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Abstract:

Valid, prior-free, and situation-specific probabilistic inference is desir-
able for serious uncertain inference, especially in bio-medical statistics.
This chapter” introduces such an inferential system, called the Infer-
ential Model (IM) framework, proposed recently. IMs do not require a
prior to be specified, yet they produce probabilistic inferential results
that have desireable frequency properties. This chapter illustrates the
IM framework and demonstrates its potential applications in bio-medical
statistics with a collection of benchmark examples, including (i) classi-
fication, (ii) inference with subgroup selection, (iii) 2x2 tables, and (v)
a many-normal-means problem in meta-analysis.

1. Introduction
1.1. Statistical inference: a brief historical review

For serious statistical applications, such as bio-medical statistics, producing prior-
free, frequency-calibrated (or valid), data-dependent (or situation-specific) proba-
bilistic inference has been a longstanding dream of statisticians. Probabilistic in-
ference is attractive as an easy-to-interpret quantitative assessment of uncertainty.
It has a long history that can be traced back to Bayes (1763); see also Liang, Liu,
and Carroll (2010). Bayes is clearly the most sensible approach when the statis-
tician has a valid prior distribution for unknown quantities. Philosophically, there
is nothing wrong and it probably should always be attempted in practice so long
as the statistician and his or her clients are willing to accept the consequences of
any decision made accordingly. Nevertheless, we shall not discuss philosophical dif-
ferences here, such as those concerning the different meanings or interpretations of
probability. In any case, when a prior is taken for everything, the inference prob-
lem is reduced to an exercise of usual probability calculus. Following, e.g., Fraser
(2011), for conceptual clarity we simply refer to such models as probability models.
This chapter is concerned with statistical inference when there is no known prior
for some unknown quantity.
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For Bayesian approaches to statistical inference, it is a fair comment that not
all Bayesian statisticians really put meaning on prior distributions for everything.
Most often in practice, part of the prior is used for simplicity to produce inference
that matches or beats the best possible frequentist results. This is supported, for
example, by the use of Bayes factors and so-called conjugate and invariance priors,
among many others. An agreed way of specifying priors, especially in modern,
challenging, and large-scale problems, is yet to emerge.

When priors are unknown, it is perhaps due to the fact that Bayesian inferential
results are generally not frequency-calibrated that most statisticians have fallen
into what is known as the frequentist school. However, frequentist procedures are
often created via what can be thought of as a guess-and-check process. A proposed
procedure is often checked according to the criteria set forth by Fisher (1922),
namely, sufficiency, efficiency, and consistency. Due to the limitations of Bayesian
and frequentist schools of thought, around 1930 R. A. Fisher started developing an
ideal inferential system, which he called fiducial. He spent the rest of his life, about
30 years, working on this. Although, some of the ideas in fiducial inference were
reinterpreted by J. Neyman to create confidence intervals that have been central
to frequentist statisticians, Fisher’s fiducial has been perceived as his “one great
failure” (Zabell, 1992).

While acknowledging the limited success of his efforts, R. A. Fisher apparently
recognized that there was something valuable in fiducial. He wrote (see Savage
(1964) p. 926): “I don’t understand yet what fiducial probability does. We shall have
to live with it a long time before we know what it’s doing for us. But it should not
be ignored just because we don’t yet have a clear interpretation.” Efforts continu-
ing along this direction can be found in further developments of Fisher’s fiducial
inference and its variants: Fraser’s structural inference (Fraser, 1966, 1968) and
Dempster-Shafer theory (Dempster, 2008; Shafer, 1976); see Hannig (2009) for a
recent discussion.

What is fiducial? A brief but good answer was given by Savage (1976), who wrote:
“The expressions ‘fiducial probability’ and ‘fiducial argument’ are Fisher’s. Nobody
knows just what they mean, because Fisher repudiated his most explicit, but definitely
faulty, definition and ultimately replaced it with a few examples.” When referring to
the fiducial argument, we shall adopt the interpretation of Dempster (1963), namely,
continuing to believe that the pivotal quantity introduced in fiducial has the same
distribution after seeing the observed data. For example, consider inference about 6
from an observation x that is assumed to have come from the normal distribution
N(0,1) with unknown mean 6 € R = (—o0, c0) and unit variance. We refer to this
problem the one-normal-mean example. To obtain a fiducial probability, one writes

c=0+2 (Z~N(0,1)), (1.1)

where the introduced random variable Z is called a pivotal variable. The connection
between (1.1) and the familiar sampling distribution x ~ N (0, 1) is made by assum-
ing that Z ~ N(0,1) holds a priori, i.e., before seeing x. After seeing z, i.e., condi-
tional on z, with the fiducial argument one continues to believe that Z ~ N(0, 1).
Since (1.1) implies that § = x — Z, the distribution on Z defines a distribution on
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when z is fixed at its observed value. That distribution is  ~ N(x, 1) conditional
on x, which is the same as the Bayesian posterior of # obtained by putting the flat
prior on 6; see Lindley (1958) and Fraser (2011). When used for inference, this pos-
terior distribution has nice frequency properties for certain assertions or hypotheses
on the unknown quantity 6. In general, however, it is questionable to manipulate it
as a distribution using the usual probability calculus; see Ermini Leaf et al (2009).

While not as popular as Bayesian inference nowadays, fiducial inference can
provide better results than Bayesian methods for certain models; see Section 2.

This observation is partially consistent with what Efron (1998) wrote: “ . . but
here is a safe prediction for the 21st century: statisticians will be asked to solve
bigger and more complicated problems. I believe there is a good chance ... that

something like fiducial inference will play an important role in this development.
Maybe Fisher’s biggest blunder will become a big hit in the 21st century!” While this
“something” remains to be discovered, we and our collaborators recently proposed a
new promising inferential framework, called the inferential model (IM) framework,
that produces prior-free, frequency-calibrated, and data-dependent probabilities for
assessing uncertainty. Although it is both philosophically and technically different
from fiducial, the IM framework was motivated by fiducial and its extension, the
Dempster-Shafer theory of belief functions. As a matter of fact, the original but
fundamental idea of IMs was explored in Martin, Zhang, and Liu (2010), Zhang
and Liu (2011) and, Zhang (2010) in the context of Dempster-Shafer theory. In the
sequel, we present the IM framework reformulated and extended most recently in
Martin and Liu (2011); see also Martin, Hwang, and Liu (2011a,b), and Ermini
Leaf and Liu (2011).

1.2. Owutline

The key starting point for IMs is to consider reasoning with uncertainty toward
predictive or probabilistic inference. Section 2.1 reviews the idea that probabilistic
inference requires an unobserved but predictable quantity, called an auxiliary (a)-
variable, to be introduced as an integral part of a full statistical model. Given a full
statistical model that allows for probabilistic inference, Section 2.2 uses the one-
normal-mean to summarize and illustrate a simple but general three-step procedure
for constructing IMs. Section 3 reviews conditional and marginal IMs that are
necessary for efficient inference.

