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Abstract Statistical analysis of multinomial counts with a large number K of cat-
egories and a small numbern of sample size is challenging to both frequentist and
Bayesian methods and requires thinking about statistical inference at a very funda-
mental level. Following the framework of Dempster-Shafer theory of belief func-
tions, a probabilistic inferential model is proposed for this “large K and smalln”
problem. The inferential model produces a probability triplet (p,q, r) for an asser-
tion conditional on observed data. The probabilitiesp andq arefor andagainstthe
truth of the assertion, whereasr = 1− p−q is the remaining probability called the
probability of “don’t know”. The new inference method is applied in a genome-wide
association study with very high dimensional count data, toidentify association be-
tween genetic variants to the disease Rheumatoid Arthritis.

1 Introduction

We consider statistical inference for the comparison of twolarge-scale multino-
mial distributions. This problem is motivated by genome-wide association studies
(GWAS) with very high dimensional count data,i.e., single nucleotide polymor-
phism (SNP) data. SNPs are major genetic variants that may associate with common
diseases such as cancer and heart disease. A SNP has three possible genotypes, wild
type homozygous, heterozygous, and mutation (rare) homozygous. In genome-wide
association studies, genotypes of over 500,000 SNPs are typically measured for dis-
ease (case) and normal (control) subjects, resulting in a large amount of count data.
In most situations, statistical analysis of genome-wide association data has been on
a single SNP at a time, using simple logistic regression orχ2 tests of association for
2×3 contingency tables [19], where we compare differences in genotype frequency
of a SNP between cases and controls to identify association with a disease. How-
ever, these methods cannot detect associations of combinatorial SNP effects. If we
consider a block of SNPs, for example 10 SNPs, it results in 310 = 59,049 possible
genotypes. This number of categories is much larger than a typical study size of a
few thousands subjects. Therefore, most categories will have zero or one observa-
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tion. The familiar logistic regression andχ2 tests are not appropriate any more in
such a situation.

Statistical analysis of multinomial counts with a large numberK of categories and
a small numbern of sample size is a challenging problem for both frequentistand
Bayesian methods. For Bayesian methods, it is known that in this situation Bayesian
priors have tremendous effects on the final inferential results, which is known as
the non-scalability phenomena of the non-informative and flat prior distributions.
Gelman [11] discussed this problem in real applications of adifferent context. For
frequentist methods,χ2 tests for contingency tables suffer from the problem of small
or zero counts. It is not uncommon that frequentist methods are applied to modified
contingency tables obtained by either deleting or combining categories with small
observed counts (e.g., zeros and ones).

As a mathematical tool for scientific discovery from observed data, prior-free
probabilistic inference becomes increasingly important nowadays when scientists
are facing large-scale inferential problems, such as the GWAS problem considered
in this paper. Earlier attempts of prior-free probabilistic inference include Fisher’s
fiducial [9, 12, 13, 26, 25], Fraser’s structural inference [10], Dempster-Shafer the-
ory of belief functions [6, 21], generalized p-values and generalized confidence re-
gions [22, 24], “objective” Bayesian inference using intentionally non-informative
priors, and the algorithmic inference [1, 2, 3]. The algorithmic inference and gen-
eralized fiducial appear to be particular interesting because they expand the scope
of the applications of fiducial-type inference dramatically by taking the advantage
of modern computing power. However, all these methods have not proved to be
effective to produce probabilistic inferential results that have the desirable long-
run frequency calibration property, or in other words, havethe same interpretation
from people to people and from experiments to experiments. Most noticeable is
that all fiducial-type inference and “objective” Bayes suffer from what is known as
marginalization paradoxesor more generallyintegration paradoxes, a fundamental
problem in fiducial and “objective” Bayesian inference.

The method recently proposed by Balch [4] is also related to but somewhat differ-
ent from above fiducial-type methods. Without producing posterior-type of proba-
bilities, it creates confidence regions with declared coverage. The problem is that the
concept of Neyman-Pearson confidence intervals does not have the desirable proba-
bilistic interpretation. That is, the confidence or coverage of a Neyman-Pearson con-
fidence interval measures the property of confidence intervals rather than providing
an assessment of uncertainty in an unknown parameter. For example, a confidence
interval does not claim that values in the confidence interval are more plausible or
likely than those outside of the interval.

