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ABSTRACT

We consider some fundamental issues in statistical inference by focusing on inference

about the unknown meanθ of the Gaussian modelN(θ;1) with unit variance from a single

observed data pointX. A closer look at this seemingly simple inference problem reveals

a limitation of objective Bayesian posteriors in that they cannot be interpreted as valid

posteriors when combining certain types of information. A new solution to inference about

θ from X is proposed. The proposed method is based on the fiducial distribution ofθ given

X, but with a new Weak Belief rule of combination for constraint-type information. It is

shown that the proposed approach is promising for constrained statistical inference.
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1 INTRODUCTION

A Silver Jubilee celebration seems a fitting time for statisticians to consider the past

and future of our field. In this article we focus on the course of probabilistic reasoning

toward statistical inference. Probabilistic reasoning requires a meaningful interpretation of

probabilities that can be understood by applied statisticians and scientists. To avoid unnec-

essary philosophical debates, the use of probability in this paper is interpreted in terms of
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frequency or proportion, as is typically understood and used by practitioners in building

sampling models for data. When personal probability is involved, we shall accept its use

so long as its numerical values are calibrated to have a sensible frequency interpretation. In

what follows, the phrases “long-run frequency” and “repeated experiments” are used to im-

ply that the corresponding probability is interpreted in terms of frequency. Consequently,

the needed mathematical tool is the standard theory of additive probability which satisfies

the Kolmogorov axioms.

Let F(xjθ) denote the cdf of the sampling distribution for the observed dataX in its

sample spaceX with parameterθ in the parameter spaceΘ. Denote byf (xjθ) the pdf

of F(xjθ). To address some fundamental issues in statistical inference, this paper focuses

on a simple Gaussian example. The sampling model for the observed data pointX is

the univariate normalX � N(θ;1) with unit variance and unknown meanθ in Θ = R =

(�∞;∞). The cdf and pdf of the sampling distribution are then

F(xjθ) = Φ(x�θ) (x2 X = R ;θ 2 R ) (1.1.1)

and

f (xjθ) = φ(x�θ) =
1p
2π

e�
(x�θ)2

2 (x2 X = R ;θ 2 R ); (1.1.2)

whereΦ(:) andφ(:) denote the cdf and pdf of the standard normal distribution. This paper

focuses on inference aboutθ from the observed pointX withoutprior information onθ.

From a problem-solving perspective any logically sound approach to inference about

θ ought to proceed with a good understanding of assumptions about the randomness in

the postulated sampling model for the observed data pointX. Statistical inference is then

reduced to propagating the uncertainties specified in the sampling model to inference about

θ. We call this approach the fundamental principle of inferential problem solving.

That said, the authors see Fisher’s fiducial argument heading in such a sensible direc-

tion, although it remains to be fully and correctly developed (see,e.g., Zabell, 1992; Zhang

& Liu, 2009). A fiducial solution to inference aboutθ in absence of prior knowledge about

θ is discussed in Section 3, where the fiducial distribution is (e.g., Fisher, 1959; Dawid &

Stone, 1982):

θjX � N(X;1) (θ 2 R ): (1.1.3)

Applying Bayes’ theorem (see Section 2) with the non-informative priorπ(θ) ∝ 1 for

θ, without questioning the meaning of Bayes’ theorem, gives the posteriorN(X;1) for
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inference aboutθ, i.e.,

π(θjX) = φ(θ�X) (θ 2 R ); (1.1.4)

which is the same as the fiducial distribution (1.1.3). This has been known as objective

Bayesian inference. One could argue that the posterior distribution (1.1.4) makes sense

because, computationally, it reproduces the fiducial posterior (1.1.3). In this regard, the re-

sults of Lindley (1958) can be used to identify a class of single parameter models for which

there exist Bayesian distributions that exactly reproduce the fiducial distributions. As a

result, objective Bayes and the fiducial approach share favorable properties, such as data

driven analysis, as well as the undesirable property that posteriors should be interpreted

differently from valid (non-“objective”) Bayesian posteriors; see Section 2. Most impor-

tantly, care must be taken when combining certain types of information into fiducial and

objective Bayesian posteriors. It is shown in Section 2 that, compared to valid Bayesian in-

ference in the context of situation-specific inference, objective Bayesian posteriors cannot

be interpreted as valid posteriors when used for combining constraint-type information.

