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Abstract

A wireless call in a cellular network requires the coopemratf a wireless enabled device such
as a cell phone and a dynamic set of base stations, antendasttar network elements, with
control of the call changing in response to changes in siginahgth and the location of the mobile.
The signaling between the network and mobile that is needl@danage the call generates a huge
amount of signal strength data, some of which is seen onljéyrtobile placing the call and some
of which is seen only by the network. This paper describesesohthe complexities of the signal
strength data and provides a statistical model of the signain the network to the wireless device
that takes the time dependent, spatial, and multivarigtgr@af the call into account. An approach
to estimating the model parameters online as network datzatected, which would be useful
for network monitoring, is also described and applied toteo$eall data obtained from an active

commercial CDMA (Code Division Multiple Access) network.
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1 Introduction

A wireless network is never idle. Ead¢hansmit antenna on a base station in the network constantly
emits a pilot signal, and each cell phone or other wireless device that isltameonstantly monitors
all the pilot signals that it receives. When a cell phone initiates or rezaiall, the base station with
the strongest signal at the phone takes control of the call and becoeqsntiary base station for that
call. Only the primary base station handles the voice traffic for the call, butgthghone continues
to monitor pilot signals from other base stations as directed by the netwdtie fhobile moves away
from the base station or network conditions change, control of the csdleggasmoothly to another base
station whose pilot signal the mobile is already monitoring. The list of pilot sighalsthe phone is
monitoring plays a key role in how the call is managed, and this list can chapigiyréhroughout a
call.

From the perspective of the network, a wireless call is a set of trarsgrdls between the network
and the phone whose sources and strengths change in response tatioe lof the phone and network
conditions. Understanding these signals is important for understandinguedity and network effi-
ciency. Generally, a strong pilot signal is better for call quality, but pigals can interfere with each
other so two strong pilot signals may not be better than one. Of coursd) silyitals are strong changes
over time and with location, so understanding the dynamics of call quality esjuitderstanding the
dynamics of the pilot signals that the phone receives during a call. Thisf $egtnsient signals also
determines network efficiency. Each change to the set of pilot signals rmeshiad the mobile, either
dropping or adding a signal to the list of monitored signals, incurs a cosetodtwork. Each cost
is slight, but there are many calls and many changes to the list of pilot signhaisonednduring each
call so the total cost to the network of actively maintaining a list for each cldrige. Optimizing the
parameters that determine whether a signal is added to or dropped fraailtheguires understanding
the statistical behavior of the signal strengths at the phone.

This paper explores the nature of the data that can be collected on thgtls¢rehall the received
pilot signals at the mobile during a wireless call or data session and pravitatistical model that can
be updated online as new measurements are received. Section 2 provigdsackground on wireless
network performance and introduces two sources of received piladlsgrength data in wireless net-
works: the network and drive tests. The network collects the curreetved signal strength readings
from the mobile whenever certain thresholds on signal strength areedr¢sse Section 3). In drive

testing a van with specialized equipment continually captures all the recggeal strengths for a call



made while the van drives through an area (see Section 4). The dii\aatasare too costly to obtain
routinely, but they are useful for model exploration. Understandingdneplete time series from drive
testing is a critical step to understanding the event-based data that arelsocditected by the network
and could be used for call management. A model for the multiple, transiemtedcgignal strengths
of a call is justified in Section 5. This model takes the network characteriatitshna properties, and
signal propagation into account. A method of online estimation of the modeinetess is described
in Section 6. The model fit for a set of drive test data taken on a commeetiabrk is presented in
Section 7. Section 8 further discusses the value of knowing the statistizaVibe of wireless signals

and concludes with open problems.

2 Cellular Networks

2.1 Network Elements

Connecting and maintaining a wireless call or data session requires the@ogoperation of the user’s
mobile station (e.g., cell phone) and one or more base stations that are at most a fewtkilsraeay.
In a CDMA (Code Division Multiple Access) network, each transmit antemma base station emits a
pilot signal or beacon at constant power and fixed frequency, and each mokiig thianed on scans for
pilot signals. The mobile maintains a list of pilot signals that it can receivegypiing base stations that
it can no longer hear and adding base stations as instructed by the netherkletails of how the list
of pilots changes depend on the specific wireless network technologg.in us

The area around a base station is typically divided into three sectors ¢hlabatedx, 5, v. Each
sector has one transmit antenna and one or two receive antennastéheas are usually directional
and together cover 360 degrees around the base station. The locaigir, azimuth (horizontal angle),
tilt (vertical angle), beam width, and power of the transmit antennas deteriménarea ofootprint in
which the base station can provide reliable communication. The footprint €aoimplex because
buildings and land formations affect the propagation of radio signals, tsmeseimpeding them and
sometimes strengthening them by reflection.

Themobile switching center (MSC) is the final element in a cellular network. The MSC is connected
to the base stations and to wired networks and the internet by cables. INkStBehat directs the base

stations and manages call processing.