Recently, Martin, Zhang, and Liu [18, 27] proposed what theycalled weak beliefs
or inferential models (IMs) for probabilistic inference, based on an extension of
the framework of Dempster-Shafer theory of belief functions [21, 6]. Following
Dempster-Shafer and weak beliefs, we view that probabilistic inference for the truth
of an assertion, which is denoted asA , amounts to producing a probabilityp for
the truth ofA , a probabilityq against the truth ofA , and a residual probabilityr,
called the probability of “don’t know”. That is, the triplet(p,q, r) is our uncertainty
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assessment ofA . In addition, unlike fiducial-type and objective Bayesian inference,
the inferential model produces the triplet(p,q, r) that has desirable properties in
terms of long-run frequency. Compared to the notions ofBeliefandPlausibility in
belief functions,p equalsBelief and p+ r is Plausibility of A . This probability
inferential framework is called Inferential Model (IM).

The rest of the paper is arranged as follows. Section 2 provides a brief review
of the IM framework formulated recently in Martin and Liu [15]. A generalized
inference model for comparing two multinomials is presented in Section 3. The
method is applied in a genome-wide association study to identify SNPs that are
potentially associated with a given disease in Section 4. Section 5 concludes with a
few remarks.

2 Inferential models: an overview

2.1 The basic framework of IMs

Like the familiar Bayesian and frequentist frameworks, theframework of IMs starts
with a given sampling modelf (X;θ) for the observed dataX ∈ X and some un-
known parameterθ ∈Θ . We are interested in an assertion of the parameterA⊆Θ .
IM consists of three basic steps that we introduce in the following subsections.

2.1.1 The A-step

To assess uncertainty of an assertion onθ based onX, we introduce an unobserved
random variableU ∈ U with known probability measure PU to associateX andθ .
The unobserved random variableU is called the auxiliary a-variable. This associ-
ation is defined in such a way that the resulting distributionof X given θ is the
postulated sampling distributionf (X;θ). This association can be intuitively under-
stood as a data generative model and can be written as

X = a(U,θ) (U ∼ PU ). (1)

This process is termed as the Association (A)-step. The A-step is illustrated with the
following example.

Example 1 (The Binomial model).Suppose that an observed countX is considered
to have come from the binomial distribution

X ∼ Bin(n,θ)

with known size parametern but unknown proportionθ ∈ [0,1]. Denote by
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pBin(x;θ ,n) =
x

∑
k=0

(

n
k

)

θ k(1−θ)n−k (x = 0,1, ...,n; 0≤ θ ≤ 1)

the cdf of Bin(n,θ). In theory,X can be simulated by first drawingU from the
standard uniform distribution Unif(0,1) and then computingX as theU-quantile of
Bin(n,θ). This leads to the natural association

pBin(X−1;θ ,n) < U ≤ pBin(X;θ ,n) . (2)

In general, the A-step defines the following two inferentially relevant subsets.
The first is the collection of all possible candidate values of the parameter corre-
sponding to a value of the a-variableU and the observed dataX. This subset is
obtained by the multi-valued inverse mapping of (1) as

ΘX(U) = {θ : θ ∈Θ , X = a(U,θ)}

for any value ofU and the observed dataX. The second subset is the subset in the
auxiliary spaceU

UA(X) = {u : ΘX(u) ⊆ A} (3)

that supports for the truth of the assertionA⊆Θ after seeingX. In what follows, we
assume that this subset is measurable with respect to the probability measure PU .
Thus,UA(X) is an event in the auxiliary space, indexed byX ∈ X. The eventUA(X)
is called the a-event forA givenX.

The candidate sets and a-events are illustrated below with the binomial example.

Example 1 (The Binomial model{Cont’d}). Let pBeta(.;α,β ) be the cdf of the
Beta distribution with shape parametersα andβ . Then the cdf pBin(x;θ ,n) can be
expressed as

pBin(x;θ ,n) = pBeta(1−θ ;n−x,x+1) = 1−pBeta(θ ;x+1,n−x) .

This gives an alternative representation of the association (2):

1−pBeta(θ ;X,n−X +1) < U ≤ 1−pBeta(θ ;X +1,n−X)

or simply
pBeta(θ ;X +1,n−X) < U ≤ pBeta(θ ;X,n−X +1)

because 1−U andU have the same distributionU ∼Unif (0,1). It follows that given
U = u andX, the candidate set is a non-singleton interval,

ΘX(u) = {θ : qBeta(u;X,n−X +1) ≤ θ < qBeta(u;X +1,n−X)},

where qBeta is the inverse of the cdf pBeta(.;α,β ), or quantile of the Beta distribu-
tion. Since the candidate setΘX(u) for all u∈ [0,1] is an interval, the expression for
the a-eventUA(X) can be tedious, depending on the structure ofA. WhenA = [a,b]
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is a subinterval inΘ = [0,1], we have

UA(X) = U[a,b](X) = {u : qBeta(u;X,n−X +1) ≥ a,qBeta(u;X +1,n−X) ≤ b}.