The second part of this chapter, Sections 4 — 7, presents a sequence of potential
applications of IMs in bio-medical statistics, including classification, constrained
parameter problems, selective inference, 2x2 tables, and the many-normal-means
problem in meta-analysis. The article concludes with a few remarks on further de-
velopments of the IM theory and its applications. We hope readers will agree with
us that prior-free, valid, and data-dependent probabilistic inference is within reach
rather than impossible, as might have been mistakenly perceived from the failure
of Fisher’s efforts in fiducial inference; see Zabell (1992). Serious statistical appli-
cations and challenging large-scale problems demand exact probabilistic inference
such as that provided by IMs (see Martin et. al. (2011b)), or similar inferential
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methods yet to be developed. We also hope that readers share our vision that this
line of thinking has a great future for many, many years to come.

2. Inferential Models

For the sake of simplicity, the one-normal-mean example, i.e., inference about
N(0,1) from a single observation z,

x~N(@B,1) (0€0=R), (2.1)

serves as a running example in this section. Probabilistic inference about the un-
known quantity 6 from the observed data x is of interest. Any hypothesis about
0 corresponds to a subset of © called an assertion. In this section, we consider
inference about the truth and falsity of the assertion

Ag, = {60} €O (2.2)

where 6 is some specific value of interest, e.g., 89 = 0. For clarity, we note that

the subset Ay, of © is said to be true if the true value of the unknown ¢ belongs

to Ag,. Otherwise, Ay, is said to be false when the true value of ¢ is contained in
6,» the complement or negation of Ay,.

2.1. Association models for probabilistic inference

The postulated model (2.1), known as a sampling model for the observed data z, is
a familiar way of starting statistical inference. Perhaps, it is relatively less familiar
(see, e.g., Dempster, 1964) that the sampling model (2.1) doesn’t allow for desired
predictive or probabilistic inference. This is because (i) the sampling model specifies
a class of different probability measures indexed by 6, and (ii) the probability mea-
sure in the sampling model (2.1) only allows the evaluation of event probabilities to
confirm or compare different explanations of observed data in different probability
spaces. Since no missing but predictable quantity is present, no probabilistic infer-
ence is possible. To emphasize this observation, Martin and Liu (2011) introduced
the following principle.

Principle 2.1. The sampling model alone is insufficient for probabilistic inference
about unknown parameters. Only if unobserved but predictable quantities are asso-
ciated with the observed data and unknown parameters can predictive probabilistic
inference be achieved.

According to this principle, something that is missing but predictable, called
an auziliary (a)-variable, must be introduced as an integral part of modeling for
statistical inference. Following this principle, IMs require the specification of an
association model by introducing a-variables. The probability distribution of the
a-variables determines the postulated sampling model for the observed data. For
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the running example of the one-normal-mean problem, an association model can
be specified as in fiducial inference, i.e.,

r=0+z (z ~ N(0,1)), (2.3)

where the a-variable z is missing, but a priori assumed to follow the standard
normal distribution, N(0,1). Given = and the true value of z, the true value of the
unknown quantity € is then given by 6 = x — z. In the general setting, x denotes
both the observable and the observed data. An association-model determines the
mapping from (x, z) to 0, which in general can be set-valued and thus written as

0,(2) C ©. (2.4)

Given an association model, predictive or probabilistic inference about # amounts
to predicting the unobserved realization of the a-variable, z. Motivated by the con-
cepts of Bayesian credible intervals, frequentist confidence intervals that produce
inferential results with desirable certainty (i.e., with probabilities close to one or
zero), and frequentist rejection regions for hypothesis testing, predicting z can be
made simple to create user-friendly inferential outputs. This explains, at least par-
tially, the following use of predictive random sets (PRSs). The IM framework, built
around this simple idea, is briefly reviewed next.

2.2. The three-step representation of IMs

The IM framework can be represented as a three-step procedure for inference about
A C O, an assertion on 6. This three-step procedure consists of an Association (A)
step, a Prediction (P) step, and a Combination (C) step as follows.

Inferential Model 2.1 (The three-step procedure for IMs). An IM is built using
three steps:

A-STEP. Associate the observable x and unknown 6 with an a-variable z to obtain
a set-valued mapping ©,(z) (C ©), which consists of the candidate values of
0 given z and x.

P-STEP. Predict z by specifying a credible (PRS) Sy, possibly depending on 0; and

C-sTEP. Combine ©,(z) and Sp to obtain the PRS 0,(Syp) = U,es,0.(2) for 0,
and compute the probabilities

e, (A) = Pr(0:(Sp) € A)

and
€, (A)=1— Pr(0,(Sy) CA°) = Pr(0,(Sp) NA#0D)
as the lower evidence and upper evidence for A.

Random variables represent uncertainty in the postulated sampling model. The
A-step emphasizes the modeling of data using a-variables for probabilistic inference.
For the one-normal-mean example, this step is formally written as
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A-sTEP. This is given by (2.3), which gives the singleton set-valued mapping
O,(z)={0: 0 =x—z}. (2.5)

A PRS is a random set Sy that takes values in the power set of the space of the
a-variables. A realization of the PRS Sy can be interpreted as a set that is believed
to include the unobserved value of the a-variable. The strength of this belief is
defined by the probability distribution for Sy. As mentioned previously, this set of
possibilities can depend on the true value of 6. The use of a so-called credible PRS is
intended to be user-friendly in the sense that the resulting probabilistic outputs can
be interpreted and used for uncertain inference in a practical and straightforward
manner; see Liu and Martin (2012) for more discussion on interpreting the evi-
dence functions as belief probability in the context of scientific inference. Roughly
speaking, a PRS in the P-step is said to be credible if it produces probabilities that
have numerical values consistent with those of frequency or additive probabilities.
Formally, the credibility of PRSs is defined as follows.

Definition 2.1 (Credibility). Let I1, be the probability distribution of the a-variable
z. The PRS S for predicting z is said to be credible if it satisfies

Stochastically

Pr(S % z) < U ~ Unif(0,1) (z ~11,), (2.6)

where Pr(S & z) is computed with respect to the distribution of S for fized z.

Note that (2.6) can be equivalently expressed as
Pr(Pr(§Zz)>1—-a)<q,

for each o € (0,1), where Pr(S # 2) is a function of the random a-variable, z.
This can be interpreted as follows: for any fixed z, we can compute Pr (S ¥ z)
as a measure of belief that z is not a realization from II,. If we use a threshold
1 — a to make a decision that z is not the unobserved a-variable realization from
II, in a particular experiment of interest, then we would make wrong decision at
most 100a% of the time for z realizations from II, over repeated experiements. For
example, the PRS

So={z:1zl < |2} = [-12l,12])  (Z ~ N(0,1)) (2.7)
is credible for predicting an unobserved z taken from N(0,1) due to the fact that
Pr(Sy # z) = Pr(|Z] < |z]) = Fiz|(|2]) ~ Unif (0,1) (2 ~ N(0,1)).

where F|z|(.) stands for the cdf of | Z|. Using this PRS, we have the following P-step
for the one-normal-mean problem.

P-sTEP. Predict z using the PRS in (2.7).

This credibility requirement for PRSs is essential as it guarantees the validity of
inference about 6. This is discussed below along with the explanation of the C-step.
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The operations of the C-step should be self-explanatory. Here, we assume that
©,(Sp) # 0 holds with probability one. For cases where Pr(0,(Sp) =0) > 0,
Ermini Leaf and Liu (2011) replace the credible PRS with what they call a credible
Elastic PRS (EPRS); see Section 4. Most important is that the resulting e, (\A)
and €, (A) probabilities are meaningful in the sense that their numerical values are
consistent with a frequency interpretation of probabilities. To be more precise, we
need the formal definition of what is called validity.

