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Abstract Statistical analysis of multinomial counts with a large marK of cat-
egories and a small numberof sample size is challenging to both frequentist and
Bayesian methods and requires thinking about statistifafence at a very funda-
mental level. Following the framework of Dempster-Shafedry of belief func-
tions, a probabilistic inferential model is proposed foistlarge K and smalin”
problem. The inferential model produces a probabilityl&igp, g,r) for an asser-
tion conditional on observed data. The probabilifgesndq arefor andagainstthe
truth of the assertion, whereas= 1 — p— g is the remaining probability called the
probability of “don’t know”. The new inference method is digp in a genome-wide
association study with very high dimensional count datédeatify association be-
tween genetic variants to the disease Rheumatoid Arthritis

1 Introduction

We consider statistical inference for the comparison of targe-scale multino-
mial distributions. This problem is motivated by genomelavassociation studies
(GWAS) with very high dimensional count datiee., single nucleotide polymor-
phism (SNP) data. SNPs are major genetic variants that nsagiase with common
diseases such as cancer and heart disease. A SNP has thuibéegenotypes, wild
type homozygous, heterozygous, and mutation (rare) hogmmy In genome-wide
association studies, genotypes of over 500,000 SNPs doallygneasured for dis-
ease (case) and normal (control) subjects, resulting irge lamount of count data.
In most situations, statistical analysis of genome-widmeisition data has been on
a single SNP at a time, using simple logistic regressiop“dests of association for
2 x 3 contingency tables [19], where we compare differencegiotype frequency
of a SNP between cases and controls to identify associatithardisease. How-
ever, these methods cannot detect associations of corabal&@NP effects. If we
consider a block of SNPs, for example 10 SNPs, it result$9r=359,049 possible
genotypes. This number of categories is much larger thapiadlystudy size of a
few thousands subjects. Therefore, most categories wikk zaro or one observa-
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tion. The familiar logistic regression arxf tests are not appropriate any more in
such a situation.

Statistical analysis of multinomial counts with a large rarK of categories and
a small numben of sample size is a challenging problem for both frequeiaiist
Bayesian methods. For Bayesian methods, it is known thatsrsituation Bayesian
priors have tremendous effects on the final inferential lteswhich is known as
the non-scalability phenomena of the non-informative aaddtior distributions.
Gelman [11] discussed this problem in real applications different context. For
frequentist methods? tests for contingency tables suffer from the problem of $mal
or zero counts. It is not uncommon that frequentist methoelsipplied to modified
contingency tables obtained by either deleting or combirtategories with small
observed counts(g, zeros and ones).

As a mathematical tool for scientific discovery from obsendata, prior-free
probabilistic inference becomes increasingly importamwadays when scientists
are facing large-scale inferential problems, such as thé&&Woblem considered
in this paper. Earlier attempts of prior-free probabitistiference include Fisher’s
fiducial [9, 12, 13, 26, 25], Fraser’s structural inferent8]] Dempster-Shafer the-
ory of belief functions [6, 21], generalized p-values andeyalized confidence re-
gions [22, 24], “objective” Bayesian inference using irtenally non-informative
priors, and the algorithmic inference [1, 2, 3]. The aldumiic inference and gen-
eralized fiducial appear to be particular interesting beeahey expand the scope
of the applications of fiducial-type inference dramatigddy taking the advantage
of modern computing power. However, all these methods hateproved to be
effective to produce probabilistic inferential resultatthave the desirable long-
run frequency calibration property, or in other words, héve same interpretation
from people to people and from experiments to experimentssthhoticeable is
that all fiducial-type inference and “objective” Bayes suffrom what is known as
marginalization paradoxesr more generallyntegration paradoxesa fundamental
problem in fiducial and “objective” Bayesian inference.

The method recently proposed by Balch [4] is also relatedit@bmewhat differ-
ent from above fiducial-type methods. Without producingtensr-type of proba-
bilities, it creates confidence regions with declared cager The problem is that the
concept of Neyman-Pearson confidence intervals does netthexdesirable proba-
bilistic interpretation. That is, the confidence or coverafja Neyman-Pearson con-
fidence interval measures the property of confidence inferagher than providing
an assessment of uncertainty in an unknown parameter. Bonge, a confidence
interval does not claim that values in the confidence inteax@ more plausible or
likely than those outside of the interval.