It should be noted thatU[a,b](X)= /0 if pBeta(a;x,n−x+1)> pBeta(b;x+1,n−x).
This can happen whena andb are close to each other. In the case whereA = {θ0}
is a singleton, we haveUA(X) = /0 and

U{θ0}c(X) = U[0,θ0)(X)∪U(θ0,1](X)

= [0,pBeta(θ0;X +1,n−X))∪ (pBeta(θ0;X,n−X +1) ,1].

It can be seen that this is consistent with the candidate setΘX(u). That is, the candi-
date setΘX(u) is the complement of the a-event supporting{θ0}c or against{θ0}.

2.1.2 The P-step

Valid or meaningful probabilistic inference about the unknown parameter can be
generated with the usual probability calculations in the probability space of the a-
variableU . The associated a-eventUA(X) appears to be a natural choice, and is
indeed used in almost all existing fiducial-type inferential methods. Care has to be
taken, however, to avoid potential selection bias due to thefact that the associated
a-eventUA(X) is effectively chosen by the observed dataX. The IM framework is
made bias-free by requiring the use of an appropriate predictive random sets (PRS),
denoted byS . A PRSS is defined by (i) a pre-specified and possibly assertion-
specific collection of measurable subsets,SA, in the auxiliary spaceU and (ii ) an
appropriate probability measure onSA.

For simplicity without loss of efficiency [15],SA is taken to be a nested sequence
of subsets inU, i.e., for all two elementsS1 andS2 in SA, it holds thatS1 ⊆ S2 or
S2 ⊆ S1. In this case, the needed probability mass can be specified as

P(S ⊆ S) = PU (S) (S∈ SA). (4)

The elements ofSA are called focal elements, and the PRSS is called aconsonant
PRS. In what follows, PRSs are all consonant and with the probability mass defined
by (4). The IM framework makes use of PRSS to predict the unobserved a-variable
associated with the observed dataX through the association (1). This is referred as
the Prediction (P)-step.

Example 2 (A centered PRS).A simple PRSS for predicting the a-variableU in
the binomial example is the centered PRS

S = [U/2,1−U/2] (U ∼ Unif (0,1)).
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2.1.3 The C-step

The last of the three steps of IMs combines the prediction ofU with the observed
dataX to compute the bias-adjusted probability, called thebeliefof A givenX,

BelX (A;S ) = P(S ⊆ UA(X)) = P(ΘX(S ) ⊆ A) (5)

as evidence in the probability scale supporting the truth ofthe assertionA. Let

ΘX(S ) = ∪u∈S ΘX(u). (6)

Then it is easy to see that

BelX (A;S ) = P(ΘX(S ) ⊆ A) . (7)

Similarly, the belief of the negation ofA, denoted byAc, can be evaluated using
the same PRSS or a different PRS. As in the Dempster-Schafer theory of belief
functions, the probability

PlX (A;S ) = 1−BelX (Ac;S )

is called the plausibility ofA givenX. The pair of belief and plausibility probabili-
ties(BelX (A;S ) ,PlX (A;S )) provides the IM output as the IM uncertainty assess-
ment of the assertionA. These two probabilities BelX (A;S ) and PlX (A;S ) are
also known as lower and upper probabilities.

Realizations ofS may make the subset (6) empty. In the context of Dempster-
Shafer, this is known as a conflict case. The IM method called the elastic belief is
proposed by Ermini Leaf and Liu [8] for handling this case. The intuition is that
PRSs are designed to be efficient by making use of small focal elements as much as
possible. Thus, a conflict realization can be replaced by some larger focal element.
To maintain the efficiency, any conflict realizations shouldbe replaced by the small-
est focal element that is just big enough to give non-emptyΘX(S ) defined in (6).
Since we use consonant PRSs, the needed modification is straightforward. That is,
we define

S
⋆
X = ∩S∈SA,ΘX(S) 6= /0S (8)

and call it the data-dependent or elastic version of the PRSS . The belief is defined
accordingly as

BelX (A;S ⋆
X ) = P(ΘX(S ⋆

X ) ⊆ A) . (9)

This modification is taken automatically in the IM framework. For convenience, we
write BelX (A;S ) for BelX (A;S ⋆

X ) and say that the PRSS is elastic or equipped
with elasticity.

To summarize, we have the following three-step IM frameworkto produce prob-
abilities as uncertainty assessment of an assertionA⊆Θ .
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A-STEP. Associate the observed dataX ∈ X and the parameterθ ∈Θ through an
associationX = a(U,θ), which produces the sampling distributionf (x;θ). This
association defines the candidatesUX(U) and the a-eventUA(X).

P-STEP. PredictU with a consonant and elastic PRSSA for inferring A (and
another consonant and elastic PRSSAc for inferring Ac).