Definition 2.2 (Validity). Suppose that © ~ f(x|0) and A C ©. An inferential
framework is said to be valid for inference about A C © if and only if it produces
probabilities e, (A) and €, (A) for A, as functions of the random variable x, that
satisfy

stochastically

for 6 € A¢ and

stochastically
e ()" v w0, 1)
for 0 € A. An inferential framework is said to be valid if and only if it is valid for
all assertions A C O.

The validity theorem (see, e.g., Martin and Liu, 2011) says that an IM is valid as
long as the PRS of the P-step is credible. The implication can be explained by mak-
ing analogy with frequentist procedures as follows. The values of e, (A) and €, (.A)
can be interpreted in practice as: a very large value of the lower evidence e, (A)
practically “confirms” the truth of A, and a very small value of the upper evidence
€, (A) practically “confirms” the falsity of A. The use of the word “confirm” is in
the sense of the Cournot principle (see, e.g., Shafer, 2011): an event of very small
probability will not happen. This interpretation will not lead to a contradiction be-
cause e, (A) <&, (A) always holds. For example, given o = 0.01 as threshhold for
small probabilities, corresponding to the common type-I level of Neyman'’s test, we
have three cases to consider:

1. The case ¢, (A) > 1 — .01 = 0.99: confirms the truth of A;
2. The case €,(A) < 0.01: confirms the falsity of A (or the truth of A¢); and

3. The other case: neither the truth of A nor the truth of A° can be confirmed.
In this case, there is not enough evidence to make a decision for the given
threshold, or we fail to take a decisive action.

To complete the IM for the one-normal-mean example, we give the following
C-step.

C-step. Combine O,(z) and Sy to obtain 0,(S) = [z — |Z],z + |Z|], and
compute probabilities

e, (Agy) =0 and &, (Ag,) = 2[1 — @ (Jz — bo])].
for the assertion Ag,, where ®(.) stands for the cdf of the standard
normal distribution, N(0,1).
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The evidence e, (Ag,) and €, (Ag,) in the C-step can be derived as follows:

and

e, (Ag,)

Pr(6,(S) € Ap,)

Pr{0: [z —z[ <|Z]} € {6o})
Pr({0: |z —2[>|Z]} 2 {6}
Pr(|Z] < |& — 0] for all 6 # ;)

Pr (|Z| < min |z — 9>
66,

1—Pr( S) C Aj,)

—Pr({0: |9U—Z\ < |Z]} € {6}
1 —Pr({9 |z — 2| > |Z]} 2 {bo})
1-Pr(|Z] < |z — b))
2[1 = @ (| — bol)].

The logic in these algebraic operations is typical in computing evidence functions.
In the sequel, we shall omit detailed calculations of evidence functions to save space.

5>( (90)

1.0

0.2 0.4 0.6 0.8

0.0

8o

F1Gc 1. The most evidence for Ag, = {0 : 8 = 6o} given the observed x = 1.96, indicated
by the vertical line, in the one-normal-mean example in Section 2.
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For a simple numerical example, take z = 1.96 and Ay = {# = 0}. We have
e, (Ag) = 0 and &, (4y) = 2[1 — ®(1.96)] = 0.05. Unlike Fisher’s p-value, our
probability €, (Ap) is predictive and therefore provides truly probabilistic inference.
This probability has a meaningful probability interpretation for situation-specific
inference, i.e., it does not need repeated experiments, as in the frequentist school
of thought, to help validate its meaningfulness. The results for a sequence of values
of 0y are displayed in Figure 1. The region with small values of €, (Ap) contains the
least likely values of the unknown quantity 6. In other words, the evidence against
Ap, increases as 0y deviates away from the observed z. When 6 is close to the
observed data point z, our uncertainty about the truth or falsity of Ay, is large.

The preceding discussion shows how IMs can be used for hypothesis testing after
translating a hypothesis into an assertion, .4. The upper evidence, €, (A) can be
used in a similar manner to a p-value, although the interpretation is different. When
€, (A) is small, the assertion A can be rejected. However, large €, (A) values do
not mean that the assertion should be accepted. Only large values of e, (A) serve
to confirm that A is true. As shown in the preceding example, e, (A) may be zero
for any point assertions of the form Agp,. In these cases, the hypothesis that § = 6,
can never be confirmed. However, €, (Ag,) can used for estimation. Simply choose
the value of ) that maximizes €, (Ayg,). This is the most plausible value of 6 given
the observed z. In the preceding example, the most plausible value of g is x (1.96).
For an interval estimate, we can find

Tp(a) = {6 : & (Ag,) > a}.

This is known as a plausibility interval. Like a confidence interval, T';(«) has 1 — «
probability of covering a fixed 6 value over repeated experiments.

2.3. PRSs and efficiency considerations

Efficiency of IMs is an important issue that is determined by the PRS specified
in the P-step. First, it is easy to see that the PRS for predicting a-variables can
be made stochastically as small as possible, provided that it is credible (and that
the space of the a-variable is metric). For continuous a-variables, it is possible to
construct a PRS such that the credibility condition (2.6) is replaced with

Pr (S # z) ~ Unif (0,1) (z ~T1,). (2.8)

Such a PRS is called an efficient PRS. For example, for continuous a-variables, let
b(z) be an arbitrary continuous function defined on the a-space, the space of the
a-variable. It is easy to show that the random set defined by the boundary function
b(z),

S={z:b(z)2b(2)} (Z~TL), (2.9)

is credible and efficient.
It should be noted that an efficient PRS doesn’t necessarily mean that the re-
sulting inference for any assertion A is efficient in the sense of maximizing the
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distribution of e, ¢ (A) and minimizing the distribution of €, s (A) over all effi-
cient and credible PRSs for predicting z. In some sense, the concept of efficient
PRSs is meant to emphasize that PRSs do not need to be stochastically larger than
necessary for credibility. Among a few topics that can be investigated based on
this observation is the construction of assertion-specific PRSs. The shapes of PRSs
can be specified according to assertions of interest. This is particularly useful for
multiple-parameter inference problems. For single-parameter problems efficiency is
less an issue because the inferential results for precise single-parameter assertions,
such as those in the one-normal-mean example, based on different credible and ef-
ficient PRSs are not very different. Two important classes of methods for making
efficient IM inference are discussed next.

3. Conditional and Marginal IMs

Although valid, IMs constructed by predicting a high-dimensional a-variable can
be inefficient. Here we review two types of dimensionality reduction for efficient
inference. One is to predict only a minimum number of a-variables, typically of the
same dimension as the unknown quantity 6. The other is to predict an assertion-
specific low dimensional quantity. These two types of dimension reduction of a-
variables are considered in Sections 3.1 and 3.2. Inference about the Gaussian model
N(p,0?) with unknown g and known or unknown variance o2 from an observed
sample z1,...,x,, a standard textbook example, is used in this section for both
motivation and illustration.

