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Abstract

A wireless call in a cellular network requires the cooperation of a wireless enabled device such

as a cell phone and a dynamic set of base stations, antennas and other network elements, with

control of the call changing in response to changes in signalstrength and the location of the mobile.

The signaling between the network and mobile that is needed to manage the call generates a huge

amount of signal strength data, some of which is seen only by the mobile placing the call and some

of which is seen only by the network. This paper describes some of the complexities of the signal

strength data and provides a statistical model of the signals from the network to the wireless device

that takes the time dependent, spatial, and multivariate nature of the call into account. An approach

to estimating the model parameters online as network data are collected, which would be useful

for network monitoring, is also described and applied to a set of call data obtained from an active

commercial CDMA (Code Division Multiple Access) network.

Keywords: Event histories, multivariate time series, network monitoring, online estimation, signal

propagation, spatial models.

A. Buvaneswari, John M. Graybeal and W. Michael MacDonald are Members of Technical Staff in wireless engineering

research departments at Bell Laboratories, Alcatel-Lucent, Murray Hill, NJ. David James is Associate Director of Biostatistics

at Novartis Pharmaceuticals in Hanover, NJ. Diane Lambert is Research Scientist at Google, New York, NY. Chuanhai Liu

is Professor of Statistics at Purdue University, West Lafayette, IN. James, Lambert and Liu were previously Members of

Technical Staff at Bell Laboratories. We thank Paul Polakos and Larry Drabeck for their many helpful insights into wireless

networks and calls.

1



1 Introduction

A wireless network is never idle. Eachtransmit antenna on a base station in the network constantly

emits a pilot signal, and each cell phone or other wireless device that is turned on constantly monitors

all the pilot signals that it receives. When a cell phone initiates or receives a call, the base station with

the strongest signal at the phone takes control of the call and becomes the primary base station for that

call. Only the primary base station handles the voice traffic for the call, but thecell phone continues

to monitor pilot signals from other base stations as directed by the network. Ifthe mobile moves away

from the base station or network conditions change, control of the call passes smoothly to another base

station whose pilot signal the mobile is already monitoring. The list of pilot signalsthat the phone is

monitoring plays a key role in how the call is managed, and this list can change rapidly throughout a

call.

From the perspective of the network, a wireless call is a set of transientsignals between the network

and the phone whose sources and strengths change in response to the location of the phone and network

conditions. Understanding these signals is important for understanding call quality and network effi-

ciency. Generally, a strong pilot signal is better for call quality, but pilot signals can interfere with each

other so two strong pilot signals may not be better than one. Of course, which signals are strong changes

over time and with location, so understanding the dynamics of call quality requires understanding the

dynamics of the pilot signals that the phone receives during a call. This setof transient signals also

determines network efficiency. Each change to the set of pilot signals monitored at the mobile, either

dropping or adding a signal to the list of monitored signals, incurs a cost to the network. Each cost

is slight, but there are many calls and many changes to the list of pilot signals monitored during each

call so the total cost to the network of actively maintaining a list for each call islarge. Optimizing the

parameters that determine whether a signal is added to or dropped from thecall requires understanding

the statistical behavior of the signal strengths at the phone.

This paper explores the nature of the data that can be collected on the strengths of all the received

pilot signals at the mobile during a wireless call or data session and providesa statistical model that can

be updated online as new measurements are received. Section 2 providesmore background on wireless

network performance and introduces two sources of received pilot signal strength data in wireless net-

works: the network and drive tests. The network collects the current received signal strength readings

from the mobile whenever certain thresholds on signal strength are crossed (see Section 3). In drive

testing a van with specialized equipment continually captures all the receivedsignal strengths for a call
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made while the van drives through an area (see Section 4). The drive test data are too costly to obtain

routinely, but they are useful for model exploration. Understanding thecomplete time series from drive

testing is a critical step to understanding the event-based data that are routinely collected by the network

and could be used for call management. A model for the multiple, transient received signal strengths

of a call is justified in Section 5. This model takes the network characteristics,antenna properties, and

signal propagation into account. A method of online estimation of the model parameters is described

in Section 6. The model fit for a set of drive test data taken on a commercialnetwork is presented in

Section 7. Section 8 further discusses the value of knowing the statistical behavior of wireless signals

and concludes with open problems.

2 Cellular Networks

2.1 Network Elements

Connecting and maintaining a wireless call or data session requires the ongoing cooperation of the user’s

mobile station (e.g., cell phone) and one or more base stations that are at most a few kilometers away.

In a CDMA (Code Division Multiple Access) network, each transmit antennaon a base station emits a

pilot signal or beacon at constant power and fixed frequency, and each mobile that is turned on scans for

pilot signals. The mobile maintains a list of pilot signals that it can receive, dropping base stations that

it can no longer hear and adding base stations as instructed by the network. The details of how the list

of pilots changes depend on the specific wireless network technology in use.

The area around a base station is typically divided into three sectors that are labeledα, β, γ. Each

sector has one transmit antenna and one or two receive antennas. The antennas are usually directional

and together cover 360 degrees around the base station. The location, height, azimuth (horizontal angle),

tilt (vertical angle), beam width, and power of the transmit antennas determine the area orfootprint in

which the base station can provide reliable communication. The footprint can be complex because

buildings and land formations affect the propagation of radio signals, sometimes impeding them and

sometimes strengthening them by reflection.