Recently, Martin, Zhang, and Liu [18, 27] proposed what tbejed weak beliefs
or inferential models (IMs) for probabilistic inferenceased on an extension of
the framework of Dempster-Shafer theory of belief functid@l, 6]. Following
Dempster-Shafer and weak beliefs, we view that probaitailisterence for the truth
of an assertion, which is denoted &5 amounts to producing a probability for
the truth of.«7, a probabilityq against the truth of7, and a residual probability,
called the probability of “don’t know”. That is, the triplép, g,r) is our uncertainty
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assessment af . In addition, unlike fiducial-type and objective Bayesiaference,
the inferential model produces the triplgt, g,r) that has desirable properties in
terms of long-run frequency. Compared to the notion8eliefand Plausibility in
belief functions,p equalsBeliefand p+r is Plausibility of <. This probability
inferential framework is called Inferential Model (IM).

The rest of the paper is arranged as follows. Section 2 pesvalbrief review
of the IM framework formulated recently in Martin and Liu [[L5A generalized
inference model for comparing two multinomials is presdnite Section 3. The
method is applied in a genome-wide association study totifgeBNPs that are
potentially associated with a given disease in Section dti@e5 concludes with a
few remarks.

2 Inferential models: an overview

2.1 Thebasic framework of IMs

Like the familiar Bayesian and frequentist frameworks, filaenework of IMs starts
with a given sampling model (X; 8) for the observed datA € X and some un-
known parametef € ©. We are interested in an assertion of the paramitero.
IM consists of three basic steps that we introduce in thefdlg subsections.

2.1.1 The A-step

To assess uncertainty of an assertiorbdmased orX, we introduce an unobserved
random variabléJ € U with known probability measurePto associat&X and 8.
The unobserved random variakileis called the auxiliary a-variable. This associ-
ation is defined in such a way that the resulting distributbdérX given 6 is the
postulated sampling distributiof(X; 8). This association can be intuitively under-
stood as a data generative model and can be written as

X=aU,0) (U~PRy). 1)

This process is termed as the Association (A)-step. Theep-stillustrated with the
following example.

Example 1 (The Binomial modeBuppose that an observed codnis considered
to have come from the binomial distribution

X ~ Bin(n,0)

with known size parameterbut unknown proportior® € [0, 1]. Denote by
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X
paine.n) = 5 ()61 (x=01.m0<6<1)
k=0

the cdf of Bin(n,8). In theory, X can be simulated by first drawirld from the

standard uniform distribution Un{D, 1) and then computin as thelJ-quantile of
Bin(n, 8). This leads to the natural association

pBin(X —1;6,n) <U < pBin(X;8,n). 2
|

In general, the A-step defines the following two inferetyiaklevant subsets.
The first is the collection of all possible candidate valuéthe parameter corre-
sponding to a value of the a-variallle and the observed daté This subset is
obtained by the multi-valued inverse mapping of (1) as

Ox(U)={0:0c0, X=aU,o0)}

for any value ofU and the observed da¥ The second subset is the subset in the
auxiliary spacél
Ua(X) = {u:6x(u) C A} ®3)

that supports for the truth of the assertibi © after seeing. In what follows, we
assume that this subset is measurable with respect to thalghty measure p.
Thus,Ua(X) is an event in the auxiliary space, indexed¥¢ X. The eveniUa(X)
is called the a-event fok given X.

The candidate sets and a-events are illustrated below géthinomial example.

Example 1 (The Binomial mod¢Cont'd}). Let pBetd.; a, 3) be the cdf of the
Beta distribution with shape parametersandf. Then the cdf pBirix; 6,n) can be
expressed as

pBin(x; 0,n) = pBeta(1— 6;n—x,x+ 1) = 1— pBeta6;x+1,n—X).
This gives an alternative representation of the associgfip
1-pBeta8;X,n—X+1) <U <1-—pBeta8; X+ 1,n—X)

or simply

pBeta(0; X+ 1,n—X) <U < pBeta(8; X,n— X +1)
because £ U andU have the same distributidh ~ Unif (0, 1). It follows that given
U = uandX, the candidate set is a non-singleton interval,

Ox(u) = {6 : gBetau;X,n—X +1) < 6 < qBeta(u; X +1,n— X)},

where gBeta is the inverse of the cdf pBetar, 3), or quantile of the Beta distribu-
tion. Since the candidate 8% (u) for all u € [0, 1] is an interval, the expression for
the a-eventUa(X) can be tedious, depending on the structur@.diVhenA = [a, b)
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is a subinterval ir® = [0, 1], we have
Ua(X) = Ujap(X) = {u: gBeta(u; X,n—X +1) > a,qBeta(u; X +1,n— X) < b}.