3.1. Combining information via dimension reduction: conditional IMs

Suppose that the observed data x1,...,x, are considered as a sample from the
Gaussian model N(u,0?) with unknown mean p € R and known variance o2.
Without loss of generality, take o = 1. It is natural to extend the discussion of the
n = 1 case, the one-normal-mean example, to the present n > 1 case by writing the

baseline association model

wi=p+2Z  (Z; % N0,1)), (3.1)
where the a-variable is the random vector Z = (Z1, ..., Z,)’. One can predict the
n-dimensional a-variable Z for making probabilistic inference about the unknown
quantity p. It is immediately clear that predicting one component of Z, say Zi,
would be sufficient for such a purpose. However, with a closer look at the association
model (3.1) we would find that some functions, for example,

Zi—Zl =T — X1 (122,,71) (32)

are fully observed. These observed a-variables can help predict Z; more accurately.
This motivates the idea of (i) associating z; and p with an unobserved but pre-
dictable quantity Z;

x1 =p+ 2y; (33)
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(it) predicting Z; using a credible PRS based on its conditional distribution given
(3.2); and (4i7) combining the PRS constructed in (i) and the association model
(3.3) to evaluate evidence functions for assertions about u.

Care must be taken to check that when conditioning on (3.2) there are a-variables
available to be predicted for inference about u, i.e., the fundamental principle of
Section 2 is not violated. This is not a problem in this motivating example. For
general cases, to preserve the fundamental principle of Section 2, assume that the
baseline association model z = a(U, 6) can be represented by a conditional associ-

ation model
hi(z) = a1(V1,0) (3.4)

and a conditioning equation
ha(z) = az(V2), (3.5)

where Vi = ¢4 (U) and Vo = ¢2(U) form a one-to-one mapping between V =
(V1,V2)" and U from the the space of a-variable U to that of the new a-variable V.
When such a representation exists, a regular conditional IM can be constructed, as
suggested by the motivating example above, in the same way as constructing the
IM in Section 2. That is

Inferential Model 3.1 (Conditional IM). The regular conditional IM (CIM) based
on (3.4) and (8.5) has the following three steps.

A-STEP. Associate hi(x) and 6 through the a-variable Vi, which gives the candi-
dates of 0, O, (2)(V1) = {0 : hi(v) = a1(V1,0)}, when hi(x) and Vi become
available, either observed or predicted.

P-STEP. Predict Vi using a credible PRS Sy based on its conditional distribution
given (3.5).

C-sTtEP. Combine Sg and Oy, () (V1) to obtain
O, (2)(So) = {0 : 0 € Oy, () (v1) for some vy € Sp}.

Then, evaluate evidence functions in exactly the same way as in IM 2.1.

Under mild conditions, mainly that (3.4) is a valid association model that is
consistent with the fundamental principle, the CIM is valid; see Martin, Hwang,
and Liu (2011a). Here we illustrate the CIM by completing the above motivating
example. The A-step gives the candidate set {u : u = 21 — Z1}. The conditional
distribution of 7y given (Zy — Zy,..., Zy, — Z41) is

n

N (7112(:”” —xﬁ,i). (3.6)

=2

In the P-step, we define a PRS for predicting Z; by predicting the residuals from
(3.6). The resulting PRS for Z; is given by

1 n
S={z1:2= - Z(mi—xl)—kz/\/ﬁ for some z € (—|V,|V])} (V ~N(0,1)).

=2
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The P-step generates the PRS for p

{p:lz—pl <VI/vnt  (V~N(0,1)),

where Z denotes the sample mean, i.e., T =n"! 2?21 x;. In other words, the CIM
is equivalent to the IM based on the sufficient statistic & alone. We note that this
CIM can be easily derived by considering the conditional association model

Tr =

1
+ —=V
K Vn
and the conditioning equation

JCi—,fZZi—Z (z:l,,n)

However, it should be verified that this system of conditioning equations requires
only a (n — 1) dimensional observed characteristics to be given, leaving a one-
dimensional observed quantity for preserving the fundamental principle.

Remark 3.1. There are cases where reqular CIMs may not exist. A many-normal-
means problem in meta-analysis in Section 7 provides such an example. In such
cases, the generalized CIM of Martin et al (2011a) can be used and illustrated in 7.

Remark 3.2. It should be noted that there is difference between conditional IM and
Fisher’s conditional inference. The latter is frequentist and, thereby, works with the
sampling distribution of sufficient statistics conditional an ancillary statistics. That
18, it requires other experiments for interpreting inferential results. IM conditional
inference is data-dependent or situation-specific and doesn’t need other experiments
for interpretation.

3.2. Efficient inference via dimensional reduction: marginal IMs

Suppose that the observed data x1,...,x, are considered as a sample from the
Gaussian model N (p,0?) with unknown g € R and unknown ¢ € Ry = (0, 00).
The natural baseline association model is

v =pu+0Z  (Z " N@©01)i=1,...n).

Let s2 be the sample variance of 21, ..., z,, and let s% be the sample variance of the
unobserved sample Zq, ..., Z, from a known population. Then it is straightforward
to show that the CIM obtained by using the conditional association model

T=p+o0Zand s = o%s% (3.7)
and the conditioning equation

(Z —12)/sz = (x — 1) /54,
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i.e., the observed direction of the centered Z, is given by the IM with (3.7) as the
baseline association-model. That is, we can make inference about 6 = (1, %) based
on the IM with the association model (3.7). The two a-variables Z and s% are
independent with

Z ~N(0,n ) and (n —1)s% ~ x2_,.

Now suppose that we are interested in inference about o alone. In this case, we see
that inference can be made by predicting s% alone. In other words, we can consider
a PRS predicting (Z, s%) but focus more on the accuracy of predicting s%. This
suggests that we construct a credible PRS in such a way that when projected down
to space of s%, it is minimized. Such a PRS is given by a product of a credible PRS
for predicting s% and a largest possible PRS, i.e., R, for predicting Z. For example,
using a centered (marginal) PRS

{s% 1 |F(s3) — 5| S F(M?) = 5]} ((n—1)M* ~x;_y)
for s, yields the PRS
S=Rx {s%:|F(s%) — .5 < F(M?) — 5]}

for predicting (Z, s%). This approach effectively “integrates” out Z or the so-called
nuisance parameter ;4 and results in a marginal IM for inference about o2.

Before we discuss inference about p alone with o2 viewed as a “nuisance” pa-
rameter, we consider the general case of inferring ¢ = ¢(6) alone. In what follows,
we use a class of nuisance parameters. To be specific, let (¢,£) = (¢(0),£(0)) be a
one-to-one mapping from the space © to the space of (¢, ). The approach in the
above example of inferring o2 is generalized in Martin, Hwang, and Liu (2011b) as
follows. Suppose that the baseline association model can be written as a (regular)
system of two equations: a marginal association model

h(z,¢) = m(yp(U), d) (3-8)
and a nuisance association model
C(U7 x? 5) = 07 (3-9)

where U is the a-variable. Under the assumption that for any = and U, there exists
¢ such that ¢(U, x, &) = 0 holds, then the baseline association model is equivalent
to the marginal association model (3.8) for inference about ¢. Thus, under mild
conditions a valid IM for inference about ¢, called a marginal IM (MIM), is obtained.