Themobile switching center (MSC) is the final element in a cellular network. The MSC is connected

to the base stations and to wired networks and the internet by cables. It is theMSC that directs the base

stations and manages call processing.
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2.2 Call Dynamics: Managing Quickly Varying Radio Signals

When a call is in progress (where calls are understood to include data sessions), the information that

is needed to maintain and control the call and the encoded content of the callare sent on radio waves

that travel between the mobile and a set of antennas within its reach. Each connection between a mobile

and a sector is called aleg, and each leg is comprised of two unidirectional links: theforward link,

which carries signals from the transmit antenna for the sector to the mobile, and thereverse link, which

carries signals sent by the mobile to a receive antenna for the sector. A call can have multiple legs

simultaneously if it is in contact with more than one sector, and the set of activelegs can change many

times during a call as the set of monitored sectors changes. Legs are dropped by the network when the

forward link signal at the mobile becomes too weak, and legs can be added when the forward link signal

becomes sufficiently strong at the mobile. (Calls can also be dropped because the signal generated by

the mobile, which the network does not control and does not know, is too weak.) The strengths of the

legs of a call fluctuate throughout the call even if the mobile is stationary because of strong scattering

from the surrounding environment.

The quality of a call clearly depends on the quality of both the forward and reverse links. However,

the network knows the quality of only the forward link to the mobile. At certain events described in

Section 2.4, the mobile reports the strength of all the pilot signals that it is monitoring to the base

station, so the base station knows the quality of the forward links at the mobile atthose times. Because

our focus is on network management and not device performance, we use only the forward link data

available to the network, but we recognize that this misses the effect on callquality of the signals sent

by the mobile.

Finally, we note that our data were obtained from a commercial CDMA network. In first generation

cellular systems, a mobile call is assigned a narrow frequency band for voice or data transfer that is

reserved for its exclusive use until the call ends. Second generation and later systems increase network

capacity by multiplexing or allowing multiple users to share a broader frequency band simultaneously.

In time-domain multiple access (TDMA) networks, users who share a frequency band transmit and

receive during pre-arranged, non-overlapping time slots. In CDMA networks, each user is assigned an

orthogonal filter or basis function called a Walsh code that is convolved withthe traffic signal so multiple

users can share the same frequency band simultaneously. Digital decoders (inverse filters) are used to

recover the original signals. For more background on wireless networks, see Lee (1995). Although

this paper considers only CDMA networks, our statistical analysis does not depend on the details of

the encoding or frequency allocation and should be relevant for other wireless technologies like UMTS
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(Universal Mobile Telecommunications Service) that also provide multiple linksper call.

2.3 The Need for New Metrics for Wireless Network Performance

The performance of commercial cellular networks is routinely summarized by aggregate metrics, such as

the hourly fraction of failed call attempts, the hourly fraction of initiated calls that terminate abnormally

(drop), and the hourly number of Walsh codes in use. Such metrics aggregate performance over many

calls and callers and do not describe the experience a single user has ona per-call basis. Aggregates

that average over all calls in a time period also fail to capture the interactions between simultaneous

calls that can affect network dynamics. Finally, coarse summaries like fraction of dropped calls are of

limited value for evaluating the performance of networks with significant data traffic. Data sessions

(e.g., web browsing) have infrequent bursts of activity that put high demands on network resources for

short periods of time. These transient demands are important to the customer’s network experience, but

time averages smooth them out and thus hide them. As service providers attract more data users to their

networks, the need for more finely grained metrics increases.

Further, cellular networks may soon be able to self-optimize and adapt to changing conditions on

short time scales. Such online tuning will require more detailed knowledge of call behavior than ag-

gregate metrics provide. (See Borst et al (2005) and Buvaneswari et al (2005) for more information

about future cellular network optimization and management services.) In current networks, the abil-

ity to rescue a call that is about to be dropped requires the ability to predict the next state of a call in

progress, which requires an understanding of the strengths of its traffic bearing and signalling channels

that aggregated performance metrics cannot provide.

Part of the goal of this paper is to start the process of developing models for forward link signals that

will provide insight into how to develop better metrics for network performanceand network adaptation.

2.4 Measurements from Wireless Networks

Routinely obtaining signal strength data for monitoring commercial cellular networks is not easy. The

mobile continuously monitors the relative strengths of the pilot signals it receives during a call but it

does not record them. Time series of received signal strengths can be obtained only from specialized

test mobiles using software and equipment that are impractical for all but small, infrequent “drive test”

studies. Even then, drive testing has limited value for understanding ongoing network performance

because drive test data are collected on only one mobile taking one path through one area of one network

under the set of traffic and network conditions that are in effect at testtime. Drive testing fails to capture
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the broad range of network conditions and user behaviors, such as in-building vs. outdoor use, that are

critical to system performance.

In contrast, the MSC sees the received signal strength at the mobile for each leg of each call that it

manages whenever there is a change in signal strength that could lead to theaddition or deletion of a leg

for the call. At other times, the cost of transmitting the data from the mobile to the base station over the

air is too high relative to its value. The MSC data are accessible (although nottrivially so) because the

MSC, like other switches and routers, can be passively monitored. That is, the mobile sees a complete

time series of received signal strength but it is highly impractical to capture these data routinely, while

the MSC has an incomplete but accessible view of all calls under all network conditions. Note that

although the MSC has a limited view of the mobile, the MSC data are used to manage thecall and, to a

large degree, determine its fate.

Our ultimate goal is to have a statistical model of a call that can be estimated solely from MSC

data and that can be used to identify calls that are about to fail but can be rescued or to adapt network

parameters online, for example. This paper provides a first step in that direction by describing the nature

of wireless data, introducing a statistical model of the pilot signal strengths received in the multiple legs

of a call throughout its duration, and showing how the parameters of the model can be estimated from

the time series data collected by a mobile. The next step of estimating the parametersof the model from

MSC data will be explored in a later paper. Although our time series model requires data that are not

available to the MSC for call management, it is realistic in the sense that it accounts for the geometry

of a network, the interaction of network elements, and the dynamics of addingand deleting legs during

a call. While there has been much work on models of radiowave signal propagation (see, for example,

Jakes (1974) and Patzold (2002)), we believe that this is the first model that takes the energy received

in the multiple legs of a call into account and that is based on extensive measurements on a commercial

network.

