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Abstract

Statistical inference about unknown parameter values that have known con-
straints is a challenging problem for both frequentist and Bayesian methods.
As an alternative, inferential models created with the weak belief method
can generate inferential results with desirable frequency properties for con-
strained parameter problems. To accomplish this, we propose an extension of
weak belief called the elastic belief method. Compared to an existing rule for
conditioning on constraint information, the elastic belief method produces
more efficient probabilistic inference while maintaining desirable frequency
properties. The application of this new method is demonstrated in two well-
studied examples: inference about a nonnegative quantity measured with
Gaussian error and inference about the signal rate of a Poisson count with
a known background rate. Compared to several previous interval-forming
methods for the constrained Poisson signal rate, the new method gives an
interval with better coverage probability or a simpler construction. More
importantly, the inferential model provides a post-data predictive measure
of uncertainty about the unknown parameter value that is not inherent in
other interval-forming methods.
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1. Introduction

The parameter space of a probability model may extend beyond what is
consistent with the physical world. Currently, there is no widely accepted
method for incorporating such physical constraints into statistical inference
methods. A new approach to this problem, based on the theory of inferential
models (IMs) [1, 2, 3], is considered here. We use two examples of particular
interest to high energy physicists during the past fifteen years: inference
about a nonnegative quantity measured with Gaussian error and inference
about the Poisson rate from a contaminated observed count.

Suppose X is the measurement of a nonnegative quantity, µ, with Gaus-
sian error distribution. Choosing the variance, σ2 = 1, for simplicity, this
can be represented by the probability model X ∼ N(µ, 1) and the constraint
µ ≥ 0. The Gaussian model for X allows any real-valued µ. For this unre-
stricted case, many inference methods have proven to be simple and produce
practically the same results for µ. Somewhat surprising, when µ is known
to belong to a restricted interval, the same problem becomes challenging.
Bayesian inference with a flat prior on µ does not have a clear frequency
interpretation [4] and frequentist procedures are difficult to construct. As
discussed in [5], this problem arises when measuring particle masses, which
must be non-negative and are expected to be relatively small, if nonzero.

In the Poisson example, the observed count, Y , is known to be comprised
of signal and background events each coming from their own independent
Poisson distributions. Suppose the background rate, b, is known, but the
signal rate, λ, is unknown. Let S ∼ Poisson(λ) be the number of signal
events and B ∼ Poisson(b) be the number of background events. Both S
and B are unobserved, but the observed count, Y = S + B, comes from
a Poisson(θ) distribution with θ = λ + b. The Poisson model for Y only
requires that θ be nonnegative or, equivalently, λ ≥ −b. However, negative
values of λ are not valid and so the constraint θ ≥ b is required. This model
is used in experiments measuring a number of events caused by neutrino
oscillations. Some of the observed events are due to random background
sources, but are indistinguishable from the signal events of interest. Detailed
discussion and references to experimental results can be found in [5].

Much existing work on the two example problems was aimed at developing
confidence intervals that involve the constraints. Methods were developed
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within both the Bayesian and frequentist frameworks. For a review and
discussion of previous methods, see [5, with comments]. In scientific inference
it is desirable that inferential results be stated with some kind of probabilistic
assessment of their uncertainty, such as a confidence level. In order for such
statements to be meaningful, many practitioners believe these probabilities
should be calibrated to a frequency interpretation. Thus, we focus on interval
constructions that provide proper coverage: for any given confidence level,
γ, the unconditional probability of the interval covering the true value of the
parameter over repeated experiments should be at least γ.

In the terminology of [6], the confidence level, γ, is a pre-data predic-
tive probability. It describes the random coverage behavior of a confidence
interval over an infinite sequence of hypothetical experiments. After data
are observed and an interval is realized, the interpretation of the interval
is postdictive [6]: a realized interval contains parameter values that would
not make its realization improbable relative to the confidence level. If the
true parameter value lies outside of the realized interval, then something
improbable has ocurred. Although, it should not be surprising to discover
that the true parameter value lies in the interval, it is incorrect to interpret
the interior of a realized confidence interval to be the most likely values of
the parameter. Nevertheless, deeper meaning of the parameter values inside
and outside of a realized interval can be achieved. If a confidence interval
is constructed by inverting the acceptance regions of hypothesis tests, then
parameter values outside of a realized interval would be rejected based on
the observed data while parameter values inside the interval would not be
rejected. The interior of a realized interval with this construction contains
parameter values that would not make the observed data improbable relative
to the confidence level.

Initial approaches to the example problems in this article were motivated
by the fact that traditional confidence intervals built from Neyman’s method
[7] can be empty for small values of X or Y . In terms of hypothesis testing,
every value of the parameter in the constraint set would be rejected if X or
Y is sufficiently small. Clearly, the pre-data confidence level is not a sensible
measure of post-data uncertainty about whether an empty interval contains
the true parameter value.

The continued development of interval-forming methods for these prob-
lems appears to be due in part to the post-data interpretation of the con-
fidence level. It is possible to observe data that are relatively improbable
given some set of parameter constraints. For the Gaussian and Poisson ex-
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amples, this occurs when the experimental observation is smaller than the
constraint boundary, i.e., X < 0 or Y < b. Some methods will produce a
shorter interval for these observations than for observations within the con-
straint region. If one mistakes a fixed confidence level to be the post-data
predictive probability for the parameter lying in the realized interval, then,
counterintuitively, the shorter intervals produced by improbable observations
seem to provide better information about the location of the unknown pa-
rameter value. Thus, one of the motivations for developing new methods
was to obtain wider intervals when improbable data are observed. However,
under the postdictive interpretation, a narrower interval obtained from ob-
servations outside of the constraint region means that there is a larger range
of parameter values that make the realized interval improbable with respect
to the confidence level. Also, there is a smaller range of unsurprising param-
eter values within the interval. This postdictive interpretation makes sense
when the observed data are already known to be improbable.

Gleser [8] discussed how the likelihood function can quantify uncertainty
about the unknown mean in the Gaussian example. Fraser, Reid, and Wong
[9] argued in favor of reporting the likelihood and one-tailed p-value as a
function of hypothetical parameter values. This allows each individual to
make their own judgment about the strength of evidence required for rejec-
tion. However, inference using likelihood and p-values, being postdictive in
nature, lacks the predictive interpretation often sought by practitioners. As
articulated in [10], care must be taken in making a probabilistic interpreta-
tion of p-values.

The elastic belief (EB) method is introduced here to create IMs that pro-
vide post-data predictive probabilistic inference about unknown parameter
values with constraints. The IM framework provides inferential tools, in the
form of belief functions, that measure evidence in the observed data in or-
der to suggest which parameter values can be accepted, rejected, or neither.
This naturally leads to intervals that are easier to interpret than confidence
intervals. When parameter constraints are considered as in the Gaussian
and Poisson examples, the IMs resulting from the EB method are calibrated
to a frequency interpretation. This is convenient for decision making and
constructing intervals with proper coverage. Given the interpretation of IM
inferences, there is no need to create wider intervals for improbable obser-
vations in order to convey a sense of belief that the parameter falls in the
interval. However, IMs give practitioners flexibility to control this behavior,
if desired, while at the same time ensuring that the resulting inferences have
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desirable frequency properties.
In Section 2, we review IMs and weak belief (WB) methods for inference

in unconstrained parameter spaces. In Section 3 we consider methods for in-
corporating parameter constraints into an IM. The EB method is introduced
and its frequency properties are compared to those of the conditioning rule
introduced in [11], known as “Dempster’s rule of conditioning” [12]. Inference
about the mean of a Gaussian random variable is considered as a running
example throughout Sections 2 and 3. This is an extension of the example in
[4]. Section 4 contains results for EB applied to the specific case where the
mean is known to be nonnegative. Inference about the unknown signal rate
of a Poisson count with known background is discussed with numerical re-
sults in Section 5. Finally, in Section 6, practical issues and future directions
of this work are considered.