Inferential Model 3.2 (Marginal IM). The marginal IM for inference about ¢
has the following three steps.

A-STEP. Obtain the candidate set of ¢ from (3.8),
P, (Y(U)) ={¢: h(z,¢) = m(xU), )}

P-sTtEP. Construct a credible PRS Sy to predict ¥(U).
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C-sTEP. Compute for any assertion of interest A on ¢ the evidence functions

e (A) = Pr(®,(S) C A)

=T

and

& (A) =1—Pr(®.(S) € A%,
where ©,(S) = {¢: h(z,d) = a1(Y(U), ), ¥ (U) € Sy}.

It is easy to see that the above example of inferring o2 is an instance of MIM.
For another illustrative example, consider marginal inference about u. Write the
baseline association model (3.7) as a regular system of a marginal association model

Sy Sz

and a nuisance association model

2 2.2 _
s, —o0°s, =0.

Thus, the MIM for x4 has the A-step obtained from (3.10), the P-step predicting
T:V%Z

Sz

~1(0,1,n— 1),

and the standard C-step, where ¢(0,1,n — 1) stands for the standard Student-t
distribution with n — 1 degrees of freedom. The marginal association model

ValE—p) _ o

Sz

with the a-variable following ¢(0,1,n — 1) gives IM results that are similar to fa-
miliar frequentist results, except that IM results have the desired interpretation for
situation-specific uncertainty assessment.

Remark 3.3. There are cases where regular MIMs may not exist. The Behrens-
Fisher problem, a popular statistical problem in bio-medical statistics and elsewhere
for inference about the difference of two normal population means with unknown
variances, provides such an example. While more research is expected to be done
on this interesting topic, Martin, Hwang, and Liu (2011b) proposed a parameter-
expansion approach that leads to what they call weak marginal inferential models
(WMIMs). With parameter-expansion, they gave an satisfactory IM solution to the
Behrens-Fisher problem, a famous benchmark example in statistical inference.

Remark 3.4. To help understand Remark 3.2, it is interesting to note that from a
frequentist point of view, marginal IM inference can also be considered as Fisherian
conditional inference. For example, IM inference about p gives similar frequentist
results obtained by conditioning on s2 (and direction of the residual vector). For IM
inference, all observed data are considered as fized and the efforts are made in pre-
dicting the unobserved a-variables in the particular experiment where the observed
data were collected.
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4. Constrained Inferential Models
4.1. Constrained Inferential Models

Here we discuss an important issue that occurs when the combination of the PRS &
and the candidate set 0,.(z) in the C-step of IMs is empty. We call this problem the
constrained inferential model problem. It contains constrained-parameter problems
as special cases, but appears to be more general from a constrained inferential model
perspective.

As is often the case in IM applications, realizations of S are here assumed to
be monotone in the sense that any two realizations S; and Sy of S satisfy either
S1 C Sy or S1 O Ssy. A simple way of dealing with the constrained inferential model
problem is to discard realizations of S that do not intersect with ©, = U,0,(z).
Ermini Leaf and Liu (2011) show that the resulting IMs are indeed valid. This idea
can be understood as that the discarded realizations are effectively replaced with
larger realizations. Computationally, this approach can be implemented using an
acceptance-rejection sampling scheme that rejects draws of S that are too small
to intersect with ©,. Intuitively, replacing small realizations of & with large ones
maintains the validity, but results in loss of efficiency. To overcome this problem,
Ermini Leaf and Liu (2011) proposed what they call the elastic PRS. The basic
idea is to replace an overly small realization with one that is large enough rather
than throwing it away.

Loosely speaking, the elastic version of a regular PRS § is a collection of random
sets each containing S as a subset. More precisely, let S be the sample space of a
regular §. Then the elastic PRS can be defined by

w(S)={W:8§CWesS} (S es). (4.1)

The constrained IM is obtained by replacing the intersection ©,(S) of the C-step
of an IM with
0,(S) = U.es+0,(2), (4.2)

where §* is the “smallest” element in w(S) that intersects with ©, = U.0,(z),
ie.,
S* =Nwew-W with W' ={W:Wew(S),Wne, # 0}

The use of constrained IMs is illustrated below by its application in classification.
More applications can be found in Ermini Leaf and Liu (2011); see also Ermini Leaf
(2011) and Section 7.

4.2. A classification problem

Here we consider the simple problem of classifying an observation to one of two
univariate Gaussian subpopulations. For conceptual clarity, we discuss the case
with known populations in Section 4.2.1. The more practical version, with unknown
populations, is considered in Section 4.2.2.
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4.2.1. Classification with known populations

Suppose that an observation z € R is known to have come from either N (u1,0%) or
N(uz,02). It is assumed that there is no prior knowledge about which of the two
subpopulations this observation z belongs to, but u1, o1, s, and o5 are all known.
Thus we consider the association model

s=pi+oU  (U~N(©01)i=1,2), (4.3)

where U is the a-variable and ¢ is the unknown quantity. This association model
gives the A-step with
O.(u)={i:z=pu; +0;U}.

We use the centered PRS
S={u:lu<[U]}  (U~N(0,1))

to predict w*, the unobserved realization of U associated with the observed data
z. It is easy to see that the PRS S and the candidate set ©, may have an empty
intersection. Equipping the PRS with elasticity, we have the constrained IM that,
computationally, acts like a regular IM with the (conditionally enlarged) PRS

Sz{u: |u] < max (|U|,min M)} (U ~ N(0,1)).
i=1,2 oy
The assertions of interest regarding the classification problem are A; = {i =
1} and A; = {i = 2}. Let k = argmin;—; 2|z — ;|/0;. Then routine algebraic
operations give for ¢ = 1,2

_ _ el TR
e (A) = 1-29 ( o ) , if 4 k',
0, otherwise,

and

) 1, if i = k;
e. (Ai) = 2P <_M) 7 otherwise.

gq

4.2.2. Classification with unknown populations

Consider the classification problem of Section 4.2.1 but with unknown parame-
ters 1, 07, pg2, and o3. Instead, it is assumed that two samples, 21, ..., T, , from
N(ui,0?) and 41, ..., Yn, from N(ugz,03), are available. The problem of inference
remains the same, i.e., inferring about the unknown quantities regarding which
subpopulation an observation z belongs to.