2.2 Call Dynamics: Managing Quickly Varying Radio Signals

When a call is in progress (where calls are understood to include daiars®s the information that
is needed to maintain and control the call and the encoded content of tregecakbnt on radio waves
that travel between the mobile and a set of antennas within its reach. Hawdction between a mobile
and a sector is called lag, and each leg is comprised of two unidirectional links: tbevard link,
which carries signals from the transmit antenna for the sector to the molil¢hareverse link, which
carries signals sent by the mobile to a receive antenna for the sectorll danehave multiple legs
simultaneously if it is in contact with more than one sector, and the set of detjgsecan change many
times during a call as the set of monitored sectors changes. Legs apediopthe network when the
forward link signal at the mobile becomes too weak, and legs can be aduedtire forward link signal
becomes sulfficiently strong at the mobile. (Calls can also be droppeddeettausignal generated by
the mobile, which the network does not control and does not know, is tat.)v@ he strengths of the
legs of a call fluctuate throughout the call even if the mobile is stationaryuseaaf strong scattering
from the surrounding environment.

The quality of a call clearly depends on the quality of both the forward emerse links. However,
the network knows the quality of only the forward link to the mobile. At certaiengés described in
Section 2.4, the mobile reports the strength of all the pilot signals that it is mogjttithe base
station, so the base station knows the quality of the forward links at the moltiless times. Because
our focus is on network management and not device performance,evenlisthe forward link data
available to the network, but we recognize that this misses the effect oguaaity of the signals sent
by the mobile.

Finally, we note that our data were obtained from a commercial CDMA netwotfikst generation
cellular systems, a mobile call is assigned a narrow frequency band ife go data transfer that is
reserved for its exclusive use until the call ends. Second generatiblai@r systems increase network
capacity by multiplexing or allowing multiple users to share a broader frequgsnod simultaneously.
In time-domain multiple access (TDMA) networks, users who share a fregueand transmit and
receive during pre-arranged, non-overlapping time slots. In CDMvaorks, each user is assigned an
orthogonal filter or basis function called a Walsh code that is convolvedhéttraffic signal so multiple
users can share the same frequency band simultaneously. Digital de¢ioderse filters) are used to
recover the original signals. For more background on wireless neswede Lee (1995). Although
this paper considers only CDMA networks, our statistical analysis doedapend on the details of

the encoding or frequency allocation and should be relevant for ofineless technologies like UMTS



(Universal Mobile Telecommunications Service) that also provide multiple [ieksall.

2.3 The Need for New Metrics for Wireless Network Performance

The performance of commercial cellular networks is routinely summarizeddmggate metrics, such as
the hourly fraction of failed call attempts, the hourly fraction of initiated call$ tdxaninate abnormally
(drop), and the hourly number of Walsh codes in use. Such metricsgaggneerformance over many
calls and callers and do not describe the experience a single user hgseoitall basis. Aggregates
that average over all calls in a time period also fail to capture the interacteimgen simultaneous
calls that can affect network dynamics. Finally, coarse summaries likidinaaf dropped calls are of
limited value for evaluating the performance of networks with significant dafficr Data sessions
(e.g., web browsing) have infrequent bursts of activity that put highadels on network resources for
short periods of time. These transient demands are important to the custoatetork experience, but
time averages smooth them out and thus hide them. As service providersratiraaata users to their
networks, the need for more finely grained metrics increases.

Further, cellular networks may soon be able to self-optimize and adapt mgicigaconditions on
short time scales. Such online tuning will require more detailed knowledgalldbehavior than ag-
gregate metrics provide. (See Borst et al (2005) and Buvaneswaki(2005) for more information
about future cellular network optimization and management services.) tanturetworks, the abil-
ity to rescue a call that is about to be dropped requires the ability to predictetkt state of a call in
progress, which requires an understanding of the strengths of its trafiring and signalling channels
that aggregated performance metrics cannot provide.

Part of the goal of this paper is to start the process of developing maddtsfvard link signals that

will provide insight into how to develop better metrics for network performamzenetwork adaptation.

2.4 Measurements from Wireless Networks

Routinely obtaining signal strength data for monitoring commercial cellular mi&gais not easy. The
mobile continuously monitors the relative strengths of the pilot signals it reseluring a call but it
does not record them. Time series of received signal strengths cdntdirenl only from specialized
test mobiles using software and equipment that are impractical for all bulit smr@quent “drive test”
studies. Even then, drive testing has limited value for understanding angeimwork performance
because drive test data are collected on only one mobile taking one patbtifone area of one network

under the set of traffic and network conditions that are in effect atitest Drive testing fails to capture



the broad range of network conditions and user behaviors, suchbalding vs. outdoor use, that are
critical to system performance.

In contrast, the MSC sees the received signal strength at the mobilecfotezpof each call that it
manages whenever there is a change in signal strength that could leaddlitien or deletion of a leg
for the call. At other times, the cost of transmitting the data from the mobile to theedbation over the
air is too high relative to its value. The MSC data are accessible (althoughwialty so) because the
MSC, like other switches and routers, can be passively monitored. Thheimobile sees a complete
time series of received signal strength but it is highly impractical to captesettata routinely, while
the MSC has an incomplete but accessible view of all calls under all netvemditions. Note that
although the MSC has a limited view of the mobile, the MSC data are used to managdl ted, to a
large degree, determine its fate.

Our ultimate goal is to have a statistical model of a call that can be estimated solelySC
data and that can be used to identify calls that are about to fail but casbteed or to adapt network
parameters online, for example. This paper provides a first step in teatidir by describing the nature
of wireless data, introducing a statistical model of the pilot signal strengtiesved in the multiple legs
of a call throughout its duration, and showing how the parameters of thel made estimated from
the time series data collected by a mobile. The next step of estimating the parashtétersodel from
MSC data will be explored in a later paper. Although our time series modeiresqata that are not
available to the MSC for call management, it is realistic in the sense that it asdounhe geometry
of a network, the interaction of network elements, and the dynamics of addohdeleting legs during
a call. While there has been much work on models of radiowave signalgatipa (see, for example,
Jakes (1974) and Patzold (2002)), we believe that this is the first madeb#tes the energy received
in the multiple legs of a call into account and that is based on extensive reesiis on a commercial

network.