3 The Network View of a Wireless Call: Event Data

When a call initiates, the MSC assigns multiple traffic channels orlegs to the mobile to reduce the

chance of losing the call; the set of participating legs is called theactive set. One leg is selected as the

primary leg. Any other active leg, whether for another sector of the same base stationor a sector of

a different base station, is calledsecondary. A secondary leg may become stronger than the primary

leg, but that does not change its status as a secondary leg. A call may have many secondary legs, and
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these can start and end throughout the call as the relative strengths of the signals that the mobile receives

increase and decrease. When a leg in the active set weakens so much that it is no longer viable, it is

dropped from the active set. Similarly, legs can be added to the active set during the call. Any change

in the set of active set is called ahandoff or handover. The maximum number of active legs for a call is

a configurable parameter that may vary across the network.

The mobile reports its received signal strengths for the active legs of a call to the primary base

station, and thus to the MSC that manages the call, whenever one of these received strengths crosses

a threshold. When the signal crosses theTadd threshold from below, it can be added to the active set.

When the signal crosses theTdrop threshold from above and stays belowTdrop for a specified length

of time, it is dropped from the active set unless it is the only signal in the active set. Each threshold

crossing is called ahandoff trigger and we call the time of the threshold crossing atrigger time. There

can be many handoff triggers during a call even if the mobile is stationary. For example, a nine day

study of four base stations and one frequency band in a small urban region of a commercial network

generated about 2.7 million handoff triggers during 30 million seconds of calltime.

The births and deaths of legs between a mobile and a sector are controlled bytheir relative signal

strengthEc/I0 at the mobile, whereEc/I0 for a transmit antennaA is defined as the ratio of the energy

Ec received in the pilot signal of antennaA to the total energy (I0) that the mobile receives, summing

over all pilots (includingA) and the thermal noise in the receiver;Ec/I0 is expressed in10log10 (decibel)

units. Relative and not absolute signal strength is measured because a signal from one antenna interferes

with the signals for all other antennas. Note that the ratio is one (0 dB) only when there is just one signal

and no thermal noise.

Figure 1 shows the trigger-drivenEc/I0 data for the end of a call that terminated abnormally. The

times of the triggers are indicated by faint vertical lines that extend through all the panels. The call

shown has active legs with theα andβ sectors of base station 1 and theβ sector of base station 7. The

top panel shows the relative pilot strengthEc/I0 at the mobile for each of these links as reported by

the mobile at trigger times. The horizontal bar in the middle of the top panel showsthe lower threshold

Tadd and upper thresholdTdrop on Ec/I0 beyond which the mobile can request that legs be added or

dropped. IfEc/I0 rises above the top of the band (Tadd), then the leg for that sector can be added to

the active set if the active set is not full or to thecandidate set otherwise. A leg can be dropped if its

Ec/I0 falls below the bottom of the gray band (Tdrop) and stays there for a specified duration, as long

as there is another active leg with a largerEc/I0. Legs are usually added quickly when they rise above

Tadd, but they are not dropped as soon as they fall belowTdrop to avoid reacting to short, temporary
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changes in the environment, such as a passing truck. The time out period for dropping a leg is a network

configurable parameter, typically about 4 seconds.

Figure 1: The MSC view of a call during a period when sectorβ of Base Station 1 was active; the dark

horizontal band in the top panel indicates the period during which this sector was primary. The panels

from top to bottom show relative signal strengths of the active legs at trigger times (marked by vertical

dotted lines), the births and deaths of active legs for each sector, and distance (computed from signal

round trip time) for the active legs.

The horizontal bar in the top panel, including the white portion of the bar on theleft and the light

portion of the bar on the right, shows the start and end of the leg for theβ sector of base station 1,

which is henceforth denoted by BS-1β. The darker gray of the bar indicates the period during which the

BS-1β leg was primary. Because the BS-1β leg was not primary at time zero in this panel, we know that

it started as a secondary leg and became primary through a handoff 25 seconds after it began, at the time
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of the first trigger shown. TheEc/I0 for BS-1β drops belowTdrop at the next trigger at 30 seconds, but

there is no stronger signal then and so the BS-1β leg was not dropped. At about 40 seconds, all the legs

strengthen, with BS-1β continuing to be the strongest signal through the end of the period shown.The

light gray period on the right end of the bar indicates a timer that is started by the MSC when contact

with the mobile is lost. The call was considered lost at the end of the timer, although the signal on the

forward channel to the mobile appears to be strong at the end of the call. The reverse link from the

mobile to the base station may have been weak, though, causing the call to end.Both the reverse and

forward links are needed to maintain a call.

The middle panel of Figure 1 shows the lifetimes of the legs for each sector during the period that the

BS-1β leg was primary. In all, 12 active legs were created, eight of which were for BS-7β. One of the

gaps between dropping and re-adding BS-7β to the active set (and the gap between the corresponding

trigger times) is imperceptible in Figure 1 and another gap is nearly imperceptible.Transient weak legs

such as these can be kept in the active set to protect against a rapid drop in Ec/I0 for the strongest signal.

The question of whether cycling BS-7β in and out of the active set is worth the trade-off in reliability

versus cost is one that has not been quantified.