The discussion of Section 4.2.1 motivates us to consider inference about (z —
;) /o; for classification. The baseline association model is given by

z=u; +o;U (UNN(O71)>,
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zi=p oV (VN =1,,m),
and

yi =2+ oV (VO EN@©1)i =1, .m),

where U, (Vl(i), s Vnﬁ”)) and (Vl(y), reny 753)) are independent of each other. Applying
the standard conditioning approach yields the reduced association model

T=pu +0V, ands, =0 M (4.4)

and -
y=p2+02V, and s, =o02My, (4.5)

where Z and s, are the sample mean and standard deviation of x, ..., z,,, V, and
M are the “sample” mean and standard deviation of Uy, ...,U,,. The quantities

Y, Sy, Vy, and My are introduced similarly but for yi,...,y,, and the associated

a-variables Vl(y)7 . Vrg’ ). The four a-variables Ve, Vy, My, and M> are independent

with
VT ~ N(O7 1/711), Vy ~ N(07 1/TL2)7 (nl*l)]\412 ~ X%Ll—17 and (n271)M22 ~ X?LQ—l'

For inference about 0; = (z — u;)/o; for i = 1,2, write (4.4) as

2—F 6 +V,
5 = 1M1 and s, = o M; (4.6)
and (4.5) as -
-y 0+,
Y _%2tly and s, = o9 Ms. (4.7)

Sy M2
For efficient inference, marginalizing out o7 and o5 and noticing that §; = U leave
the dimension-reduced association model for classification
- U+V, z—7 U+V
= or = .
Sm/1+n% Ml,/1+n% sy,/1+% MQ,/1+7712
Let Fy(.) denote the cdf of (U + V,)/(Mi/1+ 1/n;), the standard Student-t
with n; — 1 degrees of freedom, and, likewise, let F5(.) denote the cdf of (U +

Vy)/(Ma+/1+1/n2), the Student-t with ny — 1 degrees of freedom. Thus, via a
change-of-variable we can write the reduced association model as

T FNU) or — Y 7N U) (U~ Unif(0,1)) (4.8)
Seqa/ 1+ n% Sy/1+ i

with U playing the role of the a-variable.
Technically, classification based on the reduced association model (4.8) with the
uniform a-variable U is the same as that with known subpopulations discussed in

Section 4.2.1. Let k = arg min;— o |F; — .5, where F} = F; ((z —Z)/(sz4/1+ n%))
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and Fp = Fy ((z —9)/(sy\/1+ n%)) Take the centered PRS for predicting U and

equip it with elasticity. The evidence functions for the assertions A; = {i} in clas-
sification are given by

1-2F, (-'“k') if i = k;

€ay (Ai) = U’“ﬂ
0, otherwise,
and
1, if i = k;
€,y (Ai) = 2F, <_|z“1> , otherwise
o, 1+7Ti
fori=1,2.

5. Selective Inference

In this section, we consider a situation where the hypothesis of interest is not
determined until after observing the data; see Ermini Leaf (2011) for more details.
Suppose that a population has two subgroups: female and male. A treatment is
administered to a sample of size n from each group. Without considering subgroups,
the entire sample might not have significant evidence for a positive treatment effect
in the entire population. However, when looking separately at each subgroup mean,
there might be evidence for a positive treatment effect within one subgroup. Let
yp and 7y, be the mean observed treatment effects for each group. Suppose further
that 7p comes from a N(up,0?/n) distribution and, similarily, 7,,; comes from a
N(pn, 02 /n). The standard deviation, o > 0 is assumed to be known. Suppose it
is observed that
Yr > Ym- (5.1)

This suggests there might be evidence for the hypothesis that ugp > 0. An IM for
this hypothesis is preseneted in this section.

Bias can occur when a hypothesis is tested after observing data that suggests
it is true. From a frequentist perspective, if the hypothesis is actually false, i.e.,
pr < 0, and we only test it when §p > 7, is observed, then we would decide that
the hypothesis is true too often over repeated experiments. The inference would
not be valid. The way to overcome this bias is to condition the inference procedure
on the event that led to the choice of hypothesis. In this case, the event (5.1) will
be incorporated into the IM.

The association model can be built using the conditional cdf of each sample
mean. Let

Ym
n t— t—
JRet (1- e @
un = i
) (MF—MM )
\/202/n
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and
_ 205 — 2O
ur = d Yy —HF (53)
L= e(Gm)

for ¥y > Ty. The a-variables, uy and up, each have a Unif(0,1) distribution.
However, the association model does not have a closed form expression.

The mean treatment effect in the male population subgroup, uag, is a nuisance
parameter. It plays no role in the assertion of interest: A = {up : up > 0}. A
marginal IM (see Section 3.2) can be created by predicting uy with the largest
possible PRS, [0,1]. Since A is one-sided, the PRS for ur can also be one-sided.
The PRS for (up, unm) is:

S={u:u>U}x[0,1], (U ~ Unif(0,1))

The C-step requires the mapping (5.3) to be inverted with respect to up for fixed
up. This can be done numerically using a bracketing method (see, e.g., chapter 2
of Givens and Hoeting, 2005), but technical details are omitted here.

Fig. 2 shows the one-sided 95% plausibility interval for pr with different values
of r when 7; = —1.5. The upper bound of the usual one-sided confidence interval,

Yp + 1.6450/\/n,

is also shown. When % > 7%y, the plausibility interval bound approaches the
confidence interval bound. However, as yp approaches 7, the plausibility interval
bound drops to —oo. The plausibility interval has exact 0.95 coverage probability
for fixed 6 over repeated experiments with 7y > 7). The confidence interval is too
wide.

6. Inference for binomial data

This section considers inference about the parameters of a binomial distribution,
Bin(n, ), based on an observed binomial count, x. First, we simply consider infer-
ence about the success probability, #. This idea is then extended to inference about
the odds ratio in a 2 x 2 contingency table.

6.1. Inference about a Binomaial proportion

Following Martin et al. (2011a), suppose that the observed data x follows binomial
distribution Bin(n,#) with known size n and unknown parameter . We are inter-
ested in inference about 6. In the A-step, we associate x and the unknown 0 with
an a-variable u as follows:

r=min{k:1—-u< F,go(k)} (u~Unif(0,1)), (6.1)
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Upper bound

Yr

Fic 2. Lower level-0.95 plausibility interval (shaded) for ur when ym = —1.5 and o /+/n =
1. The dotted line is the upper bound of the usual one-sided confidence interval.

where F), ¢(-) is the distribution function for the binomial distribution Bin(n,#).
To complete the A-step, we derive ©,(u). From (6.1), we have

Foolr—1)<1—-u< F,g(x). (6.2)

Let Gq(-) be the distribution function of beta distribution with parameters a and
b. The distribution function of the binomial distribution is related to that of beta
distribution by the following equation

Fro(@)=Gnopo+1(1—0)=1—Gpp1n_s(0), (6.3)
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which can be shown using integration by parts. Therefore, (6.2) can be rewritten
as

Ga_cjv,—x-&-l(u) S 0 < Ga_c—sl-l,n—gc(u)' (64)
Therefore,
O, (u) ={0: Gy i (u) <O <Gy, (0)} (6.5)

Note that unlike previous examples, ©,(u) is not single-valued due to the discrete
nature of the sampling distribution.
For the P-step, u can be predicted by the PRS

So={u:|lu—05]<|U—-0.5]} (U~Unif(0,1)). (6.6)
Finally, in the C-Step ©,(u) and Sy are combined to obtain
04(89) =[G —011(05 = [U = 0.5)), Gy, (0.5 + U — 0.5])), (6.7)

with U ~ Unif(0,1).

6.2. 2 by 2 Contigency Table

Now let us consider the more complicated case of observing counts from two inde-
pendent binomial distributions,

x1 ~ Bin(ni,¢1) and xo ~ Bin(ng, ¢2), (6.8)

when we are interested in inference about the odds ratio: § = 1?;1 12}2. Assume

the sizes, ni and ne, are known but parameters ¢; and ¢o are not known. When
we are particularly interested in whether # = 1, it becomes the classical problem of
testing association between two kinds of classification.