3 The Network View of a Wireless Call: Event Data

When a call initiates, the MSC assigns multiple traffic channelkegs to the mobile to reduce the
chance of losing the call; the set of participating legs is callecttiee set. One leg is selected as the
primary leg. Any other active leg, whether for another sector of the same base statosector of

a different base station, is calledcondary. A secondary leg may become stronger than the primary

leg, but that does not change its status as a secondary leg. A call maynlaay secondary legs, and



these can start and end throughout the call as the relative strengtlessajithls that the mobile receives
increase and decrease. When a leg in the active set weakens so niutlistha longer viable, it is
dropped from the active set. Similarly, legs can be added to the activeirseg dhe call. Any change
in the set of active set is calledhandoff or handover. The maximum number of active legs for a call is
a configurable parameter that may vary across the network.

The mobile reports its received signal strengths for the active legs ol éodhe primary base
station, and thus to the MSC that manages the call, whenever one of thesedestrengths crosses
a threshold. When the signal crosses Thg; threshold from below, it can be added to the active set.
When the signal crosses tfig,, threshold from above and stays bel@.,, for a specified length
of time, it is dropped from the active set unless it is the only signal in theeast. Each threshold
crossing is called handoff trigger and we call the time of the threshold crossingigger time. There
can be many handoff triggers during a call even if the mobile is stationanyeXample, a nine day
study of four base stations and one frequency band in a small urbim réfga commercial network
generated about 2.7 million handoff triggers during 30 million seconds oficsdl

The births and deaths of legs between a mobile and a sector are controllegirtrelative signal
strengthE. /I, at the mobile, wheré’.. /I, for a transmit antennd is defined as the ratio of the energy
E. received in the pilot signal of antenato the total energylf) that the mobile receives, summing
over all pilots (including4) and the thermal noise in the receivél;/ I is expressed it0log( (decibel)
units. Relative and not absolute signal strength is measured becausaldrsign one antenna interferes
with the signals for all other antennas. Note that the ratio is one (0 dB) orépiere is just one signal
and no thermal noise.

Figure 1 shows the trigger-drivefi./ I, data for the end of a call that terminated abnormally. The
times of the triggers are indicated by faint vertical lines that extend throligheapanels. The call
shown has active legs with theand sectors of base station 1 and theector of base station 7. The
top panel shows the relative pilot strength/I, at the mobile for each of these links as reported by
the mobile at trigger times. The horizontal bar in the middle of the top panel sheWswer threshold
Taqq and upper thresholdy,., on E. /I, beyond which the mobile can request that legs be added or
dropped. IfE. /I rises above the top of the banfl,§,), then the leg for that sector can be added to
the active set if the active set is not full or to tbandidate set otherwise. A leg can be dropped if its
E. /I, falls below the bottom of the gray band.,) and stays there for a specified duration, as long
as there is another active leg with a larder/ 1. Legs are usually added quickly when they rise above

Twaq, but they are not dropped as soon as they fall belQyy, to avoid reacting to short, temporary



changes in the environment, such as a passing truck. The time out pertbdping a leg is a network

configurable parameter, typically about 4 seconds.
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Figure 1: The MSC view of a call during a period when se¢iaf Base Station 1 was active; the dark
horizontal band in the top panel indicates the period during which this seamprmary. The panels
from top to bottom show relative signal strengths of the active legs at trigges (marked by vertical
dotted lines), the births and deaths of active legs for each sector, dadadigcomputed from signal

round trip time) for the active legs.

The horizontal bar in the top panel, including the white portion of the bar oftethand the light
portion of the bar on the right, shows the start and end of the leg fof tbector of base station 1,
which is henceforth denoted by B$*1The darker gray of the bar indicates the period during which the
BS-13 leg was primary. Because the B&-tbg was not primary at time zero in this panel, we know that

it started as a secondary leg and became primary through a handoffid@&isefter it began, at the time



of the first trigger shown. Thé&'.. /I, for BS-13 drops belowly;, ., at the next trigger at 30 seconds, but
there is no stronger signal then and so the BSely was not dropped. At about 40 seconds, all the legs
strengthen, with BS41 continuing to be the strongest signal through the end of the period shidven.
light gray period on the right end of the bar indicates a timer that is startededyI8C when contact
with the mobile is lost. The call was considered lost at the end of the timer, alihtbegsignal on the
forward channel to the mobile appears to be strong at the end of the calreVarse link from the
mobile to the base station may have been weak, though, causing the call tBathdhe reverse and
forward links are needed to maintain a call.

The middle panel of Figure 1 shows the lifetimes of the legs for each seciogdhe period that the
BS-15 leg was primary. In all, 12 active legs were created, eight of which warB$-73. One of the
gaps between dropping and re-adding B5td the active set (and the gap between the corresponding
trigger times) is imperceptible in Figure 1 and another gap is nearly impercepirblesient weak legs
such as these can be kept in the active set to protect against a rgpid @9 I, for the strongest signal.
The question of whether cycling BS31n and out of the active set is worth the trade-off in reliability
versus cost is one that has not been quantified.