C-STEP. Combine the prediction and the observed data through the association to
evaluate the belief and plausibility ofA:

BelX (A) ≡ BelX (A;SA) and PlX (A) ≡ PlX (A;SAc) = 1−BelX (Ac;SAc) .
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(c)  X = 3
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(d)  X = 5

Fig. 1 The plausibility ofAθ0 = {θ : θ = θ0} given the observedX = 0,1,3,5, indicated by the
vertical lines, in the binomial example with sizen = 10.

This is illustrated below with the binomial example.

Example 1 (The Binomial model{Cont’d}). Take the centered PRS and compute
the belief and plausibility of all single assertions{θ0} ⊂ [0,1] conditional on the
observed countX. The belief is zero, and the plausibility can be computed as fol-
lows:
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PlX ({θ0}) = 1−BelX ({θ0}c)

=







1−2[pBeta(θ0,X +1,n−X)− .5] if pBeta(θ0,X +1,n−X) > .5,
1−2[.5−pBeta(θ0,X,n−X +1)] if pBeta(θ0,X,n−X +1) < .5,
1 otherwise

= 2min{1−pBeta(θ0,X +1,n−X) ,pBeta(θ0,X,n−X +1) , .5} .

The plausibility curves
plX(θ0) ≡ PlX ({θ0})

for (n = 10,X = 0), (n = 10,X = 1), (n = 10,X = 3), and (n = 10,X = 5) are
shown in Figure 1. The so-called 5% plausibility interval, an IM counterpart of the
frequentist 95% confidence interval, is defined as

{θ : plX(θ) ≥ 0.05}

and shown in Figure 1. We note that constrained problems, such asθ ≥ 0, are auto-
matically handled by the use of elastic PRS in the P-step.

IM belief and plausibility probabilities are conceptuallysimilar to those in
Dempster-Shafer. Using the new notations recommended by Dempster [6], we have

pX(A) = BelX (A) , qX(A) = BelX (Ac) , (10)

and
rX(A) = 1− pX(A)−qX(A),

which are referred to as the probabilities for the truth ofA, against the truth ofA,
and of “don’t know”. In what follows, we also use this probability triplet (p,q, r) in
place of the lower and upper probability pair(BelX (A) ,PlX (A)). Unlike Dempster-
Shafer and other existing inferential methods such as Fisher’s fiducial and “objec-
tive” Bayes, IM belief and plausibility probabilities are frequency calibrated. This
attractive property along with further developments of IMsis briefly reviewed next.

2.2 Theoretical results and further developments

In scientific inference where experience is converted to knowledge, it is critically
important for inferential results to be interpretable frompeople to people and from
experiments to experiments. The IM framework is committed to produce inferential
results to have such properties. For this, the concept of validity is defined formally
as follows.

Definition 1 (Validity of IMs). The inferential model is valid for assertionA if for
everyα in (0,1), both

Pθ ({X : pX(A) ≥ α}) ≤ 1−α and

Pθ ({X : qX(A) ≥ α}) ≤ 1−α
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hold respectively for everyθ ∈ Ac = Θ \A and for everyθ ∈ A. The probabilities in
Pθ (·) are defined with respect to the random variableX following f (X;θ).

In other words, validity requirespX(A) andqX(A), as functions of the random vari-
ableX, to be stochastically bounded by the uniform distribution over the unit inter-
val (0,1) in repeated experiments. Thus, the triplet(pX(A),qX(A), rX(A)) provides
strength of evidence for bothA andAc in terms of long-run frequency probability.
Thresholds forpX(A) andqX(A) can be used to confirm the truth and falsity ofA.
When applying the technique in practices, we report all threeprobabilities, where a
large value ofpX(A) supportsA (e.g., the null hypothesis), a large value ofqX(A)
supportsAc (e.g., the alternative hypothesis), and a large value ofrX(A) does not
support either. For those familiar with the Fisher framework of significance testing,
the value 1− qX(A) is consistent with the notion of p-value. Given a significance
level α, when we have

pX(A)+ rX(A) = 1−qX(A) < α,

the plausibility of the null hypothesis is smaller than the significance level and hence
it leads to rejection ofH0 : θ ∈ A.

Martin and Liu (2012) show that IMs produce valid inferential results. This is
due to the use of natural PRSs that satisfy the following credibility.

Definition 2 (Validity of PRS). Let U ∼ PU with the sample spaceU. A PRSS

independent ofU and with focal elements inU is said to be valid iff P(S 6∋U), as a
function ofU , is stochastically smaller than the uniform random variable Unif(0,1).

Two undergoing further developments of IMs concern efficient inference and
applications to challenging statistical problems. This paper provides an example of
the latter. The work on efficient IM inference is briefly reviewed here. Martin and
Liu [15] discuss the use of assertion-specific PRS for optimal inference. They also
argued that the consideration of optimal inference helps resolve the uniqueness issue
regarding both the choice of the association for representing the sample model and
the choice of the PRS for generating valid inference.