For the A-step, let F,, 4, n,.6,(-) be the distribution function of the sum of x;
and x5 so that

Fry 61 a6, (k) = Z <Zi> L — py)™ ™ (Zz) 22(1— )™ "2, (6.9)

z1+x2<k

A CIM can be built using an a-equation for z = xy + xa:
z=min{k : va < Fp, ¢, ns.0,(k)} (v2 ~ Unif(0,1)). (6.10)

Given z from the a-equation (6.10), z; follows Fisher’s noncentral hypergeometric
distribution. Thus, letting H,,, n, ..0(-) be the distribution function of z,

Zmin = max(0, z — na), (6.11)
ZTmax = min(z,ny), 6.12)
. ni ng gwl
Hnl,nz,z,e(k) _ memﬁamﬁk (x1n)1<z711) (613)

> () (75,)0m
Trnin <T1<Tmax T zZ—x1
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the conditional association model can be derived as:
z1 =min{k : v1 < Hy, nyz0(k)} (v1 ~ Unif(0,1)). (6.14)

Note that unlike (3.5), the conditioning equation is not free of parameters ¢; and
¢2. However, we can still conduct a conditional inference based on (6.14) using
generalized conditional IM approach (Martin et al., 2011a). Thus, the conditional
association model can be simplified as:

@m (1}1) = {0 : Hn17n272,9(£1 — 1) < < Hnl,ng,z,e('rl)}- (615)
For the P-step, we can predict v; by the marginal PRS
Sp = {v1 : [v1 — 0.5 < [V4 —0.5]} (Vi ~Unif(0,1)). (6.16)

In the C-step, although O, (v1) cannot be described as simply as in (6.7), for
the assertion Ag, = {0p}, it is possible to derive a simple expression for e(Ag,) and
e(Ag,). Trivially, e(Ap,) = 0 for any point assertion Ag,, since (6.15) is multiple-

valued almost surely, thus O, (v1) € Ay, almost surely. Also, from (6.15) we have

0, (60) = [az, (60), b, (60))- (6.17)
where ., . X
a (90) _ (xlil) (zf(szl))gwli
o D tin <t < (1) (208
" ()20
bxl (90) _ x1 z—x

meinﬁtf.’tmax (ntl) (zn—Qt) o .
Therefore, when PRS in (6.16) is used,

1 if Qg (90) S 0.5 S bibl (90);
& (Ag) =4 205 by, (60))  if by, (6)) < 0.5;
2(a$1 (90) — 05) if Qg (90) > 0.5.

For a concrete example, let us consider the case of Kidney stone treatment from
Julious and Mullee (1994). Table 1 describes the result of applying treatment A
to patients with small stones (n;) and large stones (ns), where x; and x5 are the
number of successful treatments for each group respectively. Fig. 3 plots the log of
€, (Ap,) versus the log of 6. One can find a level 1 — « plausibility interval, by
locating o on the vertical axis and choosing all the 0y values for which €, (Ag,) > a.

Note that conducting conditional inference based on (6.15) is similar to Fisher’s
exact test. In this respect, the IM approach provides another way of viewing and
validating Fisher’s exact test and conditional likelihood methods.
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o = 192 Nog — T = 71 No = 263
xr1 + xo = 273 ‘ ny+mno—x1 —x0 =77 H ni1 + no = 350

x1:81 711—1'1:6 H n1:87

TABLE 1
Kidney stone experiment data
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Fia 3. Plot of upper evidence function for each point assertion Ag, -
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TABLE 2
The data of Rubin (1981) on SAT coaching experiments

Estimated Associated

School (%) Treatment-Effects (y;) Standard-Error (s;)
1 28.39 14.9

2 7.94 10.2

3 -2.75 16.3

4 6.82 11.0

5 -0.64 9.4

6 0.63 11.4

7 18.01 10.4

8 12.16 17.6

7. Meta-Analysis: many-normal-means problems

We refer to Zhou et al. (2003) for a comprehensive review of meta-analysis. Here we
focus on a popular statistical model for meta-analysis, namely, the many-normal-
means model .

yi N0, 52 (i=1,..,m), (7.1)
where y; is the estimated or observed treatment effect in the i-th study. The mean,
0;, is the unknown treatment effect to be inferred. The associated standard deviation
s? is taken to be known, assuming that the sample sizes in all the studies are not
too small.

For a numerical example of our exposition, we take the real-data example of
Rubin (1981), which has the same data structure and inference problems. Rubin
(1981) considers assessing effects of SAT coaching programs based on parallel ran-
domized experiments in n = 8 schools. The estimated individual effects and the
associated standard deviations are tabulated in Table 2. An argument for the use
of the sampling model (7.1) is that each y; was obtained from a data set that is
large enough for the acceptance of the normality assumption and the assumption
that s?’s are known.

Section 7.1 discusses a formal IM approach to uncertainty assessment of the
assertion or hypothesis

./40 = {9 : 01 =..= 9n} (72)

Section 7.2 considers the hierarchical model specified by imposing a second stage
structure »

0; < N(u,0?) (i=1,..,n) (7.3)
with unknown p € R and unknown variance 0. The resulting model is also known
as a random-effects model. Inference with unknown o2 has been challenging. For
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example, the method of maximum likelihood is problematic. Bayesian inference
requires sensible operational priors to be carefully chosen for (1, o%). This serves as a
good example for the argument that practical Bayesian methods are approximating
frequentist methods with resulting inference not necessarily valid in the sense of
Section 2. After a brief discussion on an IM method for checking the postulated
hierarchical model specified by (7.1) and (7.3), an IM approach to inference with
the hierarchical model without requiring priors for (u,0?) is presented in Section
7.2.

7.1. Inference about equal means or homogeneity

The sampling model (7.1) can be expanded for probabilistic inference as

yi=0;+s2Z  (Z 9 N01);i=1,..,n), (7.4)
where 71, ..., Z, are the a-variables. The problem here is to assess the truth and
falsity of the assertion Ay given in (7.2).

Note that the assertion Ay is a point assertion in an (n — 1)-dimensional space.
That is, the common value of §; under the truth of Ay can be located anywhere on
the real line R. This means that no precise inference is needed for this unknown
common mean. Thus, we consider an MIM that effectively integrates out a nuisance
parameter representing this common value. We simply take the MIM consisting of
the nuisance association model

y1="01+s121
and the marginal association model
Yi — W :¢Z+Ul (7;:27...71%), (75)

where ¢; = 0; — 01 and U; = s;Z; — 5171 for i = 2,...,n. Since for any y and Z,
there is a 61 such that the nuisance association model holds, we proceed with the
marginal association model (7.5) alone.

Write D = (y2 — Y1, ooy Yn — ¥1)'s & = (¢2, ..., ), and U = (Ua, ...,U,)". Then
(7.5) can be written in a vector form as

where the covariance matrix of U is
W = diag(s3, ..., s2) + s111’

with 1 = (1,...,1)’, denoting the vector of (n — 1) ones. In terms of ¢, the assertion
of interest Ajg is given by

Ao={¢:d2=...= ¢, =0}.
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For this precise or point assertion, we consider a credible PRS in the n — 1 dimen-
sional space of U. It is seen from (7.6) that the propagation of uncertainty from
U to ¢ is subject to only a translation operation (i.e., additive transformation).
To create an efficient PRS for predicting U, we construct smallest possible subsets
with fixed coverage probabilities, that is, the highest-density regions

S={u: W lu<UWU} (U~ N,_1(0,W))
or, equivalently,
S ={u:uWtu <R?* (R% ~ x2_)). (7.7)

It should be noted that the projected one-dimensional predictive random intervals in
any one-dimensional space have the same coverage probabilities. This observation,
together with the use of high-density sets and the translation operation from U to
¢, explains intuitively the efficiency of the PRS (7.7).