Finally, the bottom panel of Figure 1 shows the distance of the mobile to the primary antenna as

computed from the time it took a signal to travel from the transmit antenna to the mobile and then back

to the receive antenna. This round trip time or distance can change even if the mobile is stationary

due to random fluctuations in the environment and to temporary obstructions between the mobile and

antenna that affect the signal path. In this example, it appears that the mobileis either not moving or

moving slowly, although it is perhaps possible that it is fortuitously moving on a path of constant mean

round trip time. If that is not the case, then the addition and deletion of legs is probably in response to

changing network and traffic conditions, not in response to the location ofthe mobile.

Clearly, the anatomy of a call can be complex, especially when the mobile is moving. There can

be many active legs and many “candidate” sectors that could support active legs should an active leg be

dropped. (To simplify the plot, measurements from the candidate sectors arenot shown in Figure 1.)

The mobile also receives signals from neighboring sectors that could become candidate legs. These too

are not shown in Figure 1. No leg may last throughout an entire call. But nomatter how complex the

call or network dynamics, it is still the measurement ofEc/I0 that determines which legs are active,

when a leg should be dropped or a new leg added, and the quality that the user experiences throughout

the call. Thus, the remainder of this paper focuses onEc/I0.
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4 The Mobile View of a Wireless Call: Time Series Data

Relative signal strengthEc/I0 at the mobile and the location of the mobile as determined by GPS

(Global Positioning System) were obtained every second of a 2.5 hour callmade mid-day from a mo-

bile in a car driving through an urban area with low rise buildings. The path of the car and its speed

throughout the period are shown in Figure 2, where speed is computed bytaking a moving average of

the distance traveled between one second measurements with a window of 30 seconds. The car moved

about 5 mph for almost half the period. It rarely exceeded 15 mph.

Figure 2: The mobile’s path (top) and speed (bottom) during the drive test. Small dots in the top panel

show the location of the mobile every minute; large dots show its location at the start of each 30 minute

interval. The numbers in the large dots indicate the sequence number for the interval.

Figure 3 shows the footprints of four of the base stations that supported the drive test call. Columns

represent base stations; rows represent their sectors. The location of a base station relative to the drive

test region is shown as a large dot, and the azimuth (center) of a transmit antenna beam for a sector is

shown as a long thick arrow. The shorter arrows around the beam depict the beam width, which is the

angular range for whichEc/I0 drops off by at most a factor of 2 from its peak at the azimuth.

The dark points on each map in Figure 3 show the footprint of a sector in the sense that the sector

had a primary leg at least once during the drive test at each location marked by a dark point. As would
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Figure 3: The footprints of several sectors during the drive test. The large dot at the end of an arrow

indicates the antenna location. The dark arrow indicates the azimuth of the beam, and the lighter arrows

indicate the beam width. A smaller black dot on the drive path indicates that the sector supported a

primary leg for the mobile at least once at that location during the drive test.
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be expected from their locations and directions, BS-2α and BS-4α never supported primary legs for the

drive test call, while BS-4β supported primary legs when the mobile was in the north of the region and

BS-1β supported primary legs when the mobile was in the southeast. Surprisingly, BS-1γ was primary

for some locations directly behind it and thus opposite to the azimuth of its transmit antenna beam.

Some weak signal “leakage” behind the antenna would be expected, but not at the large distances seen

in Figure 3. Moreover, several of the sectors shown, such as BS-1γ, BS-2β, and BS-4γ, were dominant

in non-contiguous regions. These patterns may be caused by reflectionsfrom buildings that are directly

in front of the antenna beam, for example. Finally, note that BS-1β has a long reach along a road that is

perpendicular to the azimuth of its beam. The complexity of the patterns shown in Figure 3 suggest that

modeling signal propagation is not easy.

Finally, Figure 4 shows five minutes of the mobile’s data. The call had 28 active legs, denoted by

colored curves, in this five minute period, although most were only slightly above Tadd and lasted just

a few seconds, so are barely discernible. One leg was dominant throughout much of the period, but

around 12:22 it became noticeably weaker than other legs. The candidate signals (black circles) are not

yet actively supporting this call but might be strong enough to support a call. (The maximum numbers

of active and candidate legs are network parameters chosen by the service provider.) Signals from

neighboring sectors (gray circles) could be added to the candidate set. The neighbor list is typically the

set of sectors adjacent to the primary sector, and so is important for maintaining call quality when the

mobile is moving quickly. However, the neighbor and candidate pilot signals contribute to interference

for the active legs.

Active legs tend to be stronger than candidate legs, but there are exceptions in Figure 4. Also,Ec/I0

sometimes changes rapidly, perhaps in response to passing interference(such as a truck) or changes in

the landscape (such as occur when turning the corner of a building). Moreover, there are many triggers,

or threshold crossings, even though Figure 2 shows that the mobile traveled only a short distance in this

five minute period.

The lower panel of Figure 4 shows the number of neighboring signals received by the mobile

throughout the call. Whenever there is a trigger, the mobile re-sets all stored values ofEc/I0 for the

neighbors to a minimum (-32.5 dB) and the base station transmits a new neighbor list to the mobile. The

rising slope after the triggers indicates how quickly the mobile finds signals withEc/I0 above -32.5 dB

after the trigger.

The remainder of this paper builds a model ofEc/I0 for a set of active, candidate and neighbor

list signals and validates it on the data collected during the 2.5 hour drive test.A model of raw signal

12



Figure 4: Time series ofEc/I0 over a five minute period for active legs (colored) and for candidate

(black) and neighboring (gray) sectors. Vertical lines denote trigger times at whichEc/I0 values are

reported to the MSC. Horizontal lines show the lower thresholdTdrop and upper thresholdTadd for

dropping and adding active legs. Values of -32dB, if recorded at all, are censored from below so might

be even smaller.
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strength for one leg of a call would be simpler and more standard (see Jakes (1974) and Patzold, 2000),

but unrealistic because only relative signal strengthEc/I0 is known to the MSC that manages the call

and the multiple legs of a call interact and together determine the quality of the call.

