(Ui) for i = 1, ..., n then we have

‖θ‖0 = n and g(Φ(〈X − θ〉)) ≥ g(U). Therefore,

p(Ac
k) = P (SX ⊆ Ac

k) = 0.

To compute q(Ac
k) = P (SX ⊆ Ak), we note that the event SX ⊆ Ak means that

‖θ‖0 ≥ k holds for all θ satisfying g(Φ(〈X − θ〉)) ≥ g(U). Thus, the event SX ⊆ Ak

is equivalent to

max
θ:‖θ‖0≤k−1

g(Φ(〈X − θ〉)) < g(U).

The constraint ‖θ‖0 ≤ k − 1 implies that “except for at most (k − 1) Xi’s, the others

form a sample of size (n− k + 1) from N(0, 1)”. Therefore, we choose to work on the

corresponding g(.) function defined over the (n− k + 1)-dimensional space instead of

that defined over the n-dimensional space. (The resulting inference is more efficient

because it effectively marginalizes out the (k − 1) potential outliers.) Let Yn−k+1 be
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the set of all
(

n

n−k+1

)

combinations of (n−k+1) Xi’s. We want to solve the following

optimization problem

max
Y ∈Yn−k+1

g(Φ(Y(1)), ..., Φ(Y(n−k+1))).

Let g∗ = maxY ∈Yn−k+1
g(Φ(Y(1)), ..., Φ(Y(n−k+1))). Then p(Ak) = P (SX ⊆ Ak) can

be computed by first finding g∗ and then approximating the probability p(Ak) =

P (g(U) > g∗) via Monte Carlo methods, i.e.,

p(Ak) ≈
1

M

∑

i

I{g(U(i))>g∗}

where U (1), ...U (M) are M samples drawn from the distribution of n − k + 1 sorted

uniforms and I{g(U(i))>g∗} = 1 if g(U (i)) > g∗ and 0 otherwise.

The problem of maximizing maxY ∈Yn−k+1
g(Φ(Y(1)), ..., Φ(Y(n−k+1))) is a so-called

NP-hard problem, when all possible combinations
(

n

n−k+1

)

are considered. We propose

an efficient algorithm for solving this optimization problem in Appendix.

We provide a simple simulation study to show the performance of the proposed

method. We simulate data sets each consisting of a sample of 10,000 from N(0, 1)

and a sample of 100 from N(5, 1). The result, the probability for the truth of the

assertion that “there are at least k outliers” for a sequence of k = 1, 2, ... in each

of ten simulated data sets, is displayed in Figure 2. We see that the probability of

at least k outliers is 1 when k is small and high when k < 100. This probability

decreases dramatically when k is around 100. After the number of outliers passes

100, the probability becomes to wander towards zero in a slow pace. The probability

at this level represents the randomness of true ordered uniform deviates.
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Figure 2: The probability for the truth of the assertion that “there are at least k
outliers” in 10 simulated data sets each consisting of a sample of 10,000 from N(0, 1)
and a sample of 100 from N(5, 1).

3.2 Inference for the number of outliers in an interval

Assume that there are k outliers in the observed data set X1, ..., Xn. That is, there

are n − k of these n observed values that are known to form a sample from N(0, 1).

We are interested in the number of outliers in a given interval, say, [x1, x2] (e.g,

x1 = 3 and x2 = ∞). Formally, we consider the assertion that “there are J ≥ j

outliers in [x1, x2], conditioning on k outliers in the whole set of n observations”. To

make a probabilistic inference about this assertion, we start with a data generating

mechanism for the observed count of the number of Xi’s that fall in [x1, x2], denoted

as Cx1,x2 .

It is known that there are (n−k) Xi’s from N(0, 1). Consider an auxiliary random

variable N0 as the number of these n− k standard normals that fall into the interval

[x1, x2]. Then N0 follows a binomial distribution, Binomial(n − k, Φ(x2) − Φ(x1)).
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There is a critical relationship among the observed count Cx1,x2 , the quantity of

interest J , and the unobserved random variable N0, that is, Cx1,x2 = N0 + J . If N0

were observed, we could obtain an inference about J as Cx1,x2 − N0. Since N0 is

unobserved, we use a random set {0, 1, ..., N} to predict it, where N ∼ Binomial(n−

k, Φ(x2) − Φ(x1)). This leads to a random set for inference about J ,

S = {J : Cx1,x2 − N ≤ J ≤ Cx1,x2}, N ∼ Binomial(n − k, Φ(x2) − Φ(x1)).