Finally, the bottom panel of Figure 1 shows the distance of the mobile to the priaméenna as
computed from the time it took a signal to travel from the transmit antenna to thieenaolol then back
to the receive antenna. This round trip time or distance can change evenniabile is stationary
due to random fluctuations in the environment and to temporary obstructiwesén the mobile and
antenna that affect the signal path. In this example, it appears that the risobilleer not moving or
moving slowly, although it is perhaps possible that it is fortuitously moving oath pf constant mean
round trip time. If that is not the case, then the addition and deletion of legslisbply in response to
changing network and traffic conditions, not in response to the locatititeahobile.

Clearly, the anatomy of a call can be complex, especially when the mobile is movirege can
be many active legs and many “candidate” sectors that could supper begs should an active leg be
dropped. (To simplify the plot, measurements from the candidate sectonetasbown in Figure 1.)
The mobile also receives signals from neighboring sectors that coutdri@ecandidate legs. These too
are not shown in Figure 1. No leg may last throughout an entire call. Butatter how complex the
call or network dynamics, it is still the measurementif/ I, that determines which legs are active,
when a leg should be dropped or a new leg added, and the quality thaethexpgriences throughout

the call. Thus, the remainder of this paper focuse&ofVy.



4 The Mobile View of a Wireless Call: Time Series Data

Relative signal strengtli’. /I, at the mobile and the location of the mobile as determined by GPS

(Global Positioning System) were obtained every second of a 2.5 hounadi mid-day from a mo-
bile in a car driving through an urban area with low rise buildings. The patheocar and its speed
throughout the period are shown in Figure 2, where speed is computiadibg a moving average of
the distance traveled between one second measurements with a windowecb8ds The car moved

about 5 mph for almost half the period. It rarely exceeded 15 mph.
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Figure 2: The mobile’s path (top) and speed (bottom) during the drive tesdll 8ots in the top panel

show the location of the mobile every minute; large dots show its location at thektach 30 minute

interval. The numbers in the large dots indicate the sequence number foteth&in

Figure 3 shows the footprints of four of the base stations that suppogettitke test call. Columns
represent base stations; rows represent their sectors. The lochtidrase station relative to the drive
test region is shown as a large dot, and the azimuth (center) of a transmmnafhteam for a sector is
shown as a long thick arrow. The shorter arrows around the beam depiceam width, which is the
angular range for whiclt. /I drops off by at most a factor of 2 from its peak at the azimuth.

The dark points on each map in Figure 3 show the footprint of a sector iretise ¢hat the sector

had a primary leg at least once during the drive test at each location anlayle dark point. As would
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Figure 3: The footprints of several sectors during the drive test. Tige ldot at the end of an arrow
indicates the antenna location. The dark arrow indicates the azimuth of time &ied the lighter arrows
indicate the beam width. A smaller black dot on the drive path indicates thatther supported a

primary leg for the mobile at least once at that location during the drive test.
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be expected from their locations and directions, BSaRd BS-4 never supported primary legs for the
drive test call, while BS-4 supported primary legs when the mobile was in the north of the region and
BS-15 supported primary legs when the mobile was in the southeast. Surprisinglyy B&s primary

for some locations directly behind it and thus opposite to the azimuth of its transtaitrea beam.
Some weak signal “leakage” behind the antenna would be expectedytaitthe large distances seen

in Figure 3. Moreover, several of the sectors shown, such as\B88-23, and BS-4, were dominant

in non-contiguous regions. These patterns may be caused by refldotionisuildings that are directly

in front of the antenna beam, for example. Finally, note that B&ds a long reach along a road that is
perpendicular to the azimuth of its beam. The complexity of the patterns shoviguireR3 suggest that
modeling signal propagation is not easy.

Finally, Figure 4 shows five minutes of the mobile’s data. The call had 28edletys, denoted by
colored curves, in this five minute period, although most were only slightlyexibg;; and lasted just
a few seconds, so are barely discernible. One leg was dominant tloatugiuch of the period, but
around 12:22 it became noticeably weaker than other legs. The candgtatsgblack circles) are not
yet actively supporting this call but might be strong enough to suppat a(@he maximum numbers
of active and candidate legs are network parameters chosen by theesgmvider.) Signals from
neighboring sectors (gray circles) could be added to the candidatehsehelghbor list is typically the
set of sectors adjacent to the primary sector, and so is important for magtasdl quality when the
mobile is moving quickly. However, the neighbor and candidate pilot signaisibate to interference
for the active legs.

Active legs tend to be stronger than candidate legs, but there are exxsaptiigure 4. AlsoE. /I
sometimes changes rapidly, perhaps in response to passing interfémecitas a truck) or changes in
the landscape (such as occur when turning the corner of a buildingedver, there are many triggers,
or threshold crossings, even though Figure 2 shows that the mobile ttardiea short distance in this
five minute period.

The lower panel of Figure 4 shows the number of neighboring signatsvest by the mobile
throughout the call. Whenever there is a trigger, the mobile re-sets altstahges ofE. /I, for the
neighbors to a minimum (-32.5 dB) and the base station transmits a new neightmtiismobile. The
rising slope after the triggers indicates how quickly the mobile finds signalsiitli, above -32.5 dB
after the trigger.