The remaining sections of this paper are organized as follows: Section 2 reviews two

fundamental properties of valid Bayesian posteriors for statistical inference and shows that

the objective Bayesian posterior (1.1.4) is problematic when combined with additional in-

formation that is given in the form ofa � θ � b. Section 3 presents a new solution to

inference aboutθ from X with some types of constraints, including (i)a� θ � b and (ii)

θ 2 fa;bg, wherea < b. The approach we take follows the Maximal Belief method of

Zhang and Liu (2009). Section 4 concludes with a few remarks, which draw attention to

fundamental issues in statistical inference.

2 BAYESIAN INFERENCE

2.1 Valid Bayesian inference

The authors define avalid prior distributionπ(θ) (θ 2 Θ) as one that represents the cor-

rect sampling distribution forθ, and thereby, the hyper-populationfF(�jθ)g in repeated

experiments. A valid prior distribution can also be personal, but in this case the authors

expect the numerical values of personal probability to be consistent with frequency proba-

bility so that the standard probability theory can be applied. With a valid prior distribution
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π(θ), where
R

Θ π(θ)dθ = 1, the conditional distribution ofθ given the observed dataX,

π(θjX) =
π(θ) f (Xjθ)

R
Θ π(θ) f (Xjθ)dθ

; (2.2.1)

is given by Bayes’ theorem. Whenπ(θ) is a valid prior distribution,π(θjX) is called a valid

posterior distribution.

To construct an example of a valid posterior that has the same form as the objective

Bayesian posterior (1.1.4), we take

θ� N
�
0; c

c�1

�
and Yjθ� N(θ;c); (2.2.2)

whereY = cX andc> 1. It follows from (2.2.1) that the valid posterior isθjX � N(X;1),

i.e.,

π(θjX) = φ(θ�X) (θ 2 R ); (2.2.3)

a familiar Gaussian distribution whose pdf and cdf are displayed in Fig. 1.
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Figure 1: The pdf (a) and cdf (b) of the posteriorθjX � N(X;1) obtained from the model
(2.2.2)

For conceptual clarity, denote byθ� the unobserved realization ofθ in the specific ex-

periment whereX was collected. Suppose that the observed value ofX is 0.5 and that we

are interested in the “sharp” or point assertion thatθ� = 0, denoted byA = fθ� : θ� = 0g.
When the posterior (2.2.3) is taken as a Dempster-Shafer (DS; Dempster, 2008) model
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(DSM) for inference aboutθ�, the DS output for this assertion is(p;q; r) = (0;1;0), with p

as the (personal) probability for the truth ofA , q as the probability against the truth ofA ,

andr = 1� (p+q) as the remaining probability, known as the probability of “don’t know.”

By using (2.2.3) as a DSM, our probability againstθ� = 0 (or any other point assertion,

for that matter) is always one. Obviously, statisticians would not feel comfortable using

such a(p;q; r) output for inferring the truth or falsity ofA . Typically, applied statisticians

interpret the posterior as that (i) it is unlikely thatθ� lies outside of[X�2;X+2] and (ii )

it is very likely thatθ� is in the interval[X�2;X+2], but it is difficult to claim with confi-

dence thatθ� is very close to a particular point located in this interval. This interpretation

is necessarily personal. Moreover, this line of thought implies an informal inferential prob-

ability model representing degrees of belief about the realization ofθ�. Martin, Zhang, and

Liu (2009) extended this idea and proposed to specify a DSM that precisely represents the

belief so that meaningful DS(p;q; r) output for assertions can be calculated formally.