Inference on marginal assertions (i.e., assertions on lower dimensional quantities
of the parameters) is both theoretical interesting and practically useful. For example,
this is the typical case where “objective” Bayesian and Fisher fiducial are seen to
be paradoxical in many models, e.g., the Fieller-Creasy controversy and the Stein
paradox in inference on many-normal-means. Constructing assertion-specific PRSs
for efficient IM inference is important. An early work on thiscan be found in Martin
and Liu [17].

In the case where the number of observed data points is largerthan the number
of unknown parameters, efficient inference amounts to combining information. This
is discussed in Martin and Liu [15] under the name of conditional IMs (CIMs). The
key idea is to condition on components or (data-free) functions of a-variables that
are fully observed. This is illustrated by the following simple example concerning
the inference about the unit Gaussian mean from a sample.
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Example 3 (The unit Gaussian mean).Suppose thatX1, ...,Xn form a sample from
N(θ ,1). Consider the natural association

Xi = θ +Zi (Z1, ..,Zn
iid∼ N(0,1)).

Let Z̄ = n−1 ∑n
i=1Zi and letX̄ = n−1 ∑n

i=1Xi . Then

Zi − Z̄ = Xi − X̄ (i = 1, ...,n)

are fully observed, whereas its component, say,

X̄ = θ + Z̄

is not. Note that{Zi − Z̄ : i = 1, ...,n} falls into an−1 dimensional subspaceRn−1.
Thus valid inference can be made by predictingZ̄ conditional on{Zi − Z̄ = Xi − X̄ :
i = 1, ...,n}, which is equivalent to{Zi+1−Zi = Xi+1−Xi : i = 2, ...n−1}. Routine
algebraic operations lead to the combined IM for inference aboutθ :

X̄ = θ +
1√
n

Z (Z ∼ N(0,1)).

Martin and Liu [15] show that sufficient statistics can be used as an initial step
of CIMs. The argument for the use of sufficient statistics is,however, not the same
as that Fisher used (i.e., likelihood based) for establishing the concept of sufficient
statistics. It is interesting that it is the observed functions of a-variables that play
a fundamental role in the IM framework. This motivated what they call the local
CIMs. Local CIMs provide a new way of conducting both valid and efficient prob-
abilistic inference when the dimension of the minimal sufficient statistics is larger
than that of the parameters, for which no satisfactory solutions are available based
upon other schools of thought on inference.

There are many other situations where combining information is necessary. For
example, consider three typical scenarios. The first is known as the constrained pa-
rameter inference. In this situation, constraints on parameters are information about
parameters in addition to those specified by the sampling model. This type of prob-
lems has been challenging to existing methods but handled automatically in IMs
with elastic PRSs. The second is known as Bayesian inferencewith scientifically
meaningful priors. Martin and Liu [15] show that this type ofBayesian inference
can be viewed as a special case of IMs. The third is the case where prior informa-
tion is experience based, that is, the prior cannot be represented by a Bayesian prior.
While more research is needed, here we consider a sensible wayof combining infor-
mation: to approximate the prior knowledge using a working sampling model with
some fake data. This is illustrated by the following example.

Example 4 (The binomial model with imprecise prior knowledge). Suppose that
prior (imprecise) knowledge about a binomial proportionθ is available and that
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a new countX is obtained from Bin(n,θ). If the prior knowledge can be satisfac-
torily approximated as that obtained from a countX0 from Bin(n0,θ) with some
knownn0 andX0, with CIMs, the combined inference aboutθ is obtained from the
countY = X0 +X from Bin(n0 +n,θ).

The work on exact IMs shows that the IM framework provides a promising al-
ternative to existing methods for scientific inference. Compared to existing meth-
ods that have been intensively investigated by the large research community in past
decades or centuries, there is too much to do. While optimal inference is yet avail-
able for challenging statistical problems, it is expected that the way of reasoning
with unobserved a-variables helps to develop methods for producing valid and effi-
cient inferential results. The method referred to as Generalized IMs (GIMs) provides
such an example. The idea is to gain simplicity while maintaining validity by mak-
ing use part of an association that represents the sampling model. This idea is used
in the next section for our large-scale multinomial inference.