2. Fundamentals of Inferential Models

An IM for constrained parameters is built from an IM for the uncon-
strained parameter space. The following discussion of IMs and WB methods
establishes necessary notation, motivates the use of WB, and illustrates the
unconstrained problem with the simple Gaussian model. Section 3 considers
how to incorporate the parameter constraints.

2.1. Background and Motivations for Inferential Models

Before proceeding with technical details, the reader may find helpful the
following elaboration on the development of IMs. The goal of [1, 2] and
the present work is to create a user-friendly method for probabilistic infer-
ence with desirable frequency properties. This is accomplished, in part, by
working with nonadditive probability using the Dempster-Shafer (DS) the-
ory of belief functions [12, 13]. What motivated the use of probability on
subsets, a concept that may seem unfamiliar to many statisticians? First,
the mathematics are simple when Bayesian-like posteriors are of interest for
continuous-data models, such as the unconstrained Gaussian model. In this
case, a basic IM is represented by familiar additive probabilities. The only
difference is that these probabilities are defined on an auxiliary space rather
than on the parameter space. Second, for inference with discrete data models
without prior knowledge on parameters, such as the Poisson model without
additional constraints on λ, the resulting lower and upper probabilities are
both necessary and convenient. Lastly, applying WB methods to a basic IM
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produces results intended to have universal appeal. Both Bayesians and non-
Bayesians have practical methods for certain kinds of probabilistic inference
about assertions of interest on unknown parameters. These include frequen-
tist rejection regions for hypothesis testing, Bayesian credible regions, and
frequentist confidence intervals for parameter estimation. To some extent,
the WB method incorporates all of these three concepts to produce proba-
bilistic output for assertions about unknown parameters. Since such output
has desirable frequency properties, building IMs with the WB method is a
promising approach to scientific inference.

2.2. Building Inferential Models

In this section, an IM is presented for a probability model without pa-
rameter constraints. It assumed that the probability model has been chosen
through a process of careful model building and considering any domain
knowledge about the problem at hand. Let X be the sample space of all
possible observations for the probability model. It is further assumed that
the probability distribution of outcomes in X is defined by a probability mea-
sure, Prθ, that depends on the parameter, θ. The unconstrained parameter
space, Θ, consists of all θ values for which Prθ is a valid probability measure.

First, following [1] and [2], the sampling distribution of X can be char-
acterized using an auxiliary (a)-variable, U , defined in an a-space, U. To do
so, an a-equation, X = a(θ, U), and an a-measure, π, can be defined over
U such that a(θ, U) has the same distribution as X when U ∼ π and θ is
known. Collectively, the a-equation and a-measure are known as the associ-
ation model, or a-model. This first step of defining the a-model is known as
the association, or a-step. The a-variable is technically the same as a pivotal
variable introduced by Fisher [14] and used by Dempster [15, 6, 16]. How-
ever, for the purposes of inference, the IM framework gives it a conceptually
different treatment.

The second step of building and IM is the prediction (p)-step. For fixed θ,
the a-model says that the observation, X = x, corresponds to an unobserved
realization u∗ ∈ U from the π distribution. Given an observed x, inferring
the unobserved value of θ can be achieved by predicting the unobserved
realization of u∗ using a predictive random set (PRS). The predicted u∗ and
the observed value x can then be mapped to values of θ by way of the a-
equation. The PRS is a set, S(u) ⊆ U, constructed for each u ∈ U. When
U ∼ π, the PRS S(U) is designed to have a large probability of covering an
unobserved u∗ realization from the same π distribution. Specific forms of S
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will be introduced later, but assume u ∈ S(u) for every u ∈ U. A general
discussion of criteria for selecting PRSs can be found in [3].

An IM is created in the third step by combining the PRS with the a-
model. This is known as the combination (c)-step. Mathematically, the
resulting IM contains a collection of subsets of Θ, called focal elements, that
are indexed by u:

Mx(u, S) =
⋃

u′∈S(u)

{θ : θ ∈ Θ, x = a(θ, u′)}, u ∈ U. (1)

Focal elements have a mass distribution defined by the π distribution over
U. If S(u) covers the unobserved u∗, then Mx(u, S) covers the unobserved
value of θ corresponding to the experiment that generated x. Thus, the focal
elements represent sets of parameter values allowed by the probability model
(although some values may not be possible in the physical world) and π is a
measure of uncertainty about these values as predictions of the true θ value
given the observation, x.

Once an IM is established, the essential tool for inference is a belief func-
tion, Belx [12]. It takes a subset of Θ, say A, as an argument and outputs
the mass over all focal elements that support A, conditioned on the focal
elements being nonempty:

Belx(A;S) = π{u : Mx(u, S) ⊆ A |Mx(u, S) 6= ∅}. (2)

The parameter space subset, A, can be interpreted as an assertion about the
true value of θ. For any observed X = x, the evidence about A is computed
as:

• Belx(A;S) = π{u : Mx(u, S) ⊆ A |Mx(u, S) 6= ∅}, which measures the
evidence for the assertion; and

• Belx(Ac;S) = π{u : Mx(u, S) ⊆ Ac | Mx(u, S) 6= ∅}, which measures
the evidence against the assertion, with Ac as the complement of A.

It should be noted that

Belx(A;S) + Belx(Ac;S) ≤ 1.

Any remaining probability, 1−Belx(A;S)−Belx(Ac;S), is called (the prob-
ability of) “don’t know,” [13] and is neither for nor against the assertion.
Another inferential tool is the plausibility function, Plx [12], defined as:

Plx(A;S) = 1− Belx(Ac;S).
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Since Belx(A;S) ≤ Plx(A;S), these two quantities can be thought of as lower
and upper measures of evidence for the assertion, A.

Example 2.1 (Inference about the Gaussian mean). Suppose X ∼ N(µ, 1).
For the a-step, an a-model can be formed as

X = µ+ U,

where U is the a-variable with the standard Gaussian distribution, N(0, 1).
In the p-step, the PRS, S(u) = {u′ : |u′| ≤ |u|} can be used. The result of
the c-step is an IM for the Gaussian mean:

Mx(u, S) =
⋃

u′∈S(u)

{µ : x = µ+ u′} = [x− |u|, x+ |u|]. (3)

The mass distribution over these focal elements is defined by the standard
Gaussian distribution. Example 2.2 justifies the particular choice of PRS, S,
used here.

Suppose we wish to make inference about whether or not µ > 0. Using
the IM (3) for the assertion A = {µ : µ > 0} we have

Belx(A;S) = π{u : x− |u| > 0} = max{0, 2Φ(x)− 1},

and
Belx(Ac;S) = π{u : x+ |u| ≤ 0} = max{0, 1− 2Φ(x)}.