Routine operations, using, for example, familiar matrix identities that can be
easily established with the sweep operator, give the following evidence functions

e, (Ao) = 0 (7.8)
and

& (Ao) =1—Fry (Z wi(y; — y)2> ; (7.9)
i=1

where w; = 1/s? for i = 1,...,n, § = Y i wiyi/ > iy wi, and F,_;(.) denotes the
cdf of the chi-square distribution with n — 1 degrees of freedom. The evidence for
Ajg from the data in Table 2 are

e, (Ao) =0 and ey (.Ao) =0.7131,

indicating no strong evidence is available for inference about the homogeneity of
91"8.

We note that the results do not depend on the choice of y; = 61 + s1Z; for the
marginal inference. These results agree with the familiar classic results, but have
the desirable interpretation for situation-specific inference.

7.2. A hierarchical model

Although there is no strong evidence against the assertion that the effects of all
the coaching programs are the same, the evidence for this assertion is not strong
either. Most importantly, it can be argued that these effects cannot be precisely the
same. One purpose of the study is to evaluate how much difference there is among
coaching programs, that is, the individual 8; effects are viewed as random. A simple
model for characterizing such an estimand is the hierarchical model given by (7.1)
and (7.3):
y; |0 o N(0;,5?) and 6; % N(p, 0?).

K2
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Integrating out the random 6; effects yields the sampling model for the observed
data given by the association model

yi=p+ /2 +02Z  (Z;, CN(@0,1)i=1,...n). (7.10)

7.2.1. Model checking

In practice, it is necessary to check if this postulated model fits the observed data.
A simple IM approach can be carried out by producing evidence for the assertion
that there exists some value of (u,0?) such that

Yi — K (i
18 a sample from the standard normal distribution. The IM proposed for such an
assertion in Liu and Xie (2010) can be applied here with a simple modification
obtained by including the corresponding optimization over (u,o?). We refer to Liu
and Xie (2010) for the technical details regarding the essential part of this IM
method. For the present example, we applied this IM method to the data in Table
2. The pair of lower and upper evidence for this model-checking assertion is (0, 0.95),
indicating that the model fits the data well. In what follows, we consider inference
about o2 based on the association model (7.10) with the observed data yi, ..., yn.

7.2.2. A simple IM for inference about o

Inference about o2 appears to be a challenging problem. It is easy to see that the
n = 2 case and the s; = ... = s, case are simple constrained parameter problems.
In the n = 2 case, marginalizing out p gives the association model

Yo — Y2 = \/ 87 + 85+ 2027 (Z ~N(0,1))

with the unobserved a-variable Z to be predicted. This is effectively a constrained
parameter problem because the unknown quantity s? + s3 + 202 is subject to the
constraint that s? + s3 +202 > s? + s3. Inference about o2 in this case can be done
using the method in Section 4. IM inference can also be carried out easily for the
case where s = s; = ... = s,, by making inference about ¢ = s> + o2 subject to the
constraint ¢? > s2. For the general case, we present a simple IM approach below
and discuss its efficiency; see Remark 7.1.
A simple IM approach is obtained by noticing the fact that

i (yi - ?](0'2»2 _ g2 (52 - Xi—l) (7.11>

2 2
s +o
i=1 g

where S? is the a-variable and y(c?) = Y1 wi(0?)y;/ > i wi(0?) with w;(0?) =
1/(s?+0?) fori = 1,...,n. Using a PRS to predict S? alone results in valid inference

about 02; see Remark 7.1 for more discussion.
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FIG 4. The function S,(c?) for the SAT coaching example.
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Fic 5. The upper evidence function for the point assertion A(,g = {03} and the 95%
plausibility interval for o, [0,16.50].

Let

Sy(O'Q) — i: (yz - g(UQ))2.
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The function S, (0?) for the SAT data is displayed in Figure 4, which shows that
Sy (0?) is bounded from above. Thus the EPRS S for predicting S? is used to ensure
that S has non-empty intersection with the interval [0, max,2 S, (c?)]. We use, for
example, the equal-tails/two-sided PRS to build an EPRS S. In this example, the
median of x2 is 6.3458 and max,2 S, (c?) = 4.5632. Thus, EPRS S has a point
mass of 0.4262 at S = [4.5632,8.5460]. The resulting upper evidence function for
the sequence of point assertions

Agz = {05}

is shown in Figure 5, where the 95% plausibility interval for o is [0, 16.50].
Remark 7.1. Write

(2 _ a2\
V(y,o%) = UL y(o))“.’yn ylo’)
Vst + o2 V82 + 02

and ,
Z(0?) Z(0?)
U ZoH=|2 — —L, ..., 2y — ——te |,
( ) <1 /8% + o2 " \/s2 + o?
where

n Z;
5 Zi:l W
2(0%) = — V"7

Yl
i=1 s?4+02

A formal argument for the validity of the simple approach in the last section can be
made by writing the association model (7.10), after integrating out p, as a system
of equations consisting of (7.11), i.e.,

IV (y, o) = IU(Z, o), (7.12)
representing the length of the vector, and
IV (y, o)~V (y,0%) = |U(Z,0*)|7'U(Z,0%), (7.13)

for the direction of V (y,02). For the case of s = s1 = ... = Sy, the unknown param-
eter o2 disappears from (7.13). This results in a simple conditional IM, from which
we infer o based on the association (7.12) with ||U(Z,c?)| conditioned on the ob-
served direction of U(Z,0?) in (7.13). Since the length and direction of U(Z,c?)
are independent of each other, the simple approach is in fact based on a CIM and,
thereby, is efficient. When the length and direction are not independent, one can
ignore (7.13) or, equivalently, predict the direction of U(Z,a?%) with a (projected)
vacuous PRS. This implies that although valid, efficiency may be gained by making
use of (7.13). Research on developing general IM approaches for such problems,
under the umbrella of the so-called generalized CIM (GCIM) approach, is on-going.
Nevertheless, a Bayesian analysis is given below for indirectly verifying the effi-
ciency of the above IM approach.
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F1G 6. The (marginal) Bayesian posterior density and 95% credible interval (CI), [0,17.27],
for o, obtained with the prior w(u,o) < 1.

For a comparison, consider the Bayesian inference using the (flat) prior distri-
bution (see, e.g., Rubin (1981) and Gelman et al. (2005)):

7(u, o) o const.

The posterior density of o and the 95% Bayesian credible inference (CI) are shown in
Figure 6. Note that the Bayesian CI, [0, 17.27], is slightly longer than IM plausibility
interval (PI), [0,16.50]. It should also be noted that the posterior can be very
sensitive to the specification of the prior for o. For example, different results will
be produced if the alternative prior 7(y,0?) oc 1/(0? + minj<;<p s7) is used.
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