3 A generalized inferential model for comparing two large-scale
multinomial models

Now we develop an inferential model for uncertainty assessment of the assertion
that two large-scale multinomial models are the same. In thefollowing, the proba-
bilistic inference of multinomial models is valid for data with both small and large
number of categories. We start with a motivating example of genome-wide asso-
ciation studies, where we compare SNPs frequencies of control samples and case
samples. We scan the whole genome sequence using blocks of SNPs, for example,
with a block size of 10 SNPs. For a given block, there are two independent multi-
nomial distributions corresponding to distributions of SNP genotypes of the control
and case populations. These two multinomial distributionscan be derived by a 2×K
table of independent Poisson counts, whereK is the total number of SNP genotypes

in the block. More specificially, letN(i)
j denote a Poisson count with unknown rates

λ (i)
j ≥ 0 for i = 0,1 and j = 1, ...,K. The countN(0)

j represents the number of sub-

jects (or occurrences) of genotypj in the control group andN(1)
j is the number of

subjects (occurrences) of genotypej in the disease group. They are modeled as two

independent Poisson counts with the respective ratesλ (0)
j andλ (1)

j . The ratesλ (0)
j

andλ (1)
j can be interpreted as the expected numbers of occurrences ofgenotypej

in the corresponding populations.

It is well known that conditioning onmi = ∑K
j=1N(i)

j for i = 0 and 1, the observed

dataN(i)
j follow two independent multinomial models with

(N(i)
1 , ...,N(i)

K ) ∼ Multinomial
(

mi ,θ
(i)
1 , ...,θ (i)

K

)

(i = 0,1)
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whereθ (i)
j = λ (i)

j /∑K
j=1 λ (i)

j is the SNPs frequencies of the control (i = 0) and case
(i = 1) populations. The problem of interest here is inference about the assertion

thatθ (0)
j = θ (1)

j for j = 1, ...,K. In terms ofλ (i)
j , this assertion can be written as

λ (0)
j ∝ λ (1)

j ( j = 1, ...,K).

Alternatively, conditional on each column the Poisson counts of the 2×K table lead

to K binomial distributions. Letφ j = λ (1)
j /(λ (0)

j +λ (1)
j ) and writen j = N(0)

j +N(1)
j

andXj = N(1)
j for j = 1, ...,K. Then

Xj |n j ∼ Binomial(n j ,φ j) ( j = 1, ...,K). (11)

The inference about equal multinomial frequency parameters is the same as infer-
ence about

A = {φ j = φ0 : j = 1, ...,K for someφ0 ∈ [0,1]}. (12)

For probabilistic inference of (12), we take the generalized inferential model
(GIM) approach [16] (See also [21, 23, 7] for examples of belief approaches based
on likelihood functions). As mentioned at the end of Section2, the key idea is to
construct a simple IM that produces valid inference. More specifically, inference
can be made from a function of the observed data,e.g., Y = h(X) for some specific
functionh(.) of X = (X1, ...,XK). It is the state of the art to define or chooseY = h(X)
for efficient inference. In the following, we defineY based on normal approximation
to the binomial problem (11), with the consideration that the resulting GIM output
is efficient.

DenoteN = ∑K
j=1n j , which is the total sample size of both control and case

groups. We introduce a statistic

Y =
K

∑
j=1

w j

(

Xj −n j
∑K

j=1 Xj

N

)2

n j(N−n j)

wherew j = (n j −1)/(n j + 1) down-weights observations with small column size
n j . The weights are proposed based on simulations. Note that weonly consider
counts with the column total ofn j ≥ 2 when calculatingY. On the other hand,
the weights such defined do not affect columns with a large number of counts. Let
φ = (φ1, ...,φK) denote the parameter of the assertion of interest (12) andFφ (y) be
the cdf ofY conditioning on∑K

j=1Xj . The conditional distributionFφ (y) may be
derived using the fact thatXj ’s follow a (multivariate) hypergeometric distribution
conditioning on∑K

j=1Xj . In addition,Fφ (y) depends onφ only through their relative
values, say,φ/∑K

j=1 φ j . For a data-generating device of the observable quantityY,
we know thatY can be generated by taking the inverse ofFφ (y) on a uniform random
variableU .

The above statisticY and its cdfFφ (y) defines a GIM that associates the observed
dataY and the unknown parameterφ through the uniform a-variableU ∼Unif (0,1).
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For simplicity, in what follows we shall take continuous cdfto approximateFφ (y).
Thus, the A-step is determined by the association

Fφ (Y) = U (U ∼ Unif (0,1)). (13)

Note that the distribution ofY underA c is stochastically larger than that under
A . Efficient inference is obtained when the PRS for predictingthe a-variableU is
taken to be the one-sided PRS:

SU = [0,U ] (U ∼ Unif (0,1)). (14)

We use this one-sided PRS for the P-step of the GIM for inference of the assertion
(12).

Denote byΩ the space of the parameterφ . The C-step combines the A-step and
the P-step to induce a random set inΩ :

ΩY(U) ≡ ΩY(SU ) = {φ : Fφ (Y) ≤U}

and compute uncertainty assessment on the assertion that the two large-scale multi-
nomial models are the same. The computational details are given below.