Suppose x = −1 is observed. Then,

Bel−1(A;S) = 0

and
Bel−1(Ac;S) = 1− 2Φ(−1) ≈ 0.68.

The approach to building belief functions for statistical inference starting
with a data-generating model is not unique to the IM framework. It can be
found in the work of Dempster [16] and, more recently, in the theory of hints
[17, 18, 19]. The problem shared by all these approaches is that observing
X = x gives no precise information about the value of the corresponding
u∗ realization. Generally, all that is known is that u∗ is a realization from
the π distribution, perhaps limited to some subset of U. For any choice of
u with x fixed, the a-equation, x = a(θ, u), holds true for some set of θ
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values. Thus, for an assertion about θ, there is a set of u values for which the
consequent sets of θ values support the assertion. In the theory of hints, the
belief for the assertion would be computed using the probability on this U
subset. This approach is called assumption-based reasoning and the resulting
belief functions can be interpreted as an assertion’s probability of provability
[20, 21].

Because u∗ is unobserved, the IM framework is not directly focused on the
consequences of hypothetical values for u∗. Instead, the PRS is introduced
to predict the value of u∗ based upon the knowledge that u∗ is a realization
from the π distribution. If the PRS is a good predictor of an unobserved u∗

realization, then one should expect the focal elements in Θ resulting from
the c-step to be good predictors of the corresponding unobserved θ value.
Alternatively, it would be equally valid to map the observed x and an asser-
tion into a subset of U via the a-equation. Then, a belief function can be
computed from the probability that the PRS supports this subset. Practi-
tioners may find it more convenient to work with focal elements in Θ, but
working directly in U is helpful for illustrating the goal of IM-based infer-
ence. Whether computed in Θ or U, a belief function resulting from the
IM approach represents predictive probability for an assertion, which has a
different interpretation than assumption-based reasoning.

In general, the Belx(A;S) and Belx(Ac;S) probabilities are computed
with respect to U using the π distribution and are conditioned on the set of
nonempty focal elements. Empty focal elements are called conflict cases and
can have undesirable consequences when constraints on θ are considered in
Section 3. The Belx(A;S) and Belx(Ac;S) values represent the strength of
evidence in the IM (1), which serve as a tool to infer the truth of A or Ac.
However, it may not be clear how large the values of Belx(A;S) or Belx(Ac;S)
must be for one to believe or disbelieve A. Their interpretation should be
consistent with the distribution of X. If one interprets numerical probabili-
ties in terms of long-run frequency, then BelX(A;S) and BelX(Ac;S) should
behave accordingly. This long-run frequency behavior can be characterized
by the concepts of validity and efficiency.

2.3. Validity and the Weak Belief Method

The following validity criteria [2, Definition 3.1] ensure that BelX(A;S)
and BelX(Ac;S) behave in a manner consistent with the distribution of X:
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Definition 2.1 (Validity). For a given assertion A ⊂ Θ, Belx is valid for A if

Prθ{x : Belx(A;S) ≥ 1− α} ≤ α (4)

for all θ ∈ Ac, and

Prθ{x : Belx(Ac;S) ≥ 1− α} ≤ α, (5)

for all θ ∈ A and every α ∈ (0, 1). If (4) and (5) hold for every A, then Belx
is valid (without reference to the assertion).

The probabilities in (4) and (5) are computed with respect to the sampling
distribution of X. Suppose that we choose an α value and if either Belx(A)
or Belx(Ac) exceeds 1−α, we will believe or disbelieve A accordingly. From
a frequency perspective, Definition 2.1 says that the probability of making a
wrong conclusion is at most α in repeated observations of X. Ideally, an IM
should produce valid Belx for all assertions of interest. This can be achieved
through the choice of the PRS.

Suppose there is a collection of PRSs, {Sω}ω∈Ω. Let

QSω(u) = π{u′ : Sω(u′) 63 u}, u ∈ U.

Definition 1 in [1] defines the credibility of a PRS for predicting an a-variable:

Definition 2.2 (Credibility). For a given value of α ∈ (0, 1) and ω ∈ Ω, let

ϕα(ω) = π{u : QSω(u) ≥ 1− α}.

A PRS, Sω, is credible at level α if ϕα(ω) ≤ α.

Theorem 1 in [1] shows that a credible PRS for predicting the a-variable
(Definition 2.2) leads to an IM that produces valid Belx (Definition 2.1) with
the condition that π{u : Mx(u, Sω) = ∅} = 0. It is shown in Section 3.2 and
Appendix A.2 that this condition can be removed.

2.4. Efficiency and the Maximal Belief Method

Predicting the a-variable with a larger PRS leads to credibility. The
question is: how large should the PRS be? At one extreme, S(u) ≡ U
certainly predicts the unobserved u∗ realization. When this PRS is used, each
focal element in (1) becomes Θ, the entire parameter space. In this case, the
IM consists of a single focal element that has unit mass and certainly contains
the true unobserved parameter value. However, large focal elements (or in the
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extreme, one largest focal element) do not offer a great level of discernment
between different possible parameter values. An ideal PRS should be large
enough to meet the credibility criteria of Definition 2.2, but small enough to
represent U (and consequently Θ) with high resolution. Smaller PRSs are
more efficient for predicting the a-variable [1, Definition 2].

The optimality principle of the maximal belief (MB) method [1, 2] bal-
ances this tradeoff between credibility and efficiency. For a given α ∈ (0, 1)
let

Ωα = {ω ∈ Ω : ϕα(ω) ≤ α}

be the index set for a class of credible PRSs. The MB method chooses a
PRS, Sω∗ , from this class that satisfies

ϕα(ω∗) = sup
ω∈Ωα

ϕα(ω).

Example 2.2 (Maximal belief for standard Gaussian a-variable). Suppose U ∼
N(0, 1). For the PRS, S(u) = {u′ : |u′| ≤ |u|},

QS(u) = π{u′ : S(u′) 63 u} = π{u′ : |u′| < |u|} = 2Φ(|u|)− 1.

Since, for any α ∈ (0, 1),

π{u : QS(u) ≥ 1− α} = π{u : 2Φ(|u|)− 1 ≥ 1− α}
= π{u : |u| ≥ Φ−1(1− α/2)}
= α,

S is credible for predicting U as in Definition 2.2 and S also satisfies the MB
criteria. Consequently, the IM (3) will be valid for any assertion.

3. Incorporating Parameter Constraints into Inferential Models

We now consider how to incorporate parameter space constraints into the
IM (1). First, the EB method is introduced. Then, the existing condition-
ing rule [11, 12] is demonstrated and its frequency properties are compared
to those of EB. Throughout this section assume θ is known to be in some
constraint set C ⊂ Θ, e.g., C = {θ : θ ≥ θ0}.

As described in Section 2.4, a PRS is designed to be credible and efficient
for predicting the a-variable over the entire a-space, U. After X = x is
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observed, C can be mapped to a subset of U by inverting the a-equation in
its second argument:

UC,x =
⋃
θ∈C

{u : x = a(θ, u)}.

We call UC,x the a-constraint set. Let θ∗ be the true, unobserved value of
the parameter. Then, there must exist u∗ ∈ UC,x such that x = a(θ∗, u∗). If
u∗ 6∈ UC,x, then the corresponding θ∗ is not in the constraint set C, which is
impossible. Thus, when S(u)∩UC,x = ∅, the focal element of the IM contains
only values of θ that are not in the constraint set, i.e., Mx(u, S) ∩ C = ∅.
These focal elements are called conflict cases and are indexed by the set

U∅,x = {u : S(u) ∩ UC,x = ∅}.