2.2 Situation-specific inference

We call the above inference aboutθ� from the observed dataX situation-specific. The

term “situation-specific” has usually been taken to mean “conditioned on data”. This term

or, for clarity, “strong situation-specific” is used here to emphasize that inference is both

“conditioned on data” and “realization-specific” in the Bayesian context; see Martin et al.

(2009) for more discussion. The concept of “situation-specific” makes it possible to bring

both Bayesian and Frequentist schools of thought into a unified framework of statistical

inference. That is, solving inferential problems on a specific value no matter whether it is

an unknown fixed quantity or an unknown realization from a known distribution.

In the present context of making inference aboutθ from a single observationY = cX�
N(θ;c) with the prior distributionθ � N

�
0; c

c�1

�
, it is obvious that we would not use the

posterior distributionθjX � N(X;1) as a DSM to represent our personal uncertainty about

the particular realizationθ�. As argued earlier, statisticians and scientists make use of

intervals based onθjX � N(X;1) to represent their uncertainty aboutθ�. Intervals of this

kind are personal and take different forms in practice for different assertions of interest.

Following Zhang and Liu (2009), we use random intervals and their corresponding DSMs

for a systematic treatment. In particular, we consider three types of random intervals:

1. Left-sided

L(θ) = fθ� : θ� � θg= (�∞;θ]; (2.2.4)
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2. Right-sided

R(θ) = fθ� : θ� � θg= [θ;∞); (2.2.5)

and

3. Centered

C(θ) = fθ� : jθ��Xj � jθ�Xjg= X�jθ�Xj; (2.2.6)

whereθjX � N(X;1):

The attractive feature of using DSMs to represent our uncertainty aboutθ� given the

observed dataX is that we can compute the induced beliefs on the truth or falsity of any

assertion. Consider, for example, the DSM specified by the random intervalL(θ) and the

assertionA = fθ� : θ� = 0g. The probability that the random intervalL(θ), believed to

containθ�, does not contain 0 is the implied belief against the truth ofA . Using this DSM,

we have the following(p;q; r) for A :

p(A) = 0; q(A) = Pr(θ < 0jX) = Φ(�X); andr(A) = Φ(X):

Similarly, if we choose the DSM specified by the random intervalC(θ), then the(p;q; r)

for A becomes

p(A) = 0; q(A) = Pr(jXj> jθ�XjjX) = 2Φ(jXj)�1; and

r(A) = 2�2Φ(jXj):

2.3 Two characteristics of valid posteriors

Here we consider properties of valid Bayesian posteriors for inference. In particular, the

long-run frequency distributions of

QL(X;θ�) = Pr(θ� 62 L(θ)jX) (2.2.7)

and

QR(X;θ�) = Pr(θ� 62 R(θ)jX) ; (2.2.8)

corresponding to familiar tail probabilities, are of interest. We refer to the resulting infer-

ential property, formally summarized into the following theorem, as thesituation-specific

property.
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Theorem 1. (Situation-specific) Suppose thatθ� N
�
0; c

c�1

�
and

(cX)jθ�N(θ;c) with c> 1. Then QL(X;θ�)� Unif(0;1) and QR(X;θ�)� Unif(0;1).

Proof. Note that according to the definition (2.2.7),QL(X;θ�) is the cdf of the conditional

distribution ofθjX evaluated atθ�. Since this cdf is continuous andθ� is a random sam-

ple from this distribution in repeated experiments, it holds thatQL(X;θ�) is distributed

uniformly on the interval from zero to one. Similarly, it can be shown thatQR(X;θ�) �
Unif (0;1).

Theorem 1 implies that the DS(p;q; r) output based on either random set,L(θ) or R(θ),
has desirable frequency properties. Another important property, concerning inference with

constraints on parameters, is on combining the information given by the posteriorθjX �
N(X;1) and an additional piece of information of the form

θ 2 [a;b] (�∞� a< b� ∞); (2.2.9)

wherea andb are known constants. Probability theory defines the rule of combination that

results in the combined posterior,

π(θjX;a� θ� b) ∝ φ(θ�X) (θ 2 [a;b]): (2.2.10)

For this combined posterior, the corresponding situation-specific property (Theorem 1)

holds. Formally, we have the following theorem, a property of what we call Bayes’ rule

of combination, which can be viewed as Dempster’s rule of combination (Dempster, 2008)

when the Bayesian posterior is taken as a DSM for inference aboutθ�.