The remainder of this paper builds a model/&f/ I, for a set of active, candidate and neighbor

list signals and validates it on the data collected during the 2.5 hour driveAtestdel of raw signal

12



Ec/lo (dB)

12:25

—-10 —

-20 —

-30 +

Time

Figure 4: Time series oF,. /I, over a five minute period for active legs (colored) and for candidate
(black) and neighboring (gray) sectors. Vertical lines denote triggeistmevhichE, /I, values are
reported to the MSC. Horizontal lines show the lower threstiold,, and upper thresholdy,;; for
dropping and adding active legs. Values of -32dB, if recorded atrallc@nsored from below so might

be even smaller.

13



strength for one leg of a call would be simpler and more standard (seg (1&k&}) and Patzold, 2000),
but unrealistic because only relative signal strengti/, is known to the MSC that manages the call

and the multiple legs of a call interact and together determine the quality of the call.

5 A Model of Relative Forward Link Signal Strength at the Mobile

In this section we build a model for relative signal strength that incorperatvork topology and signal
propagation. Specifically, we allow relative signal strength at a locatioepermt on its distance from
the antenna and its angular deviation from the azimuth of the beam. Moreglyettie intercept of our
model depends on the deviation from the azimuth of the beam and the ratgrafidgon of relative
signal strength with distance also depends on the deviation from the azimoth.th& intercept and
slope (degradation) parameters are taken to be nonparametric fundtidegation from the azimuth
of the beam. We also incorporate the fact that signal strength does pedrajp continue to increase
as the antenna is approached but seems to flatten out at a maximum valueaditdistance from the
antenna. This is not surprising because the antenna is unlikely to be antieeheight as the mobile
and our model (and data) considers only planar distance from the antenn

The relative strengtli.. /I of a signal from transmit antenral < i < I in decibels is defined as

E.
10lOglo ’LI s
Eot + 2]’:1 Ejt

whereEj;, j = 1,...,1 is the energy in the signal from antenpat timet and £y, represents thermal

noise plus all sources of signal energy not accounted for by kmewn pilot signals, including the term
E;; in the numerator.

Based on exploratory data analysis (not shown here), we find that
Tt = ln(EZt)

is reasonably well-modeled by an autoregressive (AR) model of ortenith meary;;, variances?,

and autocorrelation coefficiemt

Tip = it + A(Xip—1 — Mig—1) + €its

where—1 < ¢ < 1 and thee;, 1 < i < I, are independent normnial ag) random variables. (The
description of the model fit in Section 7 also suggests that the simple AR(1)l isaaiequate for our
data.)

14



A bit of algebra shows that with

] ( Ei )
up =In | =——
ijo Eji

'U“L't
yie = In | ——7— | .
1= et

Yit = Tit — Tor = Mit + O(Yii—1 — Miji—1) + €0 — Pz—1 + 21, (1)

and

we have

wherez; = —xq; is thermal noise plus the signal strengths of unmeasured antennas. WWeedhatz;

is AR(1) with mean zero, varianee? and autoregression coefficiemthe same for all antennas. The
samep ando? are used for all measured signals because all are affected by the saofereasured
and unmeasured signals. Note that#hés, ¢ = 1,..., I, which are based on relative signal strength,
are correlated over antennas (space) and time, but the raw signgltstren are correlated only over
time. Finally,y;;, which is an observable function &f./ Iy, is AR(1) and has meam;;.

To be realistic, the:;; in equation (1) must depend on distance from the antenna and anguikar dev
tion from the direction of the antenna beam. To explore the nature of thestsetompute a standard-
ized location for each single observgdtaken during the drive test call discussed in Section 4, whether
for an active or candidate leg, by placing the transmit antenng;fat the origin and pointing it due
east along the positive horizontal axis. Having placed alljthen a standardized map, we partition the
map into small regions and compute an empirical cumulative distribution functoif) @f v;, in each.
Figure 5 shows the right tail of the ecdf. For example, at least 85% of tlasumements for a 90 degree
antenna beam are below -20 and at most 9% are above -10. (Beam wilthgaken from network
configuration files.)

As would be expected, Figure 5 suggests that relative signal strengtigéstiat the azimuth of
the beam and falls off with both distance from the antenna and deviationtfrerazimuth and that
relative signal strength is roughly symmetric around the azimuth. Thereismepancies from this
simple pattern that are likely caused by the physical environment in this pofttbe network, though.
For example, as in Figure 3, there are strong signals behind the antemnautdide the nominal beam
width — perhaps because there are buildings in front of the antennaetleat or refract the beam.
Simple signal propagation models would not predict strong signals asHardoihe antenna as seen in
Figure 5. Also note that Figure 5 suggests that relative signal strengthraid continue to increase as

the mobile approaches the antenna along a ray within the antenna beam. Ehnfsigsbecause signal
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Figure 5: The distribution of;; over 2.5 hours of a drive test call as a function of distance (in kilometers)
from the base station and deviation from the azimuth of the beam for 13 asteritm 90 degree beams
(bottom row) and 11 antennas with a 65 degree beams (top row). This gaoe the fraction of../ I

measurements above a threshold in small regions.
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strength also depends on the angle in the vertical plane and Figure 5sgmotieal distance from the
antenna. Signal strength also appears to be roughly symmetric arourrirththaof the beam.
Standard signal propagation models (e.g., Jakes (1974) and Patz6R))(28sume that average
signal strength in free space measured in decibels degrades with thed@gamice from the antenna.
The intercepts and slopes of these models depend on the environment;esy.gueldifferent for low
density rural and for high-density urban environments. For directiangnnas, signal strength also
degrades as the mobile moves away from the azimuth of the antenna beam. Arsdpleof the mean