The problem of incorporating parameter constraints into an IM can be framed
in terms of handling conflict cases.

The probability on the set U∅,x can been seen as measuring discord be-
tween the observed value of x, its probability model, and the parameter
constraint set. If the probability on conflict cases is very large, one should
question whether the probability model is appropriate for the observed data
or whether the constraint is correct. However, the presence of conflict alone
does not justify modifying the model. In fact, rejecting a model simply
because it conflicts with the observed data leads to biased inference pro-
cedures. Section 3.1 introduces a new method that modifies the PRS in a
data-dependent way while preserving validity and striving for high efficiency.
The result is that conflict cases become evidence for certain values of θ. In
Section 3.2, the new method is compared to an existing conditioning method,
which can use the probability on conflict cases to represent an additional layer
of uncertainty about the model assumptions.

3.1. The Elastic Belief Method

The PRS, S(u), and the π distribution on U represent a set of predictions
and a measure of uncertainty about those predictions. Intuitively, a conflict
case results from S(u) being too small. If the probability model for the
observed x and the parameter constraint are not in doubt, then S(u) should
be enlarged in an adaptive fashion. The EB method eliminates conflict cases
by allowing the PRS to stretch until it includes at least one member of
UC,x while retaining the same π distribution. Technically, the EB method
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equips the PRS with an elasticity parameter, e ∈ [0, 1], thus forming a PRS
collection, S = {Se : e ∈ [0, 1]}, called an elastic PRS (EPRS).

Definition 3.1 (Elastic predictive random set). A collection of PRSs, S, in-
dexed by e ∈ [0, 1], is called elastic if,

(a) for any e ∈ [0, 1], Se satisfies Definition 2.2;

(b) for any e1 ≤ e2, Se1(U) ⊆ Se2(U) with probability one; and

(c) for any u ∈ U and any (x, θ) ∈ X × Θ, there exists an e ∈ [0, 1] and
u′ ∈ Se(u) such that x = a(θ, u′).

We call these three properties, (a) credibility, (b) monotonicity, and (c) com-
pleteness.

Example 3.1 (An EPRS for the Gaussian problem). Consider the PRS from
Examples 2.1 and 2.2: S(u) = {u′ : |u′| ≤ |u|}. One way to make S elastic is

Se(u) =

{
{u′ : |u′| ≤ 1

1−e |u|}, if e ∈ [0, 1);

R, if e = 1.

Using the Gaussian a-equation, x = θ + u, it is easy to verify that S = {Se :
e ∈ [0, 1]} satisfies Definition 3.1.

The existence of an EPRS is ensured by the nature of the a-equation. Let
S0 be a PRS satisfying Definition 2.2 and let let S1(u) ≡ U. For e ∈ (0, 1), an
arbitrary Se increasing in e from S0 to U will satisfy (a) and (b) in Definition
3.1. Since a(θ, U) has the same distribution as X for fixed θ ∈ Θ, then
X =

⋃
u∈U a(θ, u). Thus, for all (x, θ) ∈ X × Θ, there must exist u′ ∈ S1(u)

such that x = a(θ, u′), which satisfies (c).
To use the EB method, each focal element in the IM (1) is simply replaced

with
MEB

x (u,S) = C ∩Mx(u, Sê),

where

ê = min{e : Se(u) ∩ UC,x 6= ∅} = min{e : C ∩Mx(u, Se) 6= ∅}.

In effect, the EB method stretches the IM focal element until it is just large
enough to intersect with C. The amount of stretching is characterized by
ê. The completeness property (c) in Definition 3.1 ensures that {e : Se(u) ∩
UC,x 6= ∅} is not empty for any u. Therefore, if ê exists, thenMEB

x (u,S) is also
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not empty. Finally, if applying the EB method results in any duplicate focal
elements (i.e., MEB

x (u,S) = MEB
x (u′,S) for u 6= u′), they can be considered

as a single element with mass aggregated from the duplicate elements. After
building an IM with the EB method, the belief for any assertion, A ⊆ C, can
be computed as:

BelEB
x (A;S) = π{u : MEB

x (u,S) ⊆ A}. (6)

When using an EPRS, all the IM focal elements are non-empty. The condi-
tioning on non-empty focal elements in (2) is omitted in (6) because π{u :
MEB

x (u,S) 6= ∅} = 1.

Example 3.2 (EB method for constrained Gaussian mean). Suppose it is
known that the Gaussian mean, µ, lies in the range [a, b] for some known
constants a < b. The EB method can be applied with the a-model from
Example 2.1 and the EPRS from Example 3.1. This gives

Mx(u, Se) =
[
x− 1

1−e |u|, x+ 1
1−e |u|

]
.

To handle conflict cases, the EPRS is expanded with

ê = min{e : [a, b] ∩Mx(u, Se) 6= ∅}

=


1 + |u|

x−a if x+ |u| < a;

1− |u|
x−b if x− |u| > b;

0 otherwise.

This yields an IM with the following focal elements,

MEB
x (u,S) =


{a}, if |u| < a− x;
[max{a, x− |u|},min{b, x+ |u|}] , if |u| ≥ max{a− x, x− b};
{b}, if |u| < x− b.

Now, suppose a = −1/4, b = 1/4, and x = −1 is observed. Then, for the
assertion A = {µ : µ ≥ 0}, the EB method gives

BelEB
−1 (A;S) = π{u : −1− |u| ≥ 0} = 0

and
BelEB
−1 (Ac;S) = π{u : −1 + |u| < 0} = 1− 2Φ(−1) ≈ 0.68,

which is the same result as in Example 2.1 where the constraint was not part
of the IM.
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The following theorem shows how MEB
x (U,S) can be used for valid in-

ference in the sense of Definition 2.1. A proof can be found in Appendix
A.1.

Theorem 3.1. Let S = {Se : e ∈ [0, 1]} satisfy properties (b) and (c) of
Definition 3.1. Let Belx(A;S) and BelEB

x (A;S) be defined as in (2) and (6),
respectively. Then, for any x ∈ X , the following are true:

(i) For any assertion A ⊂ C,

Belx(A;S0) ≤ BelEB
x (A;S) ≤ Belx(A ∪ Cc;S0).

(ii) If Belx(A∪Cc;S0) and Belx(Ac ∪ Cc;S0) satisfy (4) for some assertion
A ⊂ C, then BelEB

x is valid for inference about A.

(iii) If S also satisfies property (a) of Definition 3.1, then BelEB
x is valid for

inference about every assertion A ⊂ C.

An important application of Theorem 3.1 is when an IM has been created
using a PRS satisfying the efficiency criteria in Section 2.4 without consider-
ing constraints. That PRS can be used for S0 when creating an EPRS. Thus,
when constraints are incorporated using the EB method, BelEB

x will be valid
for inference about any A ⊂ C.

3.2. Elastic Belief Compared to Conditioning Rule

Another method for incorporating parameter constraints into an IM is
the conditioning rule described in [11], known as “Dempster’s conditioning
rule,” [12]. In effect, this method uses S(u)∩UC,x as the PRS and conditions
the distribution, π, on the event, Uc

∅,x. Define Kx = π{u : Mx(u, S)∩ C = ∅}
as a function of the observed data, x. For any practical assertion, A ⊂ C, we
have

Belx(A | C;S) =
π{u : Mx(u, S) ∩ C ⊆ A, Mx(u, S) ∩ C 6= ∅}

1−Kx

and

Belx(Ac | C;S) =
π{u : Mx(u, S) ∩ C ⊆ Ac, Mx(u, S) ∩ C 6= ∅}

1−Kx

.