Theorem 2. (Combining information) Assume that the assumptions of Theorem 1 hold

and, in addition, thatθ� satisfies the constraint (2.2.9). Then QL(X;θ�) � Unif(0;1) and

QR(X;θ�)�Unif(0;1), where QL(X;θ�) and QR(X;θ�) are given in (2.2.7) and (2.2.8) but

their corresponding probabilities determined by (2.2.10).

Proof. Note that the constrained posterior (2.2.10) is continuous. The proof is similar to

that of Theorem 1.

2.4 A difficulty in interpreting objective Bayesian posteriors

We now turn to objective Bayesian inference aboutθ� from a single observationX of

N(θ;1) with no prior knowledge aboutθ. The objective Bayesian posteriorθjX � N(X;1)

is obtained from Bayes’ theorem by taking the so-called non-informative priorπ(θ) ∝ 1. It
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has been well demonstrated that this posterior has nice frequency properties when used for

situation-specific inference. This is due to the following results that are similar to those of

Theorem 1 with a slightly different proof.

Theorem 3. (Situation-specific)Suppose that Xjθ�N(θ;1)with no prior knowledge about

θ. Then QL(X;θ�)�Unif(0;1) and QR(X;θ�)�Unif(0;1), where QL(X;θ�) and QR(X;θ�)
are defined in(2.2.7) and (2.2.8) but withθjX � N(X;1), obtained by applying Bayes’ the-

orem with the non-informative priorπ(θ) ∝ 1.

Proof. It follows from (2.2.7) that for the given pair(X;θ�) in an experiment

QL(X;θ�) = Probj(θ� θ�jX) = Φ(θ��X);

where the “obj” subscript in Probj indicates that the corresponding probability calculation

is with respect to the objective Bayesian posteriorθjX �N(X;1). Thus, in repeated experi-

ments that requireX to be the random variable,Φ(θ��X), and thereby,QL(X;θ�), follows

the Unif(0;1) for anyθ�. Similarly, it can be shown thatQR(X;θ�)� Unif (0;1).

Theorem 3 makes objective Bayes attractive for inference without prior information

aboutθ. However, the objective Bayesian posterior does not have the desirable property

corresponding to Theorem 2 when constraints are introduced. Suppose that in addition to

Xjθ�N(θ;1), it is known that (2.2.9) holds for some fixed pair ofa andb. In this case, the

combined objective Bayesian posterior has the cdf,

F(θjX;a� θ� b) =
Φ(θ�X)�Φ(a�X)

Φ(b�X)�Φ(a�X)
: (2.2.11)

For the results corresponding to Theorem 2 to hold,F(θ�jX;a� θ � b) must follow the

Unif (0;1) distribution for fixeda andb in repeated experiments withX� θ� � N(0;1)

and no prior knowledge aboutθ�. This is not true. For example, in the case ofθ� = a in

repeated experimentsF(θjX;a� θ� b) = 0 with probability one and in the case ofθ� = b

in repeated experimentsF(θjX;a� θ � b) = 1 with probability one. The lack of results

corresponding to Theorem 2 leads to the conclusion thatin general, objective Bayesian

posteriors cannot be interpreted or used for statistical inference in the same way as those

obtained with valid priors. More discussion on objective Bayes is given in Section 4.
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3 SITUATION-SPECIFIC FIDUCIAL INFERENCE
USING WEAK BELIEFS

In the case with no prior information aboutθ, all the known information is given by the

postulated sampling modelXjθ� N(θ;1) for the single observationX. The uncertainty is

entirely due to the randomness of

Z = X�θ (Z� N(0;1); θ 2 R ): (3.3.1)

The unknown value ofθ in a particular experiment, denoted byθ�, is uniquely determined

by the realization ofZ� in that experiment, whereX = θ�+Z�. However, having only ob-

servedX we can only say that the point(θ�;Z�) falls somewhere on the lineX = θ+Z. The

problem of inference is then to represent our uncertainty aboutZ� from the observed data

X, equation (3.3.1), and the fact thatZ�N(0;1). This approach leads to direct probabilistic

inference whereas objective Bayesian inference can be viewed as indirect inference.