For a probabilistic inference about the assertion {J : J ≥ j}, that is, “there are at

least j outliers in [x1, x2], conditioned on k outliers in the whole set of n observations”,

we compute the (p, q, r) output as follows:

p = P (S ⊆ {J : J ≥ j}) = P (Cx1,x2 − N ≥ j)

= P (N ≤ Cx1,x2 − j) = pBinomial(Cx1,x2 − j, n − k, Φ(x2) − Φ(x1)),

q = P (S ⊆ {J : J < j}) = P (∅) = 0,

r = 1 − p,

where pBinomial(., n− k, Φ(x2)−Φ(x1)) denotes the cdf of Binomial(n− k, Φ(x2)−

Φ(x1)). For an analogy with the concept of false discovery rate (FDR), one may

choose to report

FDRx1,x2 = max

{

0,
(n − k)[Φ(x2) − Φ(x1)]

Cx1,x2

}

,

which gives an expected number of falsly rejected null hypotheses in a rejection in-

terval [x1, x2].
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4 Application in microarray data analysis

We study an HIV data set included in an R package called nudge (Dean, 2006) for

detection of differential gene expression. The data consists of cDNA from CD4+ T

cell lines at 1 hour after infection with HIV, from a study by van’t Wout et al. (2003).

The data have the following structure:

Data Structure

Sample 1 Sample 2

Dye 1 Dye 2 Dye 1 Dye 2

Gene r1 r2 r1 r2 r1 r2 r1 r2

... 4608 × 8 Data Values

where Sample 1 and Sample 2 correspond to the HIV infected and the control samples,

Dye 1 and 2 correspond to two dye labeling schemes, and r1 and r2 correspond to

two duplicate microarray slides. A standard approach of identifying significance gene

expression is to calculate z-scores from the 4,608 individual two-sample t-tests based

on four log-intensity values in Sample 1 and four log-intensity values in Sample 2,

where zi = Φ−1(F6(ti)) with F6 as the cumulative distribution function of a standard t

variable with 6 degrees of freedom. The null distribution for these z-scores is modeled

as either a standard normal or an empirical normal distribution. Then false discovery

rate or local false discovery rate can be employed to detect significance genes.

Alternatively, we apply the probabilistic inference model for the multiple testing

problem. We first conduct an exploratory data analysis based on the original 4, 608×8

data matrix.
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4.1 Exploratory data analysis

Let Rg,s,d,r be the intensity in the “raw” data matrix for gene g ∈ {1, 2, ..., n =

4, 608}, sample s ∈ {1, 2}, dye d ∈ {1, 2}, and duplicate r ∈ {1, 2}. For a variance

stabilization transformation better than logarithmic, we use

Yg,s,d,r = ln(Rg,s,d,r + 8), g ∈ {1, 2, ..., n}; s ∈ 1, 2; d ∈ {1, 2}; r ∈ {1, 2}.

For each of the four combinations of s and d, we plot the differences Yg,s,d,r=2−Yg,s,d,r=1

versus Ȳg,s,d = (Yg,s,d,r=1 + Yg,s,d,r=2)/2 for all g = 1, ..., n. The distribution of the

differences Yg,s,d,r=2−Yg,s,d,r=1 is approximately symmetric about zero, not depending

on Ȳg,s,d (figures not shown).

On the other hand, Figure 3 displays that the differences (Ȳg,s1,d1−Ȳg,s2,d2) depends

on the average (Ȳg,s1,d1 + Ȳg,s2,d2)/2 through a nonlinear function, where (s1, d1) 6=

(s2, d2). In Figure 3, the range of the average (Ȳg,s1,d1+Ȳg,s2,d2)/2 is binned into 20 bins

and the differences (Ȳg,s1,d1−Ȳg,s2,d2) for all g = 1, 2, ..., n are grouped accordingly into

20 groups. The distribution of the differences (Ȳg,s1,d1−Ȳg,s2,d2) is about symmetric but

not around zero. The plots show strong evidence of smooth changes of the medians in

the boxplots cross the range of the averages (Ȳg,s1,d1 + Ȳg,s2,d2)/2, which implies that

there is a dye effect within a given sample and there is a sample effect for all genes.

Both effects need to be removed if we assume that most genes are not differentially

expressed between the two samples and that the two dye labeling schemes should not

affect gene expression.