The probability forA , pY(A ), is necessarily zero, as the assertion represents
a lower-dimensional space, where all components ofφ are equal. The probability
against the assertion,qY(A ), is computed by using the fact that

q(A ) = P(ΩY(U) ⊆ A
c) = P(Ω c

Y(U) ⊇ A )

= P
(

{φ : Fφ (Y) > U} ⊇ A
)

= P
(

U < Fφ (Y) for all φ ∈ A
)

= P

(

U < min
φ∈A

Fφ (Y)

)

= min
φ∈A

Fφ (Y).

UnderA , all components ofφ are the same. Because the distributionFφ (Y) only
depends on relative values of the components ofφ , there is only one quantity of
Fφ (Y) over φ ∈ A . The minimization is in fact not necessary. We compute the
distribution ofY using a scaledχ2 distribution with the scale and degrees of freedom
estimated from a Monte Carlo sample by the method of moments.More precisely,
the Monte Carlo-based method consists of the following foursteps:

1. Simulate a Monte Carlo sample of sizeM, denoted byX(1), ...,X(M), from the
sampling distribution ofX, conditional on∑K

j=1Xj .

2. ComputeY(i) = h(X(i)) for i = 1, ...,M to obtain a sample of sizeM: Y(1), ...,Y(M),
from the sampling distribution ofY.

3. Calculate the sample mean and variance of the sampleY(1), ...,Y(M), that is,
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Ȳ =
1
M

M

∑
i=1

Y(i) and S2
Y =

1
M−1

M

∑
i=1

(

Y(i)−Ȳ
)2

.

4. Find the degrees of freedomν and the scale parameterγ of theχ2 approximation
with its first two moments matching the sample mean and variance calculated in
Step 3, i.e.,

γ =
S2

Y

2Ȳ
and ν =

Ȳ
γ

.

Steps 2-4 in the above proposed method are straightforward.The details of Step
1 are as follows. Note that conditional onτ = ∑K

j=1Xj with φ ∝ 1K = (1, ...,1), the
sampling distribution ofX = (X1, ...,XK) is the well-known multivariate hypergeo-
metric distribution with known parametersK, n= (n1, ...,nK), andτ = ∑K

j=1Xj . The
multivariate hypergeometric distribution has attractiveproperties including that the
marginal distributions and conditional distributions arealso hypergeometric. This
allows for a simple way of generating multivariate hypergeometric distributions
with methods of simulating univariate hypergeometric distributions. For example,
the marginal distribution of the first componentX1 is the (univariate) hypergeomet-
ric distribution with the parametersτ = ∑K

j=1Xj , ∑K
j=1n j − τ, and∑K

j=1n j , which
stand for the number of “white balls” in the urn, the number of“black balls” in
the urn, and the number of balls drawn from the urn respectively in the familiar
context of drawing without replacement from an urn consisting of both black and
white balls. Methods for pseudo random generation of the (univariate) hypergeo-
metric distribution are available [14]. An algorithm is implemented as the function
rhyper in R [20]. Usingrhyper we generate samples of multivariate hyper-
geometric from multiple simulations of univariate hypergeometric distributions to
create random samples ofX from its joint distribution.

4 Application in genome-wide association study

We apply the methodology on the GAW16 (Genetic Analysis Workshop 16) data
from the North American Rheumatoid Arthritis Consortium. This genome-wide as-
sociation study aims at identifying genetic variants, morespecifically single nu-
cleotide polymorphisms, which are associated with the Rheumatoid Arthritis dis-
ease. The data consists of 2062 samples, where 868 are cases and 1194 are controls.
For each sample, whole genome SNPs are observed with a total coverage of 545,080
SNPs.

We partition the entire SNP sequence on each chromosome intoa sequence ofm
blocks of consecutive SNPs, each block consisting of, for example, 10 SNPs. For
each block, indexed byb = 1, ...,m, our proposed analysis of the two-sample multi-
nomial counts produces(pb,qb, rb) output for the assertion that “the two samples,
cases versus controls, are from the same population”. The(pb,qb, rb) output has
pb = 0 andqb providing evidence against the assertion.
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Fig. 2 The time-series plots of the Z-scores of the probabilities for the assertion that control and
case populations are different, computed based on the inferential model for the simulated data from
chromosome 14.