It should be noted thdf, ; (X) = 0 if pBeta(a; x,n— x+ 1) > pBeta(b; X+ 1,n — x).
This can happen whemandb are close to each other. In the case whiee {6y}
is a singleton, we havBa(X) = 0 and

Ugye(X) = Upg,gy) (X) U U gy, 11(X)
= [0,pBeta6p; X +1,n— X)) U (pBeta(p; X,n— X +1),1].

It can be seen that this is consistent with the candidat@gset). That is, the candi-
date setx(u) is the complement of the a-event supportirtg }© or against{ 6y} .
|

2.1.2 The P-step

Valid or meaningful probabilistic inference about the uakm parameter can be
generated with the usual probability calculations in thebability space of the a-
variableU. The associated a-evebix(X) appears to be a natural choice, and is
indeed used in almost all existing fiducial-type infereintigeethods. Care has to be
taken, however, to avoid potential selection bias due tddbethat the associated
a-eventUa(X) is effectively chosen by the observed dataThe IM framework is
made bias-free by requiring the use of an appropriate piiedicandom sets (PRS),
denoted by¥. A PRS.¥ is defined by i) a pre-specified and possibly assertion-
specific collection of measurable subselg, in the auxiliary spac& and (i) an
appropriate probability measure 8@.

For simplicity without loss of efficiency [15F4 is taken to be a nested sequence
of subsets irl, i.e., for all two element§;, andS; in Sp, it holds thatS; € S, or
S C . In this case, the needed probability mass can be specified as

P(rCY=R(§  (SeSa). (4)

The elements df 5 are called focal elements, and the PRSs called aconsonant
PRS. In what follows, PRSs are all consonant and with thegiitity mass defined
by (4). The IM framework makes use of PBSto predict the unobserved a-variable
associated with the observed datahrough the association (1). This is referred as
the Prediction (P)-step.

Example 2 (A centered PR3).simple PRSY for predicting the a-variabl® in
the binomial example is the centered PRS

7 =[U/2,1-U/2] (U ~Unif(0,1)).
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2.1.3 The C-step

The last of the three steps of IMs combines the predictiod efith the observed
dataX to compute the bias-adjusted probability, calledkik&efof A givenX,

Belx (A.#) = P(# C Ua(X)) = P(&x(#) C A) 5)
as evidence in the probability scale supporting the trutthefassertior\. Let
Ox () = UuesBOx (U). (6)
Then it is easy to see that
Belx (A;.7) =P(6x () CA). (7)

Similarly, the belief of the negation &, denoted byA®, can be evaluated using
the same PRS” or a different PRS. As in the Dempster-Schafer theory ofdbeli
functions, the probability

Plx (A;.7) = 1—Belx (A%.¥)

is called the plausibility oA given X. The pair of belief and plausibility probabili-
ties(Belx (A;.7),Plx (A;.7)) provides the IM output as the IM uncertainty assess-
ment of the assertioA. These two probabilities BglA;.7) and Pk (A;.¥) are
also known as lower and upper probabilities.

Realizations of” may make the subset (6) empty. In the context of Dempster-
Shafer, this is known as a conflict case. The IM method callecetastic belief is
proposed by Ermini Leaf and Liu [8] for handling this caseeTihtuition is that
PRSs are designed to be efficient by making use of small féealents as much as
possible. Thus, a conflict realization can be replaced byeslanger focal element.
To maintain the efficiency, any conflict realizations shduddreplaced by the small-
est focal element that is just big enough to give non-en@xy.”) defined in (6).
Since we use consonant PRSs, the needed modification ghéfoaivard. That is,
we define

IR = Ngesp,00(9£0S (8)

and call it the data-dependent or elastic version of the PR he belief is defined
accordingly as
Belx (A;.7%) = P(6x (%) C A). )

This modification is taken automatically in the IM framewoHor convenience, we
write Bely (A;.%) for Belx (A; %) and say that the PRS is elastic or equipped
with elasticity.

To summarize, we have the following three-step IM frameworgroduce prob-
abilities as uncertainty assessment of an asseftioro.
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A-STER Associate the observed dafac X and the parametét € © through an
associatiorX = a(U, 8), which produces the sampling distributid(x; 6). This
association defines the candidatBgU) and the a-everia(X).

P-sTeEr PredictU with a consonant and elastic PR&, for inferring A (and
another consonant and elastic PRg for inferring A°).