We conduct a loess-regression for the medians in the boxplots in Figure 3. Then

we transform the original data as (Yg,s,d,r − Ȳg,s,d) + loessg,s,d, where loessg,s,d is the

loess fit of the medians. For simplicity, we use the same notation Yg,s,d,r to denote

the transformed data. Figure 4 shows that the dependence of Ȳg,s1,d2 − Ȳg,s2,d2 on the
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(c)  (Sample 2, Dye 2) vs. (Sample 1, Dye 1)

There are 15 outliers beyond the display limits.
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(d)  (Sample 2, Dye 1) vs. (Sample 1, Dye 2)

There are 13 outliers beyond the display limits.
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(e)  (Sample 2, Dye 2) vs. (Sample 1, Dye 2)

There are 12 outliers beyond the display limits.
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(f)  (Sample 2, Dye 2) vs. (Sample 2, Dye 1)

There is one outlier beyond the display limits.

Figure 3: Boxplots of grouped differences Ȳg,s1,d2 − Ȳg,s2,d2 for all g = 1, ..., n, grouped
according to the binned values of (Ȳg,s1,d2 + Ȳg,s2,d2)/2, where (s1, d1) 6= (s2, d2). The
labels in the x-axis index the bins for (Ȳg,s1,d2 + Ȳg,s2,d2)/2. The relative frequency of
each bin is shown by the histograms in the bottom of each plot.
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average expression value (Ȳg,s1,d2 + Ȳg,s2,d2)/2, g = 1, ..., n, has been removed after the

transformation.

Let Ȳg,s be the mean of the four transformed values of {Yg,s,d,r : d = 1, 2; r = 1, 2}

for s = 1, 2 and g = 1, ..., n. The exploratory data analysis indicates that information

on significantly expressed genes are in the differences

δg = Ȳg,2 − Ȳg,1, g = 1, ..., n.

Since δg is computed as the difference of two means of four observations having the

same distribution, we expect that δg is normally distributed, and has mean zero for

most of the n genes. The subsequent effort is to model the n individual variances.

The boxplots of grouped δg’s, according to binned means µg = (Ȳg,2 + Ȳg,1)/2 are

shown in Figure 5. It indicates that the variance of δg depends on µg. To check the

local normality along the values of µg, we draw the Q-Q normal plots of grouped δg’s

in Figure 6. We conclude that (i) Figure 6 does not show strong evidence against the

assumption that δg’s are normally distributed locally along the values of µg and (ii)

Figure 5 suggests the means and variances of δg’s be modeled as smooth functions of µg

for most of the n genes. We again use loess-regression and compute smooth estimates

of means and standard deviations of δg’s. Finally, we compute the standardized

δg’s, denoted by Zg, using the estimated mean and standard deviation curves. The

histogram of Zg’s in Figure 7 confirms that most of Zg’s follow N(0, 1), supporting

our data analysis.

4.2 Identification of significantly expressed genes

Identifying significantly expressed genes in the present case becomes the same problem

of many-normal-means discussed in Section 3. We test for 4608 hypotheses that the
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There are 14 outliers beyond the display limits.
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(d)  (Sample 2, Dye 1) vs. (Sample 1, Dye 2)

There are 12 outliers beyond the display limits.
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(e)  (Sample 2, Dye 2) vs. (Sample 1, Dye 2)

There are 12 outliers beyond the display limits.
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(f)  (Sample 2, Dye 2) vs. (Sample 2, Dye 1)

Figure 4: This is the same as Figure 3, but for the transformed data.
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Figure 5: Boxplots of grouped δg = Ȳg,2 − Ȳg,1, according to the binned values of
(Ȳg,2 + Ȳg,1)/2. The labels in the x-axis index the bins. The relative frequency of each
bin is shown by the histograms.
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Figure 6: Q-Q normal plots of grouped δg’s.
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Figure 7: The histogram of the Z-values with the underlying curve of the standard
normal density. The Z-values for positive and negative controls are marked by red
(text) and green (dots).
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mean of Zg is zero versus the alternative of nonzero. The probability pX(Ak) shown

in the top panel in Figure 8 is the probability that the number of true alternative

hypotheses is at least k, or there are at least k significance genes. This probability

is about 1 up to k = 40 then drops dramatically and reaches 0 when k = 80. The

probability curve indicates that the number of significantly expressed genes is in the

range of 40 to 60. Probabilistic inference for assertions concerning the total number

of significantly expressed genes in a given interval (−∞,−3) is computed as discussed

in Section 3.2. Conditioning on a total of k = 60 significance genes, the probability

for the assertion that “there are at least J outliers in (−∞,−3)” is displayed in the

bottom panel in Figure 8. The probability curve implies that there are about 35-40

significance genes in the given interval.