5 A Model of Relative Forward Link Signal Strength at the Mobile

In this section we build a model for relative signal strength that incorporates network topology and signal

propagation. Specifically, we allow relative signal strength at a location to depend on its distance from

the antenna and its angular deviation from the azimuth of the beam. More precisely, the intercept of our

model depends on the deviation from the azimuth of the beam and the rate of degradation of relative

signal strength with distance also depends on the deviation from the azimuth. Both the intercept and

slope (degradation) parameters are taken to be nonparametric functions of deviation from the azimuth

of the beam. We also incorporate the fact that signal strength does not appear to continue to increase

as the antenna is approached but seems to flatten out at a maximum value at a small distance from the

antenna. This is not surprising because the antenna is unlikely to be at the same height as the mobile

and our model (and data) considers only planar distance from the antenna.

The relative strengthEc/I0 of a signal from transmit antennai, 1 ≤ i ≤ I in decibels is defined as

10log10

(

Eit

E0t +
∑I

j=1 Ejt

)

,

whereEjt, j = 1, . . . , I is the energy in the signal from antennaj at timet andE0t represents thermal

noise plus all sources of signal energy not accounted for by theI known pilot signals, including the term

Eit in the numerator.

Based on exploratory data analysis (not shown here), we find that

xit = ln(Eit)

is reasonably well-modeled by an autoregressive (AR) model of order one with meanµit, varianceσ2
e ,

and autocorrelation coefficientφ,

xit = µit + φ(xi,t−1 − µi,t−1) + eit,

where−1 < φ < 1 and theeit, 1 ≤ i ≤ I, are independent normal(0, σ2
e) random variables. (The

description of the model fit in Section 7 also suggests that the simple AR(1) model is adequate for our

data.)
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A bit of algebra shows that with

uit = ln

(

Eit
∑I

j=0 Ejt

)

and

yit = ln

(

euit

1 −
∑I

j=1 eujt

)

,

we have

yit = xit − x0t = µit + φ(yi,t−1 − µi,t−1) + εi,t − φzt−1 + zt, (1)

wherezt = −x0t is thermal noise plus the signal strengths of unmeasured antennas. We assume thatzt

is AR(1) with mean zero, varianceσ2
z and autoregression coefficientρ the same for all antennas. The

sameρ andσ2
z are used for all measured signals because all are affected by the same set of measured

and unmeasured signals. Note that theyit’s, i = 1, . . . , I, which are based on relative signal strength,

are correlated over antennas (space) and time, but the raw signal strengthsxit are correlated only over

time. Finally,yit, which is an observable function ofEc/I0, is AR(1) and has meanµit.

To be realistic, theµit in equation (1) must depend on distance from the antenna and angular devia-

tion from the direction of the antenna beam. To explore the nature of these effects, compute a standard-

ized location for each single observedyit taken during the drive test call discussed in Section 4, whether

for an active or candidate leg, by placing the transmit antenna foryit at the origin and pointing it due

east along the positive horizontal axis. Having placed all theyit on a standardized map, we partition the

map into small regions and compute an empirical cumulative distribution function (ecdf) of yit in each.

Figure 5 shows the right tail of the ecdf. For example, at least 85% of the measurements for a 90 degree

antenna beam are below -20 and at most 9% are above -10. (Beam widthswere taken from network

configuration files.)

As would be expected, Figure 5 suggests that relative signal strength is largest at the azimuth of

the beam and falls off with both distance from the antenna and deviation fromthe azimuth and that

relative signal strength is roughly symmetric around the azimuth. There are discrepancies from this

simple pattern that are likely caused by the physical environment in this portionof the network, though.

For example, as in Figure 3, there are strong signals behind the antenna – far outside the nominal beam

width – perhaps because there are buildings in front of the antennas thatreflect or refract the beam.

Simple signal propagation models would not predict strong signals as far behind the antenna as seen in

Figure 5. Also note that Figure 5 suggests that relative signal strength does not continue to increase as

the mobile approaches the antenna along a ray within the antenna beam. This is perhaps because signal
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Figure 5: The distribution ofyit over 2.5 hours of a drive test call as a function of distance (in kilometers)

from the base station and deviation from the azimuth of the beam for 13 antennas with 90 degree beams

(bottom row) and 11 antennas with a 65 degree beams (top row). The panels show the fraction ofEc/I0

measurements above a threshold in small regions.
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strength also depends on the angle in the vertical plane and Figure 5 ignores vertical distance from the

antenna. Signal strength also appears to be roughly symmetric around the azimuth of the beam.

Standard signal propagation models (e.g., Jakes (1974) and Patzold (2002)) assume that average

signal strength in free space measured in decibels degrades with the log ofdistance from the antenna.

The intercepts and slopes of these models depend on the environment; e.g., they are different for low

density rural and for high-density urban environments. For directionalantennas, signal strength also

degrades as the mobile moves away from the azimuth of the antenna beam. A simplemodel of the mean

that is roughly consistent with these predictions and with Figure 5 is

µit = αi(θit) + β(θit)ln(
√

d2
max + (dit − dmax)2), (2)

wheredit is the distance of the mobile from antennai at timet, dmax is the distance below which signal

strength no longer increases (here assumed to be 0.15 km), andθit is the absolute angular deviation

of the mobile from the azimuth of the beam in the horizontal plane (ignoring any effects of height).