C-sTER Combine the prediction and the observed data through seekdion to
evaluate the belief and plausibility &

Belx (A) = Belx (A;.#a) and Pk (A) = Plx (A; ac) = 1—Belx (A% ac) .
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Fig. 1 The plausibility of«, = {6 : 8 = 6o} given the observed = 0,1,3,5, indicated by the
vertical lines, in the binomial example with sime= 10.

This is illustrated below with the binomial example.

Example 1 (The Binomial modé¢Cont'd}). Take the centered PRS and compute
the belief and plausibility of all single assertiofi§} C [0,1] conditional on the
observed counX. The belief is zero, and the plausibility can be computedo&s f
lows:
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Plx ({€0}) = 1—Belx ({60}°)
1—2[pBeta6y,X +1,n—X) —.5] if pBeta(6p, X +1,n—X) > .5,
=< 1-2[.5—pBeta(6p,X,n—X+1)] if pBeta(fp,X,n—X+1) < .5,
1 otherwise
= 2min{1—pBeta 6y, X+ 1,n— X),pBeta 6y, X,n— X +1),.5}.

The plausibility curves
plx (6o) = Plx ({60})

for (h=10,X=0), (h=10,X =1), (h=10,X = 3), and(n = 10,X = 5) are
shown in Figure 1. The so-called 5% plausibility interval,|M counterpart of the
frequentist 95% confidence interval, is defined as

{6: plx(6) > 0.05}

and shown in Figure 1. We note that constrained problems, as€ > 0, are auto-
matically handled by the use of elastic PRS in the P-step. [ |

IM belief and plausibility probabilities are conceptualymilar to those in
Dempster-Shafer. Using the new notations recommended mpBter [6], we have

px(A) = Belx (A), gx(A) = Belx (A°), (10)

and
rx(A) =1-px(A) —ax(A),

which are referred to as the probabilities for the truthApfagainst the truth of,
and of “don’t know”. In what follows, we also use this probi#gitriplet (p,q,r) in
place of the lower and upper probability paBelx (A), Plx (A)). Unlike Dempster-
Shafer and other existing inferential methods such as Fisfiducial and “objec-
tive” Bayes, IM belief and plausibility probabilities areefjuency calibrated. This
attractive property along with further developments of Iiglgriefly reviewed next.

2.2 Theoretical results and further developments

In scientific inference where experience is converted tonkedge, it is critically
important for inferential results to be interpretable frpeople to people and from
experiments to experiments. The IM framework is committedroduce inferential
results to have such properties. For this, the concept aitsals defined formally
as follows.

Definition 1 (Validity of IMs). The inferential model is valid for assertigxif for
everya in (0,1), both
Po({X:px(A)>a})<1l-a and
Po({X:ax(A) > a}) <1-a
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hold respectively for ever§ € A° = ©\ A and for everyf € A. The probabilities in
Py (+) are defined with respect to the random variaki®llowing f(X; 0).

In other words, validity requirepx (A) andgx (A), as functions of the random vari-
ableX, to be stochastically bounded by the uniform distributieerahe unit inter-
val (0,1) in repeated experiments. Thus, the triglpk (A), dx (A),rx (A)) provides
strength of evidence for both and A°® in terms of long-run frequency probability.
Thresholds forpx (A) anddx (A) can be used to confirm the truth and falsityfof
When applying the technique in practices, we report all tirebabilities, where a
large value ofpx (A) supportsA (e.g., the null hypothesis), a large valuecgf(A)
supportsA°® (e.g., the alternative hypothesis), and a large valuex¢f) does not
support either. For those familiar with the Fisher framéewof significance testing,
the value 1- gx (A) is consistent with the notion of p-value. Given a signifienc
level a, when we have

Px(A) +rx(A) =1-ax(A) < a,

the plausibility of the null hypothesis is smaller than tign#ficance level and hence
it leads to rejection oHp : 8 € A.

Martin and Liu (2012) show that IMs produce valid inferehtiasults. This is
due to the use of natural PRSs that satisfy the followingibikg.

Definition 2 (Validity of PRS). Let U ~ Py with the sample spacg. A PRS.¥
independent df) and with focal elements ili is said to be valid iff R ZU), as a
function ofU, is stochastically smaller than the uniform random vagabhif (0, 1).

Two undergoing further developments of IMs concern effitieference and
applications to challenging statistical problems. Thipaygprovides an example of
the latter. The work on efficient IM inference is briefly rewied here. Martin and
Liu [15] discuss the use of assertion-specific PRS for ogdtinfarence. They also
argued that the consideration of optimal inference helgpslve the uniqueness issue
regarding both the choice of the association for represgrtie sample model and
the choice of the PRS for generating valid inference.