The following theorem, an extension of Theorem 1 in [1], states that over
repeated observations of X, the conditional Belx(A | C;S) and Belx(Ac |
C;S) will be valid for A. A proof can be found in Appendix A.2.
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Theorem 3.2. For a given value of α ∈ (0, 1), suppose S is credible by
Definition 2.2 and that π{u : Mx(u, S) = ∅} > 0 for some x ∈ X . Then,
Belx(A | C;S) and Belx(Ac | C;S) will satisfy Definition 2.1 for any A ⊂ C.

Although beliefs resulting from conditioning are valid, the following ex-
ample illustrates that they may be less likely to suggest the truth of A or Ac

than beliefs computed with the unconstrained IM (1).

Example 3.3 (Conditioning method for constrained Gaussian mean). For the
constraint set C = [a, b], the unconstrained Gaussian IM (3) will have conflict
cases for focal elements indexed by {u : |u| < max(x−b, a−x)}. If a = −1/4,
b = 1/4, and x = −1, as in Example 3.2, then for A = {µ : µ ≥ 0}, the
conditioning rule gives

Bel−1(A | C;S) = 0,

which is the same as Example 2.1, but

Bel−1(Ac | C;S) =
Φ(1)− Φ(3/4)

1− Φ(3/4)
≈ 0.30,

which is less than half of what was found in Example 2.1 where no constraint
on µ was known.

As shown in Examples 2.1 and 3.3, introducing the constraint on µ values
leads to weaker indications of whether or not µ ≥ 0, given the same evidence:
x = −1. This is due to the large mass of conflict cases, 2Φ(3/4)− 1 ≈ 0.55.
The conditioning rule effectively ignores all these cases and distributes their
mass over the non-conflict set. While both Bel−1(Ac;S) in Example 2.1
and Bel−1(Ac | C;S) in Example 3.3 represent uncertainty about whether
or not Ac is true, the reduction in Bel−1(Ac | C;S) could be attributed
to additional uncertainty about the data and model assumptions that led
to conflict. However, for any µ ∈ [−1/4, 1/4] the probability of observing
x ≤ −1 is greater than 0.10. Under the model assumptions, it is not a rare
event to observe x = −1 or something more extreme. If there is no other
reason to doubt the validity of the data or model, then it seems paradoxical
that introducing more information about possible µ values in the form of
a constraint leads to weaker indications of whether or not µ ≥ 0. Conflict
cases become subsets of C when using EB and therefore may become evidence
for an assertion, A ⊆ C. Thus, when more information is known about a
parameter via constraints, and there is no reason to doubt the data and model

16



assumptions, the EB method may find stronger evidence for an assertion
where the conditioning rule would find weaker evidence.

In some sense, the conditioning rule can also be understood as a different
way of stretching S(u) by replacing it with a larger one, especially when the
PRS {S(u)}u∈U forms a nested sequence. In that case, only those S(u) large
enough to intersect with the a-constraint set, UC,x, will be considered. For
u ∈ U∅,x, the set, S(u), is too small and will be thrown away. Compared
to EB, the conditioning rule stretches stochastically more than necessary.
This explains intuitively why the conditioning rule is valid but sometimes
inefficient.

4. Gaussian Observation with Bounded Mean

Consider computing BelEB
x for the nonnegative mean example using the

IM obtained with the EB method in Example 3.2. In this case a = 0 and
b→∞. Let A = {µ : µ = µ0} be the assertion of interest. Then,

BelEB
x ({µ0};S) =

{
1− 2Φ(x), if µ0 = 0 and x < 0;
0, otherwise;

BelEB
x ({µ0}c;S) =


2Φ(|x− µ0|)− 1, if µ0 > 0;
2Φ(x)− 1, if µ0 = 0 and x > 0;
0, otherwise;

for µ0 ∈ [0,∞). In many situations, the goal is to infer the presence or
absence of a signal and so µ = 0 is the assertion of interest. Fig. 1 illustrates
BelEB

x and PlEB
x for A0 = {µ : µ = 0}. For negative values of x, BelEB

x (A0;S)
is large. For x ≤ −2, BelEB

x (A0;S) > 0.95, suggesting that A0 is true. For
positive x values, BelEB

x (A0;S) drops to zero and PlEB
x (A0;S) becomes small.

For x ≥ 2, PlEB
x (A0;S) < 0.05, suggesting that A0 is false. When x is close

to zero, BelEB
x (A0;S) is small while PlEB

x (A0;S) is large. In these cases, it
may be difficult to make any conclusion about A0.

Applying the conditioning rule to this problem, one obtains:

Belx({µ0} | C;S) = 0

for any µ0 and

Belx({µ0}c | C;S) =

{
Φ(µ0−x)−Φ(−x)

1−Φ(−x)
, if x < 0;

2Φ(|x− µ0|)− 1, if x ≥ 0.
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For the assertion A0 = {µ : µ = 0}, both the conditioning rule and EB give
the same plausibility. No matter what value of x is observed, PlEB

x (A0;S) =
Plx(A0 | C;S). However, Belx(A0 | C;S) = 0, and so, unlike with EB, no x
observation ever supports the assertion.

The IM obtained with the EB method in Example 3.2 can also be used
to create a plausibility interval for µ based on the observed x. For a level
γ ∈ (0, 1), let zγ = Φ−1(1+γ

2
). Then,

{µ0 : PlEB
x ({µ0};S) ≥ 1− γ} = [max{0, x− zγ}, max{0, x+ zγ}].

A level γ plausibility interval has coverage probability of at least γ over
repeated experiments [22]. Similarly, a level γ plausibility interval for µ can
be created using the IM formed with the conditioning rule:

[max{0, x− zγ}, x+ zγ}],

when x ≥ 0, and
[0, x+ Φ−1(γ + (1− γ)Φ(−x))]

when x < 0. Both of these intervals are illustrated in Fig. 2 for γ = 0.9.
The shaded region is the plausibility interval obtained by the EB method
while the dashed line marks the boundary of the plausibility interval found
with the conditioning rule. Their lower boundaries coincide for every x
and their upper boundaries coincide when x is non-negative. When x ∈
(−zγ,∞), for any specific µ0 in the EB interval interior BelEB

x ({µ0};S) < γ
and BelEB

x ({µ0}c;S) < γ. So there is not enough evidence to either support
or deny µ0 at level γ. When x ∈ (−∞,−zγ], the EB interval collapses to a
single point where one concludes that µ = 0 with BelEB

x ({0};S) ≥ γ. If there
is no reason to doubt the data and model assumptions, then the EB method
says that these improbable observations are consistent with µ = 0 far more
than any other value of µ, and in fact these improbable x values support the
hypothesis that µ = 0. As expressed in [23], an interval construction that
collapses to a point for improbable observations is a reflection of the strength
of evidence. Using the EB method, this is explicitly quantified by computing
BelEB

x ({µ0};S) and PlEB
x ({µ0};S) for hypothetical µ0 values. The interval

found with the conditioning rule has strictly positive length for any observed
x. All µ0 values within the interval are plausible with respect to level γ.
However, since Belx({µ0} | C;S) < γ in the interval, no specific µ0 value is
supported, no matter how improbable the observed x is.
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5. Poisson Count with Known Background Rate

Now inference is considered for the signal rate, λ, from a Poisson count,
Y , when there is a known background rate, b. With b known, the overall rate
is θ = λ+ b. For inference about λ, it is sufficient to perform inference about
θ with the constraint set, C = {θ : θ ≥ b}.