that is roughly consistent with these predictions and with Figure 5 is

pit = ai(0it) + B(0i)In(\/d2poy + (dit — dimaz)?), ()

whered;; is the distance of the mobile from antenirat timet, d,,.. is the distance below which signal
strength no longer increases (here assumed to be 0.15 kmy,aisdthe absolute angular deviation
of the mobile from the azimuth of the beam in the horizontal plane (ignoring Hegte of height).
Angular deviation is normalized to lie between 0 and 1, controlling for beam widthe precisely, we

define the angular deviatighof an anglex from the azimuth of a beam of widitb by

% if la] <b
O(a) = _
1/2(1+|a’ b) if b < |a| <.
T—>b

The only antenna-specific effect in equation (2) is the interag@t), which represents the transmit
power of antenna In other words, antenna power varies across antennas and depedelviation from
the azimuth in the horizontal plane. The rat@) at which signal strength falls off with log distance at
any given angular deviatiothfrom the azimuth is the same for all antennas, however, regardless of their
power. Note that the rate at which signal strength degrades with distarmetie antenna depends on
the deviation from the azimuth of the beam.

Although it is easy to argue that the transmit powgf) should be decreasing thand the degra-
dation rate3(#) should be increasing i (because signals degrade faster away from the azimuth), the
exact dependence af andg on @ is unknown. In what follows we assume thgtand g are smooth,
symmetric functions of that can be represented by a Fourier serieg0on) with only a few cosine
terms. To allow strong signals direcly behind the antenna, we model the iptare slope coefficients
as Fourier series with term®s(kr6?) for k = 0,..., K. Here we takek = 4. To summarize, the
transmit power and signal degradation parameters are smooth functiahsadfite deviation from the

azimuth of the beam.
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6 Online Estimation

6.1 Observed and Imputed Data

The location of a mobile and its signal strength readings were recordeddbrsecond of the 2.5 hour
drive test call discussed in Section 4. The distance to each antennaeaauuigilar deviation from the
azimuth of the antenna in the horizontal plane were computed from the GPSnertémcation of the
mobile and the location and direction of the antenna, which were taken frimorkeconfiguration files.
Here we use model (1) with mean (2) to describe the measurements for tbet@esghat contributed
the most data. This set includes active, candidate and neighboring links.

There are two sources of missing signgls First, E../ I, is missing for all neighboring sectors from
the time a trigger occurs until the mobile receives a new neighbor list anthresshe sector. Here we
assume that neighboring sectors that drop at trigger times are missinglatirai his assumption is
roughly right because signals in neighboring sectors are highly unlikelgiiee triggers, although it is
not exactly right because the neighboring sectors and active sectgrsatiabe affected by whatever
caused the trigger. Second, previously measured signals become mikginghey fall below -32 dB
since this is a limit of detection for these data.

The complete data would €Y%, 2;) : Y; = (y1t,---,yre)';t = 1,..., T}, wherel is the total num-
ber of sectors the mobile was in contact with during the call. The missing daséstofthe missing
valuesy;; and everyz; because; is an unmeasured source of variability. Starting from= 0, we
sequentially impute; andy;; when it is also missing using their predictive distributions. (See Little and
Rubin (1987) for a full discussion of imputation.) More precisely, at ttiide predictive distribution
of z; conditional onz;_; is normalpz;_1,02), so we imputey; with a random draw from this normal
distribution using mean and variance estimates based on the sufficient statisiedsare given in Sec-
tion 6.2 below. We then impute the missing valygs ; using the imputed values of_; andz; in the
AR(1) model given by equation (1), replacipgndos? with estimates based on their sufficient statistics,
as described next in Section 6.2. Note that the meayp; 06 not constant and several consecutjye

can be missing.

6.2 Updating the Estimated Mean

The power levety;(§) and degradation rate(6) in the mean model (2) are assumed to change smoothly
with absolute deviation from the azimuth in the horizontal plane by assumingdtiatibe linear func-

tions of K terms ofcos(kw0?), k = 0, ..., K for a smallK. The power levels;(#) are allowed differ-
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ent intercepts but otherwise they have the same dependeficdbus, the meap,; has2(K+1)+1—1

parameters(ag1, ..., aor, a1, ..., K, Bo,- .., BK). These can be estimated online (sequentially) by
the method of least squares as follows.

First, defineX), = cos(km6?) and write the vector of covariates for one relative signal strength

measurement ak = (Xo, X1,..., Xk)". Then

Hit = let (ana ag, ... ,OZK)/ + gitXi,t (507 e 7/6K)/

whereg;; = ln\/dfmx + (dit — dmm)z, 1 =1,...,I andd; is the distance of the mobile from antenna
1 at timet. We then work with the “complete” data (observed and imputed data), with migalngs

imputed as described in Section 6.1.