Inference on marginal assertions (i.e., assertions onrldimgensional quantities
of the parameters) is both theoretical interesting andtjwalty useful. For example,
this is the typical case where “objective” Bayesian and &idlducial are seen to
be paradoxical in many models, e.g., the Fieller-Creasyroversy and the Stein
paradox in inference on many-normal-means. Construcssgréion-specific PRSs
for efficient IM inference is important. An early work on thgan be found in Martin
and Liu [17].

In the case where the number of observed data points is |Hrgerthe number
of unknown parameters, efficient inference amounts to comgiinformation. This
is discussed in Martin and Liu [15] under the name of condaidMs (CIMs). The
key idea is to condition on components or (data-free) fumgtiof a-variables that
are fully observed. This is illustrated by the following gita example concerning
the inference about the unit Gaussian mean from a sample.
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Example 3 (The unit Gaussian meaS8)ippose thaXy, ..., X, form a sample from
N(6,1). Consider the natural association

X=0+Z  (Z1,.,Z0"SN(0,1)).

LetZ=n"13" Z andletX =n"13" , X. Then
Z-Z=%-X (i=1,..n)
are fully observed, whereas its component, say,
X=0+Z

is not. Note tha{z, —Z :i =1,...,n} falls into an— 1 dimensional suQspade‘*_l.

Thus valid inference can be made by predictthgonditional on{Z; —Z =X — X :

i =1,...,n}, which is equivalent tdZ; 1 — Zj = Xjy1 — X : 1 =2,...n—1}. Routine
algebraic operations lead to the combined IM for infererueuao:

- 1
X=0+22  (Z~NO1).

Martin and Liu [15] show that sufficient statistics can beduas an initial step
of CIMs. The argument for the use of sufficient statisticisyever, not the same
as that Fisher used (i.e., likelihood based) for estaligstiie concept of sufficient
statistics. It is interesting that it is the observed fumecs of a-variables that play
a fundamental role in the IM framework. This motivated wHadyt call the local
ClIMs. Local CIMs provide a new way of conducting both validiagfficient prob-
abilistic inference when the dimension of the minimal sigfit statistics is larger
than that of the parameters, for which no satisfactory gmtstare available based
upon other schools of thought on inference.

There are many other situations where combining infornmaiionecessary. For
example, consider three typical scenarios. The first is knasithe constrained pa-
rameter inference. In this situation, constraints on patans are information about
parameters in addition to those specified by the samplingemdtiis type of prob-
lems has been challenging to existing methods but handieanatically in IMs
with elastic PRSs. The second is known as Bayesian infemitbescientifically
meaningful priors. Martin and Liu [15] show that this type Béyesian inference
can be viewed as a special case of IMs. The third is the caseevghier informa-
tion is experience based, that is, the prior cannot be repted by a Bayesian prior.
While more research is needed, here we consider a sensiblefwaynbining infor-
mation: to approximate the prior knowledge using a workiampling model with
some fake data. This is illustrated by the following example

Example 4 (The binomial model with imprecise prior knowEd&uppose that
prior (imprecise) knowledge about a binomial proporti@ris available and that
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a new couniX is obtained from Birin, 8). If the prior knowledge can be satisfac-
torily approximated as that obtained from a codgtfrom Bin(ng, 6) with some
knownng andXg, with CIMs, the combined inference abdliis obtained from the
countY = Xp+ X from Bin(ng+n, 0).

The work on exact IMs shows that the IM framework provides @nsing al-
ternative to existing methods for scientific inference. @aned to existing meth-
ods that have been intensively investigated by the larggareh community in past
decades or centuries, there is too much to do. While optinfeténce is yet avail-
able for challenging statistical problems, it is expecteat the way of reasoning
with unobserved a-variables helps to develop methods futyming valid and effi-
cient inferential results. The method referred to as GdizexhIMs (GIMs) provides
such an example. The idea is to gain simplicity while mairitej validity by mak-
ing use part of an association that represents the sampliniginThis idea is used
in the next section for our large-scale multinomial infezen