In this gene expression data set, there are 13 genes known to be differentially

expressed (HIV genes) and 29 genes known not to be (non-human genes). These two

sets of genes serve as positive and negative controls respectively. The 13 positive

control genes have the largest 13 Z-values according to our exploratory analysis and

are marked by red in the list of extreme values in Figure 7. The 29 negative control

genes are marked by green in Figure 7, where 28 out 29 negative controls have small

Z-values (absolute value less than 3) hence are correctly identified as negative.

5 Concluding remarks

We consider a formal way of summarizing uncertainty in statistical inference. We

focus on the problem of hypothesis testing, especially multiple testing, by a proba-

bilistic inferential model about an unobserved ordered uniform sample. We show that

hypothesis testing problems can be treated as (p, q, r) computations. With the exam-

ple of microarray data analysis, we have demonstrated the importance of exploratory
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Figure 8: Top panel: the probability pX(Ak) for at least k significance genes out
of 4608; Bottom panel: the probability for the assertion that “there are at least J
significance genes in (−∞,−3)”, conditioning on that there exist k = 60 significance
genes in total.
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data analysis as well as the application of probabilitic inference in multiple testing.

The proposed method can be extended to other problems involving simultaneous

hypothesis testing, including the many-Poisson-means problem and variable selection

in linear regression. In particular, development of such methods for multinomial of a

large number of categories is both theoretically challenging and practically useful for

single nucleotide polymorphism (SNP) analysis in genome-wide association studies.

Those will be our future research works.

Appendix

Suppose that a subset of size m = n − k + 1 or n − k, Y1, ..., Ym, is chosen from

X1, ..., Xn by maximizing

g(Φ(Y(1)), ..., Φ(Y(m))) =
m

∑

i=1

[

αi ln Φ(Y(i)) + βi ln(1 − Φ(Y(i)))
]

,

where βi = 1/(i−1+0.7) and αi = βm−i+1 for i = 1, ...,m. The problem of maximizing

this objective function over all possible “n-choose-m” combinations (Y(1), ..., Y(m))

from the observed data (X(1), ..., X(n)) is a so-called NP-hard problem. We propose

an efficient algorithm by finding the best “match”

s(i) : (Y(i), X(s(i))),

for each i = 1, ...,m, to maximize the i-th term of the objective function, i.e.,

αi ln Φ(X(s(i))) + βi ln(1 − Φ(X(s(i)))), over s(i) = 1, ..., n. When it is one-to-one,

the matching function s(.) produces the desired solution: Y(i) = X(s(i)) for i =

1, ...,m. Otherwise, this matching function s(.) is updated iteratively in a condi-

tional/constrained optimization fashion toward the target.
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An optimal matching algorithm

Denote U(i) = Φ(X(i)) for i = 1, ..., n. Rewrite the objective function as

g(s) =
m

∑

i=1

[

αi ln U(s(i)) + βi ln(1 − U(s(i)))
]

where s ∈ C
m
n represents a strictly monotone mapping from {1, ...,m} to {1, ..., n}.

The problem is to find s to maximize the objective function g(s). The following

algorithm provides the desired solution arg maxs g(s) at convergence. Start with an

initial mapping by finding the most preferred match Us(i) for each i = 1, ...,m:

s(i) = arg max
1≤j≤n

[

αi ln U(j) + βi ln(1 − U(j))
]

.

Repeat the following 3 steps until s(.) is one-to-one:

Step-1. Set Mj = {i : s(i) = j} for j = 1, ..., n, and take an arbitrary j from

{j : |Mj| > 1} (to move one in Mj to the next best match in either the left or

right side).

Step-2. Let Zj ≡ {k : k < j; |Mk| = 0}. If Zj = ∅ set L = 0 and l = s; otherwise

set L = 1 and define

l(i) =























max Zj if i = min{Mmax Zj+1};

s(i − 1) if min{Mmax Zj+1} < i ≤ min Mj;

s(i) otherwise.

Define R and r(i) in the same fashion as defining l(i), but to shift to the right.

Step-3. Set s = l if Lg(l) > Rg(r), and set s = r otherwise.
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