Angular deviation is normalized to lie between 0 and 1, controlling for beam width. More precisely, we

define the angular deviationθ of an anglea from the azimuth of a beam of width2b by

θ(a) =











|a|

2b
if |a| ≤ b

1/2

(

1 +
|a| − b

π − b

)

if b < |a| ≤ π.

The only antenna-specific effect in equation (2) is the interceptαi(θ), which represents the transmit

power of antennai. In other words, antenna power varies across antennas and depends on deviation from

the azimuth in the horizontal plane. The rateβ(θ) at which signal strength falls off with log distance at

any given angular deviationθ from the azimuth is the same for all antennas, however, regardless of their

power. Note that the rate at which signal strength degrades with distance from the antenna depends on

the deviation from the azimuth of the beam.

Although it is easy to argue that the transmit powerαi(θ) should be decreasing inθ and the degra-

dation rateβ(θ) should be increasing inθ (because signals degrade faster away from the azimuth), the

exact dependence ofαi andβ on θ is unknown. In what follows we assume thatαi andβ are smooth,

symmetric functions ofθ that can be represented by a Fourier series on(0, π) with only a few cosine

terms. To allow strong signals direcly behind the antenna, we model the intercept and slope coefficients

as Fourier series with termscos(kπθ2) for k = 0, . . . , K. Here we takeK = 4. To summarize, the

transmit power and signal degradation parameters are smooth functions ofabsolute deviation from the

azimuth of the beam.
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6 Online Estimation

6.1 Observed and Imputed Data

The location of a mobile and its signal strength readings were recorded foreach second of the 2.5 hour

drive test call discussed in Section 4. The distance to each antenna and the angular deviation from the

azimuth of the antenna in the horizontal plane were computed from the GPS measured location of the

mobile and the location and direction of the antenna, which were taken from network configuration files.

Here we use model (1) with mean (2) to describe the measurements for the 25 sectors that contributed

the most data. This set includes active, candidate and neighboring links.

There are two sources of missing signalsyit. First,Ec/I0 is missing for all neighboring sectors from

the time a trigger occurs until the mobile receives a new neighbor list and re-scans the sector. Here we

assume that neighboring sectors that drop at trigger times are missing at random. This assumption is

roughly right because signals in neighboring sectors are highly unlikely tocause triggers, although it is

not exactly right because the neighboring sectors and active sectors may both be affected by whatever

caused the trigger. Second, previously measured signals become missing when they fall below -32 dB

since this is a limit of detection for these data.

The complete data would be{(Yt, zt) : Yt = (y1t, . . . , yIt)
′; t = 1, . . . , T}, whereI is the total num-

ber of sectors the mobile was in contact with during the call. The missing data consist of the missing

valuesyit and everyzt becausezt is an unmeasured source of variability. Starting fromz1 = 0, we

sequentially imputezt andyit when it is also missing using their predictive distributions. (See Little and

Rubin (1987) for a full discussion of imputation.) More precisely, at timet, the predictive distribution

of zt conditional onzt−1 is normal(ρzt−1, σ
2
z), so we imputezt with a random draw from this normal

distribution using mean and variance estimates based on the sufficient statistics, which are given in Sec-

tion 6.2 below. We then impute the missing valueymis,t using the imputed values ofzt−1 andzt in the

AR(1) model given by equation (1), replacingρ andσ2
z with estimates based on their sufficient statistics,

as described next in Section 6.2. Note that the mean ofyit is not constant and several consecutiveyit

can be missing.

6.2 Updating the Estimated Mean

The power levelαi(θ) and degradation rateβ(θ) in the mean model (2) are assumed to change smoothly

with absolute deviation from the azimuth in the horizontal plane by assuming that both are linear func-

tions ofK terms ofcos(kπθ2), k = 0, . . . , K for a smallK. The power levelsαi(θ) are allowed differ-
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ent intercepts but otherwise they have the same dependence onθ. Thus, the meanµit has2(K+1)+I−1

parameters:(α01, . . . , α0I , α1, . . . , αK , β0, . . . , βK). These can be estimated online (sequentially) by

the method of least squares as follows.

First, defineX̃k = cos(kπθ2) and write the vector of covariates for one relative signal strength

measurement asX = (X̃0, X̃1, . . . , X̃K)′. Then

µit = X ′

it (α0i, α1, . . . , αK)′ + gitX
′

it (β0, . . . , βK)′

wheregit = ln
√

d2
max + (dit − dmax)2, i = 1, . . . , I anddit is the distance of the mobile from antenna

i at timet. We then work with the “complete” data (observed and imputed data), with missingvalues

imputed as described in Section 6.1.

To update the estimates of(α1, . . . , αI) andβ, first define theK × K matrices

S
(it)
XX′ = S

(i,t−1)
XX′ + XitX

′

it

S
(it)
gXX′ = S

(i,t−1)
gXX′ + gitXitX

′

it

S
(t)
g2XX′

= S
(t−1)
g2XX′

+
∑I

i=1g
2
itXitX

′

it

and the column vectors of lengthK

S
(it)
XY = S

(i,t−1)
XY + Xityit

S
(t)
gXY = S

(t−1)
gXY +

I
∑

i=1

gitXityit,

where all elements of each matrix and vector are initialized to zero att = 0. Given a matrixA, denote

its ijth elementA[i, j] = Aij , its ith row A[i, ] = (Ai1, . . . , AiK), its ith row without its first element as

A[i,−1] = (Ai2, . . . , AiK), its ith column without its first element asA[−1, i] and the matrix without

its first row and first column asA[−1,−1]. Next define the(2K + I − 1) × (2K + I − 1) matrix

SXX′ =

































S
(1t)
XX′ [1, 1] . . . 0 S

(1t)
XX′ [1,−1] S

(It)
gXX′ [1, ]

. . .
...