To assess our IM method for this “largeK and smalln” problem, we first con-
sider a simulated study, using the real SNP genotype data to randomly simulate dis-
ease phenotypes. A phenotype variabley is generated from a simple additive model
yi = ∑ j xi j bi j +ei , wherexi j denotes the SNP genotype of subjecti at SNPj, xi j = 0,
1, or 2 for wild type homozygous, heterozygous, and mutationhomozygous, respec-
tively, i = 1, ...,2062, andj from 1 to the number of SNPs for a chromosome. We
consider chromosome 14, which contains 17,947 SNPs in the Rheumatoid Arthristis
genotype data. The coefficientbi j is the effect of thej-th SNP for thei-th subject
and is set equal to zero except for five SNPs at positionsj = 5000,5001, ...,5004,
wherebi j for these five SNPs are simulated from independent normal distributions
with means of 5 and standard deviation of 1. In additionei is the residual effect
generated from a normal distribution with mean of 0 and standard deviation of 1.
At the end, disease subjects are sampled from the individuals with phenotypesy ex-
ceeding a threshold, which is the normal quantile corresponding to the proportion
of 868/2062= 0.42, and controls are sampled from the remaining individuals. This
simulation creates a new case-control data set with diseasecausal SNPs at positions
j = 5000,5001, ...,5004 in chromosome 14.

Figure 2 displays a sequence of theq-value for chromosomes 14 in terms of
Z-score,Z = Φ−1(qb), whereΦ−1(.) stands for the cdf of the standard normal
distribution. Positions around 5000 have very largeqb values hence show strong
evidences against the assertion that “the two samples, cases versus controls, are
from the same population”. In other words, IM provides a probability inference that
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Fig. 3 The time-series plots of the Z-scores of the probabilities for the assertion that control and
case populations are different, computed based on the two-multinomial model for SNPs in blocks
of 10 in (a) chromosome 6 and (b) chromosome 14.

SNPs around 5000 have different frequencies between disease and control subjects
and hence are associated with the disease.

We now apply the IM method in the real data of 868 cases and 1194controls and
compare SNP genotype frequencies between the two groups. A block of 10 SNPs
are studied at a time, with the scale of multinomial up to 310 = 59,049 categories.
Figure 3 displays sequences of theq-value for chromosomes 6 and 14 in terms of Z-
score,Z = Φ−1(qb). When larger than 8, the values of the Z-scores are replaced with
8 in the plots. Figure 4 displays the histograms of theq-value for chromosomes 6 and
14. Large values in Figure 3 (a) correspond to those on the right tail in Figure 4 (a).
They indicate that there are some blocks on chromosome 6 potentially associated
with Rheumatoid Arthritis. This result is consistent with the known fact that the
HLA (human leukocyte antigen) region on chromosome 6 contributes to disease
risk. On the other hand, Figures 3 (b) and 4 (b) shows that there are very few blocks
on chromosome 14 that have Z-scores larger than 6 and are considered to associate
with Rheumatoid Arthritis. Except for large values, theq-value in Figures 4 (a)
and 4 (b) have very smooth distributions. This implies that we can specify a null
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Fig. 4 Histograms of the Z-scores of the probabilities for the assertionthat control and case pop-
ulations are different, computed based on the two-multinomial model for SNPs in blocks of 10 in
(a) chromosome 6 and (b) chromosome 14.

distribution so that SNPs or blocks potentially associatedwith Rheumatoid Arthritis
can be identified.

For this largeK and smalln problem, withK up to 310 = 59,049, it is difficult
to apply standard frequentist or Bayesian approaches and nosuch analysis has been
done for a block of SNPs. Instead, we conduct a standard approach ofχ2 tests for
2×3 contingenecy tables for a single SNP at a time and compare the results with
our previous analysis. The simpleχ2 tests of one SNP at a time identify the same
HLA region on chromosome 6 with significant association to the disease. However,
the simpleχ2 tests also produce many extremely significant SNPs, corresponding to
Z-scores larger than 10, on all other chromosomes. This result indicates that the stan-
dard method tends to make falsely significant associations whereas our IM method
is more accurate in assessing uncertainty for this challenging problem.

5 Conclusion

The difficulty of existing statistical methods for large-scale multinomial counts re-
quires thinking about statistical inference at a very fundamental level and demands
novel ideas beyond the current two dominant schools of thought, the frequentist
and Bayesian. We propose a probabilistic inferential model, which uses auxiliary
random variables for reasoning towards inference rather than constructing fiducial
probabilities in the attempt to replace Bayesian posteriorprobabilities. The proposed
method works for data of both small and large sample sizes. Itproduces inferential
results that have desirable frequency properties. Our future research includes fur-
ther investigation of the arbitrariness of the unobserved auxiliary random variable,
specification of the predictive random sets, and choice of partial sampling model in
generalized inferential models. We have discussed these issues in Section 2.2. More
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discussion of these problems can be found in the on-going work [15, 17]. We be-
lieve that the proposed method will 1) generates useful tools for applied statisticians
who are challenged by very high dimensional count data, and 2) call attention to
fundamental research on statistical inference and problems considered by founding
fathers such as Ronald Fisher and Jerzy Neyman.
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