To update the estimates @f1, . .., ;) andg, first define thek’ x K matrices
s, = sV 4 XX,
it i, t—1
Sélx)xf = Sf,}x/) + gt Xt Xy
t t—1 I
S;Z)XX’ - S;ZX))(’ + Zi:lgz?tXith{t

and the column vectors of lengfki
. -1
Sg;t}), = Sg;)t/ )+ XitYit
I
-1
Sg))(y = Sg(,g(y) + ZgitXityit7

=1
where all elements of each matrix and vector are initialized to zete=ab. Given a matrix4, denote
itsijt" elementA[i, j] = Ay, itsit" row A[i,] = (A1, ..., Aik), itsi'® row without its first element as
Ali,—1] = (A, ..., Aix), its it column without its first element a4[—1,i] and the matrix without

its first row and first column ad[—1, —1]. Next define th€2K + I — 1) x (2K + I — 1) matrix

1 1 I
sU 1 . 0 S0, -1 SUO L]
0 LS A O TR SSixi[L]
Sxxr =
1 I 7 7
SYRl-1] o SYRL] B SE 1L -1 B S 1]
1 I 7
S I RIS I D D/ SY _
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and the column vector of lengf¥ + 1 — 1

/

I /
I i ’
Sxy = | S$21),..., s, [ZSE(Q[—H]  15%]

Sxx andSxy are the sufficient statistics foev; (0), . .., a(0), 5(0)). Finally, the estimated regression
coefficients corresponding to the Fourier series model can be updaiee ausing the method of least
squares equation

. A A A 5 1
(a1, G11,00,...,601,01,...,0K) =Sy Sxy.

6.3 Updating the Variance and Autoregression Coefficient

Define D to be the difference matrix with); ; = 1, D;1; = —1,andD;; = 0if j > i+ 1o0rj <.

Then integrating out the noise terms andz; gives

D(ys — pt) = ¢D(ys—1 — pe—1) + Dey. )

BecauseDe; ~ N(0,02DD'), it follows that

¢> (1 — 1) D(DD) ' D1 — pr-1) = 3 _(ye-1 — pe—1)' D(DD") ' D(ye — ),

t t

which gives a set of sufficient statistics fergiven p and an obvious (and simple) way to updéte
The estimate ob? is updated using equation (3). To reduce the effect of imputed valueapplg
equation (3) and update the sufficient statistics@odly when bothy; andy; 1 are observed; otherwise
set52 and¢ equal to their most recent values.

Finally, the imputed noise sequengeis used to updatpe ando?. First, > Zt2_1 and> z;_o0z4-1

are updated, and then the estimateg ahds? are computed as

t
Dm0 %17
Z and p="=———

t
1 =1 ZJQ'

The last two estimates can be updated sequentially in the obvious way.

2 _ -1
t—t

¢
o

J

7 Model Fit

The AR(1) assumption was studied by analyzing pieces of call segmentspipaar to be stationary
(plots not shown here) and was found to be appropriate for theseHigtaer order AR models did not

fit better than the simpler AR(1). The autocorrelation and standard devigtonates for model (1) at
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the end of the drive test calt & 9167 seconds) arg = 0.86, ¢ = 0.95, 6., = 0.29, andé, = 0.30.
The correlation across time and the correlation across antennas arerbetfsiaygesting that modeling
individual call segments independently would be inadequate. Contouthdcestimated means are
shown in Figure 6, with locations and orientations translated as in Figure & tNat the model has
identified the strong signal strength behind the antenna, although thisw#emot explicitly included

in the model.

Figure 6: Estimated mean around an antenna located at the origin with a bigginmgpdown the positive

horizontal axis. Distances along the axes are in km.

The estimated antenna-specific intercept®) and common slopé(6) in the mean (2), which
are assumed to be symmetric functiongpfire shown in Figure 7. The intercept curves are parallel
functions off, so the transmit power away from the azimuth follows the same pattern fortatirzas.
The intercept curves also suggest that power close to the antennastaiysconstant foff| roughly
between 0 and 0.3 and then degrades nearly linearly at larger deviabomshfe azimuth. The slope
curve 3(0) shows that the relative signal strength decreases with log distance @asimgy rates as

the azimuth is approached for absolute angular deviations below 0.2, yondé¢hat the effect of
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log distance weakens (that is, the slope moves towards zero.) Theskuasible effects, and it is

encouraging that the spline model has discovered them.
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Figure 7: Estimated intercepts;(¢) and slopes(6) as a function of angular deviatioh from the
azimuth in the horizontal plane, as estimated from data collected at the mobile dwibdhour long

drive test call. The dark middle line in the left plot shows the mean over the@2hiaas.

Figure 8 shows that the residuals from the fitted model are generally wedvbd. They are cen-
tered at zero and approximately symmetric as a function of either distamoétfecantenna or deviation
from the azimuth of the beam. There is some evidence of a scale change wathcdithat is not cap-
tured by the model, though, since the quartiles generally shrink toward$ardarger distances for all
anglar deviations from the azimuth, but there is also less data at the langerdis so these differences
may not be meaningful. Similarly, the large number of outliers in the residuglbi®ds not a concern.
Ther are about 642,000 residuals spread over 44 boxplots, or 4600 residuals per boxplot on
average. Using the usual boxplot parameter settings, we'd expadt Hb® outliers per boxplot even if
the residuals are approximately normally distributed.

The residuals against the estimated mean (Figure 9) are generally welkedelat show some
evidence of bias. Overall, the model slightly underestimates weak signalevanelstimates strong
signals, suggesting that the mean should be a weaker function of distandlé¢hogarithmic, perhaps
changing the specification near the antenna and at the extreme distalyc®sewartheless, although the
model can be improved, it appears to be a reasonable first approximatienrtiltiple signal strengths

seen at the mobile during a call.
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Figure 8: Residuals as a function of angular deviattdrirom the azimuth of the antenna beam.
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Finally, Figure 10 shows the results of simulating 2.5 hours of 25 time serieslatfve signal
strength measurements from the estimated model. The simlatdg's have roughly the same pattern
as the curves from which the model was estimated, with sharp drops arkdrigeis in signal strength,
but there are some differences from the raw data. In particular, the sedwdmnal strength curves for

different antennas appear to be more highly correlated than the obdségvel strengths were.