3 A generalized inferential model for comparing two large-sale
multinomial models

Now we develop an inferential model for uncertainty assesgrof the assertion
that two large-scale multinomial models are the same. Irfdh@wing, the proba-
bilistic inference of multinomial models is valid for datatlvboth small and large
number of categories. We start with a motivating example exfayne-wide asso-
ciation studies, where we compare SNPs frequencies ofalasamples and case
samples. We scan the whole genome sequence using blocksf 8 example,
with a block size of 10 SNPs. For a given block, there are tvaependent multi-
nomial distributions corresponding to distributions of Sienotypes of the control
and case populations. These two multinomial distributarsbe derived by a2 K
table of independent Poisson counts, wheiie the total number of SNP genotypes

in the block. More specificially, Ielt\lj(i) denote a Poisson count with unknown rates

/\j(i) >0fori=0,1andj=1,....K. The coumNj(O
jects (or occurrences) of genotypn the control group andJJ-(l) is the number of
subjects (occurrences) of genotypim the disease group. They are modeled as two
independent Poisson counts with the respective th@sand)\ ]-(1). The rates J-(0>

) represents the number of sub-

andA ]-(l) can be interpreted as the expected numbers of occurrenaggnofypej
in the corresponding populations.

Itis well known that conditioning om = Z'f:l Nj(i> fori=0and 1, the observed
dataN|" follow two independent multinomial models with

(Np,...,N}g)) ~ Multinomial (m,el(i),..., 9,2”) (i=0,1)
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wheree /Z _1)\ is the SNPs frequencies of the contrioi0) and case
i=1) populat|ons The problem of interest here is inferenceualthe assertion

that 91(0) = Gj(l) forj=1,...,K. Interms of)\j(i), this assertion can be written as

A9DAY (1=1,..K).

Alternatively, conditional on each column the Poisson ¢swfithe 2< K table lead
to K binomial distributions. Letyy = A" /(A[” +- A7) and writen; = N[ + N[V
andXj = Nj(l) for j=1,...,K. Then

XjIn; ~ Binomial(n;, ¢;) (j=1,...,K). (11)

The inference about equal multinomial frequency pararsatethe same as infer-
ence about
o ={@=@:j=1,..,Kforsomeg € [0,1]}. (12)

For probabilistic inference of (12), we take the generaizeferential model
(GIM) approach [16] (See also [21, 23, 7] for examples ofdfepproaches based
on likelihood functions). As mentioned at the end of Sectoithe key idea is to
construct a simple IM that produces valid inference. Morecjrally, inference
can be made from a function of the observed datg, Y = h(X) for some specific
functionh(.) of X = (X, ..., Xk ). Itis the state of the art to define or chodse h(X)
for efficient inference. In the following, we defitvebased on normal approximation
to the binomial problem (11), with the consideration that thsulting GIM output
is efficient.

DenoteN = z'lenj, which is the total sample size of both control and case
groups. We introduce a statistic

(Xj —n e 1X1>2

K
Z (N—nj)

wherew; = (n; — 1)/(nj + 1) down-weights observations with small column size
nj. The weights are proposed based on simulations. Note thainlyeconsider
counts with the column total afij > 2 when calculating’. On the other hand,
the weights such defined do not affect columns with a largebmurof counts. Let
¢ =(q,...,q) denote the parameter of the assertion of interest (12)Fay be
the cdf ofY conditioning ony ; _1XJ The conditional distributiori/,(y) may be
derived using the fact tha(;’s follow a (multivariate) hypergeometric distribution
conditioning onz’f:l X;. In addition,F,(y) depends owp only through their relative
values, saygp/ Z}f:l @;. For a data-generating device of the observable quabiity
we know thaty can be generated by taking the inversé&gfy) on a uniform random
variableU.

The above statisti¢ and its cdfF,(y) defines a GIM that associates the observed
dataY and the unknown paramet@through the uniform a-variablg ~ Unif (0, 1).
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For simplicity, in what follows we shall take continuous ¢dfapproximate=y(y).
Thus, the A-step is determined by the association

Fo(Y)=U (U ~Unif(0,1)). (13)

Note that the distribution of under.¢ is stochastically larger than that under
<. Efficient inference is obtained when the PRS for predictheya-variabledJ is
taken to be the one-sided PRS:

S =[0U] (U~ Unif(0,1)). (14)

We use this one-sided PRS for the P-step of the GIM for infegenf the assertion
(12).

Denote byQ the space of the parametgr The C-step combines the A-step and
the P-step to induce a random sefin

Qy(U) = Qy(A) ={@:Fp(Y) <U}

and compute uncertainty assessment on the assertion ¢éhmidHarge-scale multi-
nomial models are the same. The computational details aes dpelow.