In the context of the current paper’s focus on the long-run frequency interpretation of

probability, Fisher’s fiducial distribution (e.g., Fisher, 1959), to be used for inference about

θ from X has the cdf,

F(θjX) = Φ(θ�X): (3.3.2)

This distribution can be viewed as obtained from (3.3.1) by believing that under complete

ignorance aboutθ or, more exactly,θ�, the knowledge of (3.3.1) provides no evidence

to alter the long-run frequency distribution ofZ. That is,ZjX � N(0;1). In this case,

equation (3.3.1) serves as a transformation to propagate our uncertainty aboutZ� to θ� in

the particular experiment with observed dataX. Then, the fiducial distribution (3.3.2) can

be used as a DSM for making inference aboutθ� (Zhang & Liu, 2009).

Note that the fiducial cdfF(θjX) given in (3.3.2) is identical to the objective Bayesian

posterior, but with a well defined interpretation of the underlying probability. Hence, The-

orem 3 for objective Bayes applies to the fiducial distribution as well. It is the authors’

opinion that objective Bayes and fiducial inference both aim to accomplish the same task,

with fiducial inference being the more direct method, but whose ultimate acceptable ver-

sion has yet to be developed. Consequently, fiducial distributions also share with objective

Bayesian posteriors the difficulty in inference with constraints on unknown parameters.

The above discussion motivates a way of resolving the problem regarding objective

Bayes in Section 2.4 by taking a closer look at inference with constraints in the light of the
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Figure 2: Illustration of constraints onZ from observations ofX in repeated experiments.

fiducial setting. Recall that the constraintθ 2 [a;b] is considered in the simple Gaussian

example,θjX � N(θ;1). From (3.3.1), this constraint implies that

X�b� Z� � X�a: (3.3.3)

It is seen from (3.3.3) that the usual Bayes’ rule of combination is valid for a long-run

frequency interpretation for all repeated experiments with acommon Xbecause the real-

izations ofZ are known to be in the fixed interval (3.3.3). This assumption is obviously not

practical because the observed values ofX vary in repeated experiments. In this more sen-

sible setting, the constraints forZ vary from experiment to experiment. That is, no common

constraint is available forZ across all realizations ofX. This phenomenon is illustrated by

Fig. 2.

Recall that our goal of inference is to specify our uncertainty aboutθ� or, more formally,
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to specify a DSM for producing(p;q; r) for given assertions of interest. To accomplish this,

we consider a predictive random set (PRS)S(Z) for Z�. To be more specific, take

S(Z) = fZ� : jZ�j � jZjg (ZjX � N(0;1)); (3.3.4)

which defines a DSM (see Zhang and Liu, 2009). It is easy to prove that

Pr(Z� 62 S(Z)jZ�)� Unif (0;1) (3.3.5)

asZ� � N(0;1) in repeated experiments. That is, according to Zhang and Liu (2009),S(Z)

is credible for inference aboutZ�. Note that this PRS always contains the pointZ� = 0 and

treatsZ� =�∞ andZ� = ∞ as extremal points, meaning that it will be surprising to have

values ofZ� far away from zero.