5.1. Inferential Model

The a-step relies on the the following relationship between the Poisson
and Gamma distributions. Let Gy be the cdf for the Gamma distribution
with shape y and scale 1. Also, let Fθ be the cdf for the Poisson distribution
with rate θ. Then, if y is a nonnegative integer,

Gy+1(θ) =

∫ θ

0

tye−t

y!
dt = 1−

∫ ∞
θ

tye−t

y!
dt = 1−

y∑
k=0

e−θθk

k!
= 1− Fθ(y).

Let G0(θ) = 1−Fθ(−1) = 1. The a-variable, U , has a uniform mass distribu-
tion over U = [0, 1]. Because Y is discrete, the a-equation is a many-to-one
mapping:

a(θ, u) = {Y : Fθ(Y − 1) ≤ u ≤ Fθ(Y )}
= {Y : GY+1(θ) ≤ 1− u ≤ GY (θ)}
= {Y : G−1

Y (1− u) ≤ θ ≤ G−1
Y+1(1− u)}, (7)

where G−1
y is the quantile function for the Gamma distribution with shape

y and scale 1, and G−1
0 (θ) ≡ 0. An alternative a-model can be derived from

the waiting times in a Poisson process [24, 13]. That a-model introduces
additional challenges because the a-variable has more than one dimension
and its distribution depends on x. The Poison process a-model is compared
to the present a-model in Appendix B.

For an unconstrained model,

S(u) =
[

1
2
− |u− 1

2
|, 1

2
+ |u+ 1

2
|
]

(8)

satisfies the criteria in Section 2.4 to be an efficient PRS for predicting U
from a uniform distribution on [0, 1]. This can be adapted for an EPRS in
the p-step:

Se(u) =
[
(1− e)

(
1
2
−
∣∣u− 1

2

∣∣) , (1− e)
(

1
2

+
∣∣u− 1

2

∣∣)+ e
]
, e ∈ [0, 1].
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which is (8) when e = 0 and increases to U = [0, 1] as e→ 1. This gives

My(u, Se) =
[
G−1
y

(
(1− e)(1

2
−
∣∣u− 1

2

∣∣)) , G−1
y+1

(
(1− e)(1

2
+
∣∣u− 1

2

∣∣) + e
)]
.

To handle conflict cases, the EPRS is expanded with

ê = min{e : [b,∞) ∩My(u, Se) 6= ∅}

=


Gy+1(b)−1

2
−
∣∣∣u−1

2

∣∣∣
1
2
−
∣∣∣u−1

2

∣∣∣ if Fb(y) < 1
2
− |u− 1

2
|;

0 otherwise.

The resulting IM focal elements are:

MEB
y (u,S) =

[
max

{
b,G−1

y

(
1
2
−
∣∣u− 1

2

∣∣)} , max
{
b,G−1

y+1

(
1
2

+
∣∣u− 1

2

∣∣)}] .
For point assertions of the form A = {θ : θ = θ0} we have the following

BelEB
y when θ0 = b,

BelEB
y ({b};S) =

{
2Gy+1(b)− 1, if Fb(y) ≤ 1/2;
0, otherwise;

BelEB
y ({b}c;S) =

{
1− 2Gy(b), if Fb(y − 1) > 1/2;
0, otherwise;

and for θ0 > b:

BelEB
y ({θ0};S) = 0

BelEB
y ({θ0}c;S) =


2Gy+1(θ0)− 1, if Fθ0(y) < 1/2;
1− 2Gy(θ0), if Fθ0(y − 1) > 1/2;
0, otherwise.

Just as in the constrained Gaussian example, we can test for the absence
of a signal. This is represented by the assertion Ab = {θ : θ = b}. Fig. 3
illustrates BelEB

y and PlEB
y for this assertion when b = 15.

A plausibility interval can also be created for the unknown θ. For γ ∈
(0, 1),

{θ0 : PlEB
y ({θ0};S) ≥ 1− γ} = [max{b,G−1

y (1−γ
2

)}, max{b,G−1
y+1(1+γ

2
)}].

The interval behaves similarly to the Gaussian interval: when Fb(y) ≤ 1−γ
2

,

then BelEB
y ({b};S) ≥ γ, but for Fb(y) > 1−γ

2
, any θ0 on the interval interior

has BelEB
y ({θ0};S) < γ and BelEB

y ({θ0}c;S) < γ. Fig. 4 illustrates the level
0.9 plausibility interval for b = 15.
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5.2. Numerical Comparison

The level γ plausibility interval coverage probability is at least γ in re-
peated experiments. The following methods were also designed to achieve
proper coverage probability. Numerical results illustrate the relative per-
formance of the new Poisson plausibility interval compared to the existing
methods.

Feldman and Cousins [25] constructed confidence bounds with proper
coverage by filling acceptance intervals with points ordered according to a
likelihood ratio. Giunti [26] argued that it is undesirable for the upper con-
fidence bound to decrease in b when small values of Y are observed and
proposed a modification to the ranking method that lessens the rate of de-
crease.

Roe and Woodroofe [27] noted that observing Y = 0 is equivalent to
observing S = 0 and B = 0. When the number of signal events is known,
the interval bounds for λ should not depend on b. This issue is addressed in
[27] by forming an interval conditioned on the fact that B ≤ y when Y = y
is observed. This method may undercover over all repeated experiments.
Mandelkern and Schultz [28] provided an “ad hoc” [5] remedy by shifting the
upper bound of each acceptance interval until proper unconditional coverage
was achieved.

The conditional probability used to form intervals in [27] has the same
form as the posterior density for λ when given a uniform prior over [0,∞).
Roe and Woodroofe [29] developed this into a procedure for constructing a
Bayesian credible interval. While this method has appropriate conditional
coverage probability, Roe and Woodroofe [29] employed an “ad hoc” adjust-
ment of the bounds to obtain appropriate unconditional coverage.

Confidence intervals derived from maximum likelihood estimators [30]
differ from other methods in that the interval bounds remain constant for
all observations outside of the constrained parameter space. Constructing
the interval from the sampling distribution of the estimator ensures proper
coverage.

For γ = 0.9, b = 3, and λ ranging from 0 to 4, Fig. 5 shows the plausi-
bility interval coverage probability compared to the existing methods. The
Feldman and Cousins [25] and Roe and Woodroofe [29] methods had cov-
erage probability at least as large the plausibility interval for most values
of λ. The “ad hoc” adjustment of Mandelkern and Schultz [28] to the Roe
and Woodroofe [27] conditional intervals tended to have coverage closer to
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0.9 than the plausibility interval. However, the construction of the plau-
sibility interval guarantees proper coverage so that ad hoc adjustments are
not necessary. Furthermore, to our knowledge there is no analytical expres-
sion for the Roe and Woodroofe [27] interval nor an expression that includes
the Mandelkern and Schultz [28] adjustment. For this Poisson example, the
plausibility interval expression requires less computation to produce numer-
ical values. The intervals of Giunti [26] and Mandelkern and Schultz [30]
provided coverage closer to 0.9 than the plausibility interval for most values
of λ, with the Giunti [26] method providing the best coverage of all.