The probability fore/, py(</), is necessarily zero, as the assertion represents
a lower-dimensional space, where all componentg afe equal. The probability
against the assertiogy (<), is computed by using the fact that

q(«) =P(v(U) C o) = P(Qy(U) 2 &)
P{@:Fp(Y)>U} D &)
P(

U < Fy(Y) forall p € &)

(U < min Fq,(Y))

pesd

min Fy(Y
(pe' o(Y).

Under.«Z, all components of are the same. Because the distributigyY) only
depends on relative values of the componentg,afhere is only one quantity of
Fo(Y) over ¢ € /. The minimization is in fact not necessary. We compute the
distribution ofY using a scaleg{? distribution with the scale and degrees of freedom
estimated from a Monte Carlo sample by the method of moméfase precisely,
the Monte Carlo-based method consists of the following &taps:

1. Simulate a Monte Carlo sample of sike denoted byX™@,.... XM from the
sampling distribution oK, conditional ong_; X;.

2. Computey) =h(X®)fori=1,...,M to obtain a sample of siad: YV ... . Y(M),
from the sampling distribution of .

3. Calculate the sample mean and variance of the saiple.., Y™, that is,
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4. Find the degrees of freedowand the scale parametgof the x2 approximation
with its first two moments matching the sample mean and vegi@alculated in
Step 3, i.e., ,

S
y= > and v=—.
Steps 2-4 in the above proposed method are straightforwaeldetails of Step

1 are as follows. Note that conditional on= z'f:lx,- with ¢ 0 1k = (1,...,1), the

sampling distribution oKX = (X, ..., Xk) is the well-known multivariate hypergeo-

metric distribution with known parametells n= (ng,...,nk ), andt = z'lexj. The
multivariate hypergeometric distribution has attractiveperties including that the
marginal distributions and conditional distributions ateo hypergeometric. This
allows for a simple way of generating multivariate hypengedric distributions
with methods of simulating univariate hypergeometric rilisttions. For example,
the marginal distribution of the first componeXit is the (univariate) hypergeomet-
ric distribution with the parameters= y_; X;, 5 n; — 7, and 3", n;, which
stand for the number of “white balls” in the urn, the number‘ioiack balls” in
the urn, and the number of balls drawn from the urn respdgtivethe familiar
context of drawing without replacement from an urn consgstf both black and
white balls. Methods for pseudo random generation of thévéuiate) hypergeo-
metric distribution are available [14]. An algorithm is ilemented as the function
rhyper in R [20]. Usingr hyper we generate samples of multivariate hyper-
geometric from multiple simulations of univariate hypesgeetric distributions to
create random samples Xffrom its joint distribution.

<I=

4 Application in genome-wide association study

We apply the methodology on the GAW16 (Genetic Analysis Wooks16) data
from the North American Rheumatoid Arthritis Consortiuninig genome-wide as-
sociation study aims at identifying genetic variants, mgpecifically single nu-
cleotide polymorphisms, which are associated with the Rtegaid Arthritis dis-
ease. The data consists of 2062 samples, where 868 are ndsEk%d are controls.
For each sample, whole genome SNPs are observed with adetakbge of 545,080
SNPs.

We partition the entire SNP sequence on each chromosoma s#quence ah
blocks of consecutive SNPs, each block consisting of, fangde, 10 SNPs. For
each block, indexed bly=1,...,m, our proposed analysis of the two-sample multi-
nomial counts producey, gy, rp) output for the assertion that “the two samples,
cases versus controls, are from the same population”. (ph&p, rp) output has
P, = 0 andqy, providing evidence against the assertion.
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Fig. 2 The time-series plots of the Z-scores of the probabilitiestierassertion that control and
case populations are different, computed based on the ini@rerddel for the simulated data from
chromosome 14.

To assess our IM method for this “largeand smalln” problem, we first con-
sider a simulated study, using the real SNP genotype datmttomly simulate dis-
ease phenotypes. A phenotype varigbige generated from a simple additive model
Yi = ¥ Xjbij +&, wherex; denotes the SNP genotype of subjestt SNPj, x;; =0,

1, or 2 for wild type homozygous, heterozygous, and mutdtimmozygous, respec-
tively, i = 1,...,2062, andj from 1 to the number of SNPs for a chromosome. We
consider chromosome 14, which contains 17,947 SNPs in teematoid Arthristis
genotype data. The coefficiely is the effect of thej-th SNP for thei-th subject
and is set equal to zero except for five SNPs at positjoas500Q 5001 ...,5004,
whereby; for these five SNPs are simulated from independent normallmitions
with means of 5 and standard deviation of 1. In addiwpis the residual effect
generated from a normal distribution with mean of 0 and stathdieviation of 1.
At the end, disease subjects are sampled from the indivdduigth phenotypey ex-
ceeding a threshold, which is the normal quantile corredpanto the proportion
of 868/2062= 0.42, and controls are sampled from the remaining individugss
simulation creates a new case-control data set with diseasmal SNPs at positions
j =50005001%,...,5004 in chromosome 14.