It was shown in Section 2.4 that combining the constraint information (3.3.3) directly

with ZjX � N(0;1) is problematic when the long-run frequency interpretation of proba-

bility is of interest. This raises the following question: what property does Dempster’s

rule of combination have when applied to the DSM (3.3.4) and (3.3.3)? The DSM (3.3.4)

represents a so-called credible belief function for inference aboutZ�. In a certain sense,

(3.3.3) helps to refine the DSM (3.3.4) for inference aboutZ�. However, we may not expect

to have a sensible long-run frequency interpretation of the resulting DSM because conflict

cases,

S(Z)\fZ� : X�b� Z� � X�ag= /0; (3.3.6)

exist and can alter the long-run frequency in an uncontrollable way. One way to avoid

conflict cases is to weaken the DSM (3.3.4) by minimally enlarging the random setS(Z)

so that the resulting intersection withfZ� : X�b� Z� � X�ag will not be empty. More

specifically, we introduce a Weak Belief rule of combination for the present problem (a

more general definition will be considered elsewhere),

S(Z)eCX = fc2 CX : min
s2S(Z)

jc�sj= min
t2CX

min
s2S(Z)

jt�sjg; (3.3.7)

whereCX is the set representing the constraints onZ� for an observed X. WhenS(Z)\CX 6=
/0, thenS(Z)eCX is simply the intersection ofS(Z) with CX. In cases whereS(Z)\CX = /0,

thenS(Z)eCX is the set of points inCX that are closest to the points inS(Z). In the present

example,CX = [X�b;X�a] and we replace

S(Z)\CX
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with

S(Z)eCX =

8>><
>>:

S(Z)\CX; if S(Z)\CX 6= /0;

fX�bg; if jZj< X�b;

fX�ag; if �jZj> X�a;

to represent our belief aboutZ�. An argument for this rule of combination is that the DSM

(3.3.4) represents our personal belief and thus can be subject to adjustments or refinements.

The combined DSM obtained by this new rule has the following appealing property.

Theorem 4. Suppose that X= θ�+Z� with Z� � N(0;1) and given an observation X,

Z� 2 CX. Then the DSM, S(Z)eCX, defined in (3.3.7), is credible for inference about Z�.

Proof. It is said that a random setS is credible for inference about a realizationZ� of the

random variableZ iff the random variable,

Pr(S 63 Z�jZ�) (S 2 S� 2Z);

as a function ofZ� is stochastically not greater than a uniform random variable on[0;1].

Let q(Z�) = Pr(S(Z) 63 Z�jZ�). It is easy to show thatS(Z) is credible for inference about

Z�. That is,

q(Z�)
S
= Unif (0;1) ;

where
S
= denotes stochastic equality. Letqc(Z�) = Pr(S(Z)eCX 63 Z�jZ�). Note that for

anyZ� 2 CX,

q(Z�) = Pr(S(Z) 63 Z�;S(Z)\CX 6= /0jZ�)+Pr(S(Z)\CX = /0jZ�)

and

qc(Z
�) = Pr(S(Z) 63 Z�;S(Z)\CX 6= /0jZ�)

+Pr(S(Z)eCX 63 Z�;S(Z)\CX = /0jZ�) :

By monotonicity of the probability measure on Z,

Pr(S(Z)eCX 63 Z�;S(Z)\CX = /0jZ�)� Pr(S(Z)\CX = /0jZ�) :

Therefore,

qc(Z
�)� q(Z�)
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for all Z� 2 CX over all realizations ofX. It follows that

qc(Z
�)

S� Unif (0;1) :

This completes the proof of the theorem.

For an illustration of Theorem 4, takea = 0 andb = ∞, i.e., θ� � 0 in repeated ex-

periments. Fig. 3 shows the cdfs of the two end points of the combined random set for

inference aboutθ� from the observed dataX with θ� constrained to be non-negative. The

results show that these cdfs can be mixed continuous and discrete distributions with non-

zero point masses at the end points.
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Figure 3: Illustration of conditional cdf for random set with combined information in The-
orem 4.