...

0 . . . S
(It)
XX′ [1, 1] S

(1t)
XX′ [1,−1] S

(It)
gXX′ [1, ]

S
(1t)
XX′ [−1, 1] . . . S

(It)
XX′ [−1, 1]

∑I
i=1 S

(it)
XX′ [−1,−1]

∑I
i=1 S

(it)
gXX′ [−1, ]

S
(1t)
gXX′ [, 1] . . . S

(It)
gXX′ [, 1]

∑I
i=1 S

(it)
gXX′ [,−1] S

(t)
g2XX′
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and the column vector of length2K + I − 1

SXY =



S
(1t)
XY [1], . . . , S

(It)
XY [1],

[

I
∑

i=1

S
(it)
XY [−1]

]′

,
[

S
(t)
gXY

]

′





′

.

SXX andSXY are the sufficient statistics for(α1(θ), . . . , αI(θ), β(θ)). Finally, the estimated regression

coefficients corresponding to the Fourier series model can be updated at time t using the method of least

squares equation

(α̂1,1, . . . , α̂1,I , α̂2, . . . , α̂I , β̂1, . . . , β̂K)′ = S−1
XX′SXY .

6.3 Updating the Variance and Autoregression Coefficient

DefineD to be the difference matrix withDi,i = 1, Di+1,i = −1, andDij = 0 if j > i + 1 or j < i.

Then integrating out the noise termseit andzt gives

D(yt − µt) = φD(yt−1 − µt−1) + Det. (3)

BecauseDet ∼ N(0, σ2
eDD′), it follows that

φ
∑

t

(yt−1 − µt−1)
′D(DD′)−1D(yt−1 − µt−1) =

∑

t

(yt−1 − µt−1)
′D(DD′)−1D(yt − µt),

which gives a set of sufficient statistics forφ given µ and an obvious (and simple) way to updateφ.

The estimate ofσ2
e is updated using equation (3). To reduce the effect of imputed values, weapply

equation (3) and update the sufficient statistics andφ only when bothyt andyt−1 are observed; otherwise

setσ̂2
e andφ̂ equal to their most recent values.

Finally, the imputed noise sequencezt is used to updateρ andσ2
z . First,

∑

z2
t−1 and

∑

zt−2zt−1

are updated, and then the estimates ofρ andσ2
z are computed as

σ̂2
t = t−1

t
∑

j=1

z2
j and ρ̂ =

∑t
j=2 zj−1zj
∑t

j=1 z2
j

.

The last two estimates can be updated sequentially in the obvious way.

7 Model Fit

The AR(1) assumption was studied by analyzing pieces of call segments thatappear to be stationary

(plots not shown here) and was found to be appropriate for these data.Higher order AR models did not

fit better than the simpler AR(1). The autocorrelation and standard deviationestimates for model (1) at
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the end of the drive test call (t = 9167 seconds) arêρ = 0.86, φ̂ = 0.95, σ̂e = 0.29, andσ̂z = 0.30.

The correlation across time and the correlation across antennas are both large, suggesting that modeling

individual call segments independently would be inadequate. Contours for the estimated means are

shown in Figure 6, with locations and orientations translated as in Figure 5. Note that the model has

identified the strong signal strength behind the antenna, although this effect was not explicitly included

in the model.
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2
−4

−2−1012

Figure 6: Estimated mean around an antenna located at the origin with a beam pointing down the positive

horizontal axis. Distances along the axes are in km.

The estimated antenna-specific interceptsai(θ) and common slopeb(θ) in the mean (2), which

are assumed to be symmetric functions ofθ, are shown in Figure 7. The intercept curves are parallel

functions ofθ, so the transmit power away from the azimuth follows the same pattern for all antennas.

The intercept curves also suggest that power close to the antenna staysnearly constant for|θ| roughly

between 0 and 0.3 and then degrades nearly linearly at larger deviations from the azimuth. The slope

curve β(θ) shows that the relative signal strength decreases with log distance at increasing rates as

the azimuth is approached for absolute angular deviations below 0.2, but beyond that the effect of
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log distance weakens (that is, the slope moves towards zero.) These are plausible effects, and it is

encouraging that the spline model has discovered them.
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Figure 7: Estimated interceptsαi(θ) and slopeβ(θ) as a function of angular deviationθ from the

azimuth in the horizontal plane, as estimated from data collected at the mobile duringa 2.5 hour long

drive test call. The dark middle line in the left plot shows the mean over the 25 antennas.

Figure 8 shows that the residuals from the fitted model are generally well-behaved. They are cen-

tered at zero and approximately symmetric as a function of either distance from the antenna or deviation

from the azimuth of the beam. There is some evidence of a scale change with distance that is not cap-

tured by the model, though, since the quartiles generally shrink towards zero for larger distances for all

anglar deviations from the azimuth, but there is also less data at the larger distances so these differences

may not be meaningful. Similarly, the large number of outliers in the residual boxplots is not a concern.

Ther are about 642,000 residuals spread over 44 boxplots, or about15,000 residuals per boxplot on

average. Using the usual boxplot parameter settings, we’d expect about 100 outliers per boxplot even if

the residuals are approximately normally distributed.