Figure 2 displays a sequence of thevalue for chromosomes 14 in terms of
Z-score,Z = ®(q), where ®~1(.) stands for the cdf of the standard normal
distribution. Positions around 5000 have very laggevalues hence show strong
evidences against the assertion that “the two sampless cessus controls, are
from the same population”. In other words, IM provides a @iobty inference that
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Fig. 3 The time-series plots of the Z-scores of the probabilities ierdassertion that control and
case populations are different, computed based on the tworomiial model for SNPs in blocks
of 10 in (a) chromosome 6 and (b) chromosome 14.

SNPs around 5000 have different frequencies between disaabkcontrol subjects
and hence are associated with the disease.

We now apply the IM method in the real data of 868 cases and ¢d8ols and
compare SNP genotype frequencies between the two groupkck bf 10 SNPs
are studied at a time, with the scale of multinomial up 163 59,049 categories.
Figure 3 displays sequences of tpgalue for chromosomes 6 and 14 in terms of Z-
scoreZ = ®1(qp). When larger than 8, the values of the Z-scores are repladéd wi
8 in the plots. Figure 4 displays the histograms ofghalue for chromosomes 6 and
14. Large values in Figure 3 (a) correspond to those on the t@gj in Figure 4 (a).
They indicate that there are some blocks on chromosome @t associated
with Rheumatoid Arthritis. This result is consistent withetknown fact that the
HLA (human leukocyte antigen) region on chromosome 6 cbutes to disease
risk. On the other hand, Figures 3 (b) and 4 (b) shows thaéthes very few blocks
on chromosome 14 that have Z-scores larger than 6 and ar&leogws to associate
with Rheumatoid Arthritis. Except for large values, thevalue in Figures 4 (a)
and 4 (b) have very smooth distributions. This implies thataan specify a null
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Fig. 4 Histograms of the Z-scores of the probabilities for the assettiahcontrol and case pop-
ulations are different, computed based on the two-multinomialehfior SNPs in blocks of 10 in
(a) chromosome 6 and (b) chromosome 14.

distribution so that SNPs or blocks potentially associatggd Rheumatoid Arthritis
can be identified.

For this largeK and smalln problem, withK up to 3° = 59 049, it is difficult
to apply standard frequentist or Bayesian approaches asdetoanalysis has been
done for a block of SNPs. Instead, we conduct a standard apipraf x? tests for
2 x 3 contingenecy tables for a single SNP at a time and compareegults with
our previous analysis. The simpje tests of one SNP at a time identify the same
HLA region on chromosome 6 with significant association ®disease. However,
the simplex? tests also produce many extremely significant SNPs, carelpg to
Z-scores larger than 10, on all other chromosomes. Thidtiieslicates that the stan-
dard method tends to make falsely significant associatidres@as our IM method
is more accurate in assessing uncertainty for this chalgngroblem.

5 Conclusion

The difficulty of existing statistical methods for largeae multinomial counts re-
quires thinking about statistical inference at a very fundatal level and demands
novel ideas beyond the current two dominant schools of thhube frequentist
and Bayesian. We propose a probabilistic inferential moaéich uses auxiliary
random variables for reasoning towards inference ratham ttonstructing fiducial
probabilities in the attempt to replace Bayesian post@riobabilities. The proposed
method works for data of both small and large sample sizgsotiuces inferential
results that have desirable frequency properties. Ourdutesearch includes fur-
ther investigation of the arbitrariness of the unobservedli@mry random variable,
specification of the predictive random sets, and choice dfgg@ampling model in
generalized inferential models. We have discussed thegessn Section 2.2. More
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discussion of these problems can be found in the on-going yidy, 17]. We be-
lieve that the proposed method will 1) generates usefustfuslapplied statisticians
who are challenged by very high dimensional count data, grch? attention to
fundamental research on statistical inference and prablemsidered by founding
fathers such as Ronald Fisher and Jerzy Neyman.
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