Table 1 lists the level 0.9 interval bounds obtained from the EB plau-
sibility interval and the other methods for several values of y when b = 3.
The interval widths for the different methods are plotted in Fig. 6. For
y < b, the plausibility interval is narrower than those produced by most of
the other methods. When y ≥ b, the plausibility interval becomes wider
than the others. This greater width causes the peaks in coverage probabil-
ity seen in Fig. 5. For example, λ values in [1.70, 1.74] are covered by the
plausibility interval when y ∈ [1, 9]. Hence, the coverage probability is near
0.97. Most of the other methods cover λ values in this range when y ∈ [0, 8],
which gives coverage probabilities closer to 0.95. Fig. 7 shows the maximum
and minimum coverage probabilities of the level γ plausibility interval when
γ ∈ [0.5, 1] and λ ∈ [0, 100]. Within this range of λ values the minimum
coverage probability is close to γ. As the λ range is narrowed, the minimum
coverage probability becomes larger for many values of γ due to discreteness.
It may be possible to obtain a specific minimum coverage probability for a
given λ range by choosing a smaller γ value.

6. Concluding Remarks

The theory of IMs allows direct probabilistic inference from data to pa-
rameters without introducing priors or relying on asymptotic arguments.
The EB method presented here extends the IM theory to situations where
conflict cases can arise from parameter constraints. As an alternative to the
conditioning rule, it achieves higher efficiency by using conflict cases as ev-
idence for specific parameter values. This is a reasonable choice when one
holds the constraint and model assumptions to be valid and hence cannot
attribute conflict to uncertainty about these assumptions. The probability
represented by BelEB

x , the belief function obtained from the EB method, is
calibrated to a frequency interpretation for any assertion. As functions of an
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assertion, likelihood and p-value functions [8, 9] are also available as inferen-
tial tools in the constrained Gaussian and Poisson examples, but BelEB

x has
the advantage of a predictive probability interpretation.

From BelEB
x it is easy to construct plausibility intervals containing hypo-

thetical parameter values that are supported by, or at least consistent with,
the evidence presented in the data. The two-sided PRSs considered here re-
sulted in two-sided plausibility intervals (Figs. 2 and 4). Although efficient
and mathematically convenient, the symmetrical PRS (8) used in the Poisson
example is sometimes larger than necessary. This caused the EB plausibility
interval to be slightly wider for certain y values than intervals created with
other methods. A more efficient IM and narrower plausibility interval may
be obtained by considering an assertion-specific PRS for each {θ0} assertion.
The authors are currently investigating this approach. One-sided plausibility
intervals may be obtained using one-sided PRSs. In the Poisson example, a
one-sided plausibility interval is expected to have better performance than
other methods because the skewness of the Poisson distribution will no longer
create the difficulties that arise when using interval length as a criterion.

In the presentation of the EB method, it was assumed that there existed
a minimum intersection of the EPRS and the a-constraint set, UC,x. The
EPRS may be designed so that it is always a closed set (except, possibly,
the a-space itself). However, in some situations the constraint set may be
problematic. For example, the Gaussian mean could be strictly positive:
µ ∈ C = (0,∞). In this case one could build an IM with C = [0,∞) instead.
Any mass placed on µ = 0 could be logically interpreted as evidence for 0+,
a point infinitesimally larger than zero.

Finally, the EB method can be used for more general, data-dependent
conflict cases. The EB approaches demonstrated here can be extended to
situations with nuisance parameters as in [31] and [32]. Before applying the
EB method, however, a problem may be simplified by handling nuisance pa-
rameters with the marginalization methods of [33]. When there are multiple
observations, the conditioning methods described in [22] can reduce the data
dimensionality in a manner similar to sufficient statistics.
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Appendix A. Technical Results

Appendix A.1. Validity of the Elastic Belief Method

The following is a proof of Theorem 3.1.

(i) The relationships between BelEB
x and Belx can be shown by expanding

the definition of BelEB
x (A;S):

BelEB
x (A;S) = π{u : MEB

x (u,S) ⊆ A}
= π{u : Mx(u, S0) ∩ C ⊆ A,Mx(u, S0) ∩ C 6= ∅}
+ π{u : Mx(u, Sê) ∩ C ⊆ A,Mx(u, S0) ∩ C = ∅}.

The inequality,
Belx(A;S0) ≤ BelEB

x (A;S),

follows from the fact that

π{u : Mx(u, S0) ∩ C ⊆ A,Mx(u, S0) ∩ C 6= ∅} ≥ π{u : Mx(u, S0) ⊆ A}
= Belx(A;S0).

The inequality,

BelEB
x (A;S) ≤ Belx(A ∪ Cc;S0), (A.1)

is determined by the mass on conflict cases that support A in the IM
resulting from the EB method:

π{u : Mx(u, Sê) ∩ C ⊆ A,Mx(u, S0) ∩ C = ∅} ≤ π{u : Mx(u, S0) ∩ C = ∅}
= Kx,

with equality when all of the conflict cases support A after using the
EB method. It follows that

BelEB
x (A;S) ≤ π{u : Mx(u, S0) ∩ C ⊆ A,Mx(u, S0) ∩ C 6= ∅}+Kx

= π{u : Mx(u, S0) ⊆ A ∪ Cc} = Belx(A ∪ Cc;S0).
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(ii) The validity of BelEB
x (A;S) follows by considering the random vari-

ables, BelEB
X (A;S) and BelX(A ∪ Cc;S0) as functions of the random

variable, X. By satisfying (4),

Prθ{x : Belx(A ∪ Cc;S0) ≥ 1− α} ≤ α

for any θ ∈ (A∪Cc)c = Ac∩C. The inequality (A.1) implies BelEB
X (A;S)

is stochastically smaller than BelX(A ∪ Cc;S0). Thus,

Prθ{x : BelEB
x (A;S) ≥ 1−α} ≤ Prθ{x : Belx(A∪Cc;S0) ≥ 1−α} ≤ α.

for any θ ∈ Ac∩C. Also, by the same argument when BelX(Ac∪Cc;S0)
satisfies (4),

Prθ{x : BelEB
x (Ac;S) ≥ 1−α} ≤ Prθ{x : Belx(Ac∪Cc;S0) ≥ 1−α} ≤ α.

for any θ ∈ A ∩ C = A.

(iii) If S satisfies property (a) of Definition 3.1, then S0 satisfies Definition
2.2. By [1, Theorem 1], for any A ⊂ C, Belx is valid for inference
about A ∪ Cc and Ac ∪ Cc. The result follows from applying part (ii)
of Theorem 3.1.