I
12:00-13:00

-10
-15 o
-20
_o5 |
~30 |

Ec/lo (dB)

| | | | |
00:00 10:00 20:00 30:00 40:00 50:00 60:00

Figure 10: A set of 25 simulated signal strengths using the model estimatedeo2.5 hours of drive

test data.

Overall, the residual plots and simulated data suggest that although mydeiti{Imean (2) is

simple and tractable, it captures the main features in the data reasonably well.

8 Discussion and Open Problems

8.1 Possible Applications

First, we believe that the ability to visualize the birth and death of legs of a cadkgiew insights
into wireless networks. Although the engineering behind the creation astdudgon of legs is well-
understood, graphics like our Figure 1 show that the process camp@esous. Most graphics for
wireless network consider data at a much higher level than that of the mebile;maps of signal
strength. While these are valuable, looking at call details can reveal hahk mark a network is
putting into managing calls.

Models of independent radio signals that take physical topographydntuat are used extensively

in network design and engineering to identify coverage holes, whichrags & which all signals are
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weak. Our model has a different goal. Rather than describe the streingitsignal throughout a fixed
environment, we describe the relative strengths of the signals at one madiilis thot in a constant
environment. In other words, getting the signal strength right over thee iareot our goal; getting
the time behavior at a moving location right is. A description of signals at aglike our model
provides is not needed for coarse measures like coverage holésisbrritical for understanding how
networks manage parameters like the thresh@lgs and7y,.,, the size of the active and candidate
sets, and the length of the neighbor list that affect call quality and calivalir A model of the ongoing
behavior of signals at the phones in a network also enables adaptingrkgtarameters online; for
example, providing more dynamic lists of neighboring base stations or fifregttmansmit power as
traffic densities change.

Secondly, models of the transient signals of a wireless call may make it fossjiredict the state
of a call over a short time frame and identify if it is about to fail becauseroblpms on the forward
link. There will always be calls that the network cannot save; for exanifpfeay be impossible to
save a call when a mobile phone enters an elevator. But there may be @thénhat can be rescued by
instructing the mobile to add sectors to its neighbor list, for example. A new list rodgtiain stronger
signals that could help a call in distress.

Finally, as cellular networks improve, dropped calls become rare, makiaggsammaries like call
failure less relevant. More nuanced metrics of call quality like the fracticimed that at least one of
the relative signal strengths is strong may take their place. Understandingtilire of the call signals,

as well as being able to visualize them at trigger times, will then become more importan

8.2 Improvements to the Model

Signal propagation models commonly assume that signals degrade logarithmitlaltistance from
the source. We offer two generalizations. First, the intercept and sfape signal propagation model
depend smoothly on deviation from the center of the beam, with the exace mditinis dependence left
unspecified. Moreover, our model explicitly includes the many signals teatttbile receives. The
fact that the model is multivariate is important for two reasons. First, thefsajoals, not just one
primary signal, determines the quality of the call as the mobile moves or netwnditioms change.
Second, the signals interfere with each other and thus any one sighdbatas to the noise for all the
other signals received by the mobile. The model fit for the 2.5 hour drstetd discussed in this paper
shows that the model is promising and warrants testing on other commercikdssidata.

Of course, any model can be improved. A better fit might be obtained by agiifferent model of
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the mean, perhaps one that includes deviation from the azimuth in the velgicalgy one that assumes
that degradation with distance is faster than logarithmic in the right tail. A Bayesesion of the
model would better accommodate uncertainty about the model parametetsmespace and calls,
at the cost of perhaps greatly increasing computing time and memory. Exjalyewveighted moving
averaging could be used in the least squares equations to accommocdhafescimathe Fourier models
for the interceptsy; (6) and slope3(6) in the signal propagation model over time. A higher dimensional
model that considered multiple calls simultaneously might be more appropriagédsbusubstantially
more time-consuming to fit. A richer imputation scheme could be used to model tladssilyat drop at
triggers and those that are no longer detectable. A more realistic corredttimture could be defined.
Before exploring these extensions, it would be important to test the ¢um@atel against data for other
networks and time periods. This would give some insight into which extensienmost needed. In
any case, the advantage of the current model is that it is simple to explain apdéte.

A much more ambitious goal would be to estimate the parameters of the model fratatththat
are available to the MSC that manages the call. These event-based (trigga) theasurements miss
most of the time series data that are collected in drive testing. Developing estifratethreshold
crossings is generally difficult.

Additional modeling will also be needed as cellular networks become able tctcoilere data.
Current CDMA networks require a pilot signal only at the base statiod,itarsignal strength can be
measured at the mobile to determine the quality of the forward link. We model anffpttvard link
because only the forward signal strength is reported to the MSC. Modisiengignal energy on the
forward and reverse links simultaneously would give a more complete vievirefless calls, especially
in light of the fact that some call failures are due to problems on the relieksgther than the forward
link. But modeling the reverse link will require, at the least, a bivariate timesenodel for each
leg of the call, and then a multivariate model across legs. Moreover, themalangodel for a reverse
link may not resemble the model we have proposed for the forward link. Batfent and future
wireless networking technologies present many fascinating, challengitigtisal problems. We hope

that statisticians will take them on.
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