The residuals against the estimated mean (Figure 9) are generally well-behaved but show some

evidence of bias. Overall, the model slightly underestimates weak signals andoverestimates strong

signals, suggesting that the mean should be a weaker function of distance than the logarithmic, perhaps

changing the specification near the antenna and at the extreme distances only. Nevertheless, although the

model can be improved, it appears to be a reasonable first approximation tothe multiple signal strengths

seen at the mobile during a call.
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Figure 8: Residuals as a function of angular deviation|θ| from the azimuth of the antenna beam.
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Figure 9: Residuals as a function of distance from the antenna.
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Finally, Figure 10 shows the results of simulating 2.5 hours of 25 time series of relative signal

strength measurements from the estimated model. The simulatedEc/I0’s have roughly the same pattern

as the curves from which the model was estimated, with sharp drops and quick rises in signal strength,

but there are some differences from the raw data. In particular, the simulated signal strength curves for

different antennas appear to be more highly correlated than the observed signal strengths were.

Figure 10: A set of 25 simulated signal strengths using the model estimated from the 2.5 hours of drive

test data.

Overall, the residual plots and simulated data suggest that although model (1) with mean (2) is

simple and tractable, it captures the main features in the data reasonably well.

8 Discussion and Open Problems

8.1 Possible Applications

First, we believe that the ability to visualize the birth and death of legs of a call gives new insights

into wireless networks. Although the engineering behind the creation and destruction of legs is well-

understood, graphics like our Figure 1 show that the process can be very nervous. Most graphics for

wireless network consider data at a much higher level than that of the mobile;e.g., maps of signal

strength. While these are valuable, looking at call details can reveal how much work a network is

putting into managing calls.

Models of independent radio signals that take physical topography into account are used extensively

in network design and engineering to identify coverage holes, which are areas in which all signals are

24



weak. Our model has a different goal. Rather than describe the strengthof a signal throughout a fixed

environment, we describe the relative strengths of the signals at one mobile that is not in a constant

environment. In other words, getting the signal strength right over the area is not our goal; getting

the time behavior at a moving location right is. A description of signals at a phone like our model

provides is not needed for coarse measures like coverage holes, butit is critical for understanding how

networks manage parameters like the thresholdsTadd andTdrop, the size of the active and candidate

sets, and the length of the neighbor list that affect call quality and call survival. A model of the ongoing

behavior of signals at the phones in a network also enables adapting network parameters online; for

example, providing more dynamic lists of neighboring base stations or fine-tuning transmit power as

traffic densities change.

Secondly, models of the transient signals of a wireless call may make it possible to predict the state

of a call over a short time frame and identify if it is about to fail because of problems on the forward

link. There will always be calls that the network cannot save; for example, it may be impossible to

save a call when a mobile phone enters an elevator. But there may be other calls that can be rescued by

instructing the mobile to add sectors to its neighbor list, for example. A new list mightcontain stronger

signals that could help a call in distress.

Finally, as cellular networks improve, dropped calls become rare, making binary summaries like call

failure less relevant. More nuanced metrics of call quality like the fraction oftime that at least one of

the relative signal strengths is strong may take their place. Understanding the nature of the call signals,

as well as being able to visualize them at trigger times, will then become more important.

8.2 Improvements to the Model

Signal propagation models commonly assume that signals degrade logarithmicallywith distance from

the source. We offer two generalizations. First, the intercept and slope of our signal propagation model

depend smoothly on deviation from the center of the beam, with the exact nature of this dependence left

unspecified. Moreover, our model explicitly includes the many signals that the mobile receives. The

fact that the model is multivariate is important for two reasons. First, the set of signals, not just one

primary signal, determines the quality of the call as the mobile moves or network conditions change.

Second, the signals interfere with each other and thus any one signal contributes to the noise for all the

other signals received by the mobile. The model fit for the 2.5 hour drive test call discussed in this paper

shows that the model is promising and warrants testing on other commercial wireless data.

Of course, any model can be improved. A better fit might be obtained by using a different model of
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the mean, perhaps one that includes deviation from the azimuth in the vertical plane or one that assumes

that degradation with distance is faster than logarithmic in the right tail. A Bayesian version of the

model would better accommodate uncertainty about the model parameters overtime, space and calls,

at the cost of perhaps greatly increasing computing time and memory. Exponentially weighted moving

averaging could be used in the least squares equations to accommodate changes in the Fourier models

for the interceptsαi(θ) and slopeβ(θ) in the signal propagation model over time. A higher dimensional

model that considered multiple calls simultaneously might be more appropriate butalso substantially

more time-consuming to fit. A richer imputation scheme could be used to model the signals that drop at

triggers and those that are no longer detectable. A more realistic correlationstructure could be defined.

Before exploring these extensions, it would be important to test the current model against data for other

networks and time periods. This would give some insight into which extensionsare most needed. In

any case, the advantage of the current model is that it is simple to explain and toupdate.

A much more ambitious goal would be to estimate the parameters of the model from thedata that

are available to the MSC that manages the call. These event-based (trigger driven) measurements miss

most of the time series data that are collected in drive testing. Developing estimates from threshold

crossings is generally difficult.

Additional modeling will also be needed as cellular networks become able to collect more data.

Current CDMA networks require a pilot signal only at the base station, and its signal strength can be

measured at the mobile to determine the quality of the forward link. We model only the forward link

because only the forward signal strength is reported to the MSC. Modelingthe signal energy on the

forward and reverse links simultaneously would give a more complete view ofwireless calls, especially

in light of the fact that some call failures are due to problems on the reverselink rather than the forward

link. But modeling the reverse link will require, at the least, a bivariate time series model for each

leg of the call, and then a multivariate model across legs. Moreover, the marginal model for a reverse

link may not resemble the model we have proposed for the forward link. Bothcurrent and future

wireless networking technologies present many fascinating, challenging statistical problems. We hope

that statisticians will take them on.
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