Appendix A.2. Validity of the Conditioning Rule

The following is a proof of Theorem 3.2. For the sample space, X , and
parameter space, Θ, let U be defined in the a-space, U with distribution
π. Then, let S(U) ⊆ U be the PRS and obtain the IM (1) for Θ with
focal elements {Mx(u, S)}u∈U. Assume Mx(u, S) was designed so that π{u :
Mx(u, S) = ∅} = 0 for every x ∈ X . This gives

Belx(Ac;S) = π{u : Mx(u, S) ⊆ Ac} (A.2)

as the evidence against the assertion, A. Further, suppose Mx(u, S) is valid
for inference about A as in Definition 2.1 so that,

Prθ{x : Belx(Ac;S) ≥ 1− α} ≤ α,

for α ∈ (0, 1) and every θ ∈ A.
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Next, suppose a constraint on the parameter space, C ⊂ Θ, is introduced
such that θ is known to lie inside C. The evidence against an assertion,
A ⊆ C, is defined by the conditioning rule as the conditional probability,

Belx(Ac | C;S) = π{u : Mx(u, S) ∩ C ⊆ Ac |Mx(u, S) ∩ C 6= ∅}.

This can be written as:

Belx(Ac | C;S) =
Belx(Ac ∪ Cc;S)− Belx(Cc;S)

1− Belx(Cc;S)
.

The proof follows from the fact that A ⊆ C implies Cc ⊆ Ac. Thus,

Belx(Ac | C;S) =
Belx(Ac;S)− Belx(Cc;S)

1− Belx(Cc;S)
.

The proof is completed by noting that a−b
1−b ≤ a when a, b ∈ [0, 1) and a ≥ b.

Here,
a = Belx(Ac;S)

and
b = Belx(Cc;S).

Thus, for every x ∈ X , we have Belx(Ac | C;S) ≤ Belx(Ac;S), with equality
when π{u : Mx(u, S) ∩ C = ∅} = 0. Therefore,

Prθ{x : Belx(Ac | C;S) ≥ 1− α} ≤ Prθ{x : Belx(Ac;S) ≥ 1− α} ≤ α

for every θ ∈ A. The same argument can be repeated with BelX(A | C;S) =
BelX((Ac)c | C;S) to show that

Prθ{x : Belx(A | C;S) ≥ 1− α} ≤ Prθ{x : Belx(A, S) ≥ 1− α} ≤ α

for every θ ∈ Ac. This shows that the conditioning rule preserves the IM’s
validity for an assertion in the presence of a constraint on Θ.

Although not required for the proof, it is worthwhile to consider condi-
tions under which π{u : Mx(u, S) ∩ C = ∅} = 0. If S has a neutral point,
u0, such that u0 ∈ S(u) for every u ∈ U, then we can partition X by the
impossibility of conflict cases. Let Mx(u) be the basic IM obtained with the
singleton PRS, S(u) = {u} and define

XNC = {x : Mx(u0) ∩ C 6= ∅}.
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Then, for any x ∈ XNC and any u ∈ U, we have Mx(u0) ⊆ Mx(u, S) and so
Mx(u, S) ∩ C 6= ∅. Therefore, on XNC,

{u : Mx(u, S) ∩ C = ∅} = ∅,

which implies Belx(Ac | C;S) = Belx(Ac;S) for any assertion, A.

Appendix B. Poisson process a-model

A data-generating model for a Poisson random variable can be built from
the waiting times of a Poisson process. In [24] and [13], this model was used to
build belief functions for inference about the parameter in the Poisson model,
θ. Compared to the a-model in Section 5.1, the Poisson process model poses
additional challenges to building an efficient IM. These challenges are present
even in situations without parameter constraints.

Suppose there is an infinite sequence, T1, T2, . . ., of independent, expo-
nentially distributed random variables with unit rate. Let T0 = 0 and let

Si =
i∑

j=0

Tj.

If Y = max{i : Si ≤ θ}, then Y follows the Poisson distribution with rate θ.
For fixed θ, a realization of Y can be simulated by generating successive Ti
from the exponential distribution until

Si−1 ≤ θ < Si−1 + Ti (B.1)

and then taking y = i− 1 as the realization. When Y = y is observed and θ
is unknown, this implies a random interval for θ:

Sy ≤ θ < Sy + Ty+1.

that can be used to build an a-model with the infinite-dimensional a-variable,
T = (T0, T1, T2, . . .). A valid IM can be created using this a-model by find-
ing a PRS for some function of T. The infinite dimensionality makes it
difficult to find an efficient PRS for T directly. However, a conditional IM
[22] can be created using the finite-dimensional a-variable (T1, T2, . . . , Ty+1).
The dimensionality can be reduced further to the two-dimensional a-variable:
(Sy, Ty+1).
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In general, higher dimensional a-variables are more difficult to predict
efficiently. Ultimately, efficient inference is performed by reducing the di-
mensionality of the a-variable to that of the parameter using the conditioning
methods of [22] whenever possible. This is facilitated by choosing an initial a-
model with an a-variable of lowest possible dimension. If an a-model is built
from a data generating model, it is usually possible to find an a-variable that
has the same dimensionality as the number of independent data observations.
For inference about the parameter of a Poisson model from a single obser-
vation, the a-model in Section 5.1 has a one-dimensional a-variable while
the Poisson process leads to an a-model with a two-dimensional a-variable.
One expects that predicting a two-dimensional a-variable will be less efficient
for inference about a scalar parameter than predicting a one-dimensional a-
variable. Consequently, the resulting plausibility intervals will be wider for
an IM based on the Poisson process a-model.

In order to predict (Sy, Ty+1), let:

U1 = Gy(Sy)

and
U2 = 1− exp{−Ty+1},

where U = (U1, U2) has a uniform mass distribution over [0, 1]2. An efficient
PRS for U is:

S(u) = {u′ : ||u′ − h||∞ ≤ ||u− h||∞},

where ||t||∞ = max{|t1|, |t2|} and h = (1
2
, 1

2
). Applying this PRS to the

a-model (B.1) gives focal elements of the form:

M (2)
y (u, S) =[
G−1
y (1

2
− ||u− h||∞), G−1

y (1
2

+ ||u− h||∞) + exp{1
2

+ ||u− h||∞}
]
. (B.2)

Using the a-model in Section 5.1 and PRS (8) gives the focal elements:

M (1)
y (u, S) =

[
G−1
y (1

2
− |u− 1

2
|), G−1

y+1(1
2

+ |u− 1
2
|)
]
. (B.3)

Fig. 8 shows that the plausibility interval based upon the Poisson process
IM (B.2) is indeed wider than the plausibility interval from the a-model of
Section 5.1 (B.3) for y ∈ [0, 50].
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Figure 1: BelEB
x and PlEB

x for the assertion A0 = {µ : µ = 0} with σ2 = 1 in the Gaussian
example of Section 4.
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Figure 2: Level γ = 0.9 plausibility intervals for µ with σ2 = 1 in the Gaussian example of
Section 4. The shaded region is the plausibility interval found with the EB method, which
collapses to the point µ = 0 for x < Φ−1(0.05). The dotted lines marks the boundary of
the plausibility interval obtained from the conditioning rule. Both methods have the same
lower boundary.
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Section 5.
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Figure 5: Coverage probability of plausibility interval for Poisson signal rate, λ, com-
pared to the intervals of Feldman and Cousins [25] (top left), Giunti [26] (top right),
Roe and Woodroofe [27] with Mandelkern and Schultz [28] adjustment (middle left), Roe
and Woodroofe [29] (middle right), and Mandelkern and Schultz [30] (bottom left), when
γ = 0.9 and b = 3.
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Figure 8: Level 0.9 plausibility intervals based upon the Poisson process IM (B.2) and
the IM built from the a-model in Section 5.1 (B.3). The plausibility interval created with
(B.3) lies within the plausibility interval from (B.2) for every y ∈ [0, 50].

40