To end this section, we apply the Weak Belief rule of combination (3.3.7) to inference

aboutθ based on a single observationX from N(θ;1) with the constraintθ2 fa;bg, i.e., the
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parameter space consists of two pointsa andb, wherea< b. Here,CX = fX�b;X�ag
and the resulting DSM is

S(Z)eCX =

8>><
>>:

fX�bg; if jZj< X� a+b
2 ;

fX�ag; if �jZj> X� a+b
2 ;

fX�b;X�ag; if X = a+b
2 or fX�b;X�ag � S(Z):

The results are given in Table 1. It is straightforward to show that the probabilities are

credible in the sense of Zhang and Liu (2009). For example, under the truth ofθ� = a, the

probabilityagainstthe assertionθ� = a is

Pr

�
X >

a+b
2

;2Φ
�

X� a+b
2

�
�1� 1�α

�

= Pr

�
X�a>

b�a
2

;X�a�Φ�1
�

1� α
2

�
+

b�a
2

�

= Pr

�
X�a�Φ�1

�
1� α

2

�
+

b�a
2

�

< Pr
�

Z�Φ�1
�

1� α
2

��
=

α
2
< α; whereZ� N(0;1).

Table 1: Probability forθ� = a or θ� = b (a< b) given a single observationX from N(θ;1),
whereθ 2 fa;bg.

Assertion Probability for the assertion, given X

X � a+b
2 X >

a+b
2

θ� = a 2Φ
�

a+b
2 �X

��1 0

θ� = b 0 2Φ
�
X� a+b

2

��1

4 CONCLUDING REMARKS

In this paper, we took a closer look at inference aboutθ in N(θ;1) from a single data

point X. If the frequency interpretation of probability is taken, several issues arise when

incorporating constraint-type information into existing inference methods.
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When a valid prior exists, random intervals can be used to form a DSM that allows

for credible, situation-specific inference with constraints. However, for many inference

problems, it may be difficult to find a sensible prior. Neyman’s concept of a confidence

interval is appealing to most statisticians and it is helpful to study large sample theory based

on Fisher’s concepts of consistency, efficiency, and sufficiency (Fisher, 1922). However, an

ultimate satisfactory solution should allow us to make direct probabilistic inference with

even the smallest sample size. Objective Bayes is a step in this direction, but we have

shown that incorporating constraint-type information can lead to difficulties in interpreting

objective posterior probabilities.

We believe the ultimate solution may be obtained by following what we call the funda-

mental principle of inferential problem solving in Section 1. In general, Fisher’s fiducial

argument seems to agree with this principle and applying DS theory to predictive random

sets is useful for representing our uncertainty. However, because DS is subjective, one must

be careful in applying DS theory when a frequency interpretation is required.

We proposed a new solution to constrained statistical inference that is consistent with

the frequency interpretation. Although we chose to focus on a relatively simple example,

at least, technically, our approach is very promising for the general problem of constrained

inference, which appears to be difficult with existing methods. The same approach can be

extended to inference aboutθ in theBinomial(θ) model, which Karl Pearson (1920) called

the fundamental problem of practical statistics. We refer to Dempster (1966), Brown, Cai,

and DasGupta (2001), and Zhang and Liu (2009) for different approaches to inference

about the binomial model. The presence of constraints onθ will certainly make the problem

more interesting and challenging.

A related problem concerns prediction of the next observation, denoted byY, from

N(θ;1) based on the observationX, whereθ is unknown. In general, applying the Maximal

Belief approach amounts to considering two independent realizations,

Z�1 = X�θ� and Z�2 =Y�θ�;

from the the standard normal distribution,N(0;1), with complete ignorance aboutθ�. A

simple method is to considerY�X � N(0;2), which effectively integrates outθ�. That

is, YjX � N(X;2). A DSM can be specified for inference aboutY given X in the same

way as inference aboutθ� based onθjX � N(X;1). However, this approach may not be

efficient whenθ has a constraint. For example, ifθ 2 fa;bg with b� a, then observingX

is approximately equivalent to observingθ. As a result, inference aboutY can be based on

YjX � N(a;1) or N(b;1), depending on whether the observed value ofX is close toa or b.
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