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ABSTRACT

We consider some fundamental issues in statistical inference by focusing on inference
about the unknown medhof the Gaussian mod&l(6, 1) with unit variance from a single
observed data poirX. A closer look at this seemingly simple inference problem reveals
a limitation of objective Bayesian posteriors in that they cannot be interpreted as valid
posteriors when combining certain types of information. A new solution to inference about
0 from X is proposed. The proposed method is based on the fiducial distributgieén
X, but with a new Weak Belief rule of combination for constraint-type information. It is
shown that the proposed approach is promising for constrained statistical inference.
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1 INTRODUCTION

A Silver Jubilee celebration seems a fitting time for statisticians to consider the past
and future of our field. In this article we focus on the course of probabilistic reasoning
toward statistical inference. Probabilistic reasoning requires a meaningful interpretation of
probabilities that can be understood by applied statisticians and scientists. To avoid unnec-
essary philosophical debates, the use of probability in this paper is interpreted in terms of
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frequency or proportion, as is typically understood and used by practitioners in building
sampling models for data. When personal probability is involved, we shall accept its use
so long as its numerical values are calibrated to have a sensible frequency interpretation. In
what follows, the phrases “long-run frequency” and “repeated experiments” are used to im-
ply that the corresponding probability is interpreted in terms of frequency. Consequently,
the needed mathematical tool is the standard theory of additive probability which satisfies
the Kolmogorov axioms.

Let F(x|0) denote the cdf of the sampling distribution for the observed Haita its
sample spacX with paramete® in the parameter spag®. Denote byf(x|6) the pdf
of F(x|0). To address some fundamental issues in statistical inference, this paper focuses
on a simple Gaussian example. The sampling model for the observed dataXpigint
the univariate normaX ~ N(8,1) with unit variance and unknown me#&nn © =R =
(—00,00). The cdf and pdf of the sampling distribution are then

F(x8) = d(x—8) (xeX =R ,8€R) (1.1.1)
and
f(x|6):(p(x—8):\/%[e‘(xze)2 (xeX =R ,8€R), (1.1.2)

whered(.) andq(.) denote the cdf and pdf of the standard normal distribution. This paper
focuses on inference aboifrom the observed poiX withoutprior information oré.

From a problem-solving perspective any logically sound approach to inference about
0 ought to proceed with a good understanding of assumptions about the randomness in
the postulated sampling model for the observed data pairgtatistical inference is then
reduced to propagating the uncertainties specified in the sampling model to inference about
6. We call this approach the fundamental principle of inferential problem solving.

That said, the authors see Fisher’s fiducial argument heading in such a sensible direc-
tion, although it remains to be fully and correctly developed (sag,Zabell, 1992; Zhang
& Liu, 2009). A fiducial solution to inference abo@in absence of prior knowledge about
0 is discussed in Section 3, where the fiducial distributioreig,(Fisher, 1959; Dawid &
Stone, 1982):

BX ~N(X,1)  (BeR). (1.1.3)

Applying Bayes’ theorem (see Section 2) with the non-informative pr{@) O 1 for
8, without questioning the meaning of Bayes’ theorem, gives the poste(iXrl) for
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inference aboud, i.e.,
1(0]|X) = (6 — X) (0eR), (1.1.4)

which is the same as the fiducial distribution (1.1.3). This has been known as objective
Bayesian inference. One could argue that the posterior distribution (1.1.4) makes sense
because, computationally, it reproduces the fiducial posterior (1.1.3). In this regard, the re-
sults of Lindley (1958) can be used to identify a class of single parameter models for which
there exist Bayesian distributions that exactly reproduce the fiducial distributions. As a
result, objective Bayes and the fiducial approach share favorable properties, such as data
driven analysis, as well as the undesirable property that posteriors should be interpreted
differently from valid (non-“objective”) Bayesian posteriors; see Section 2. Most impor-
tantly, care must be taken when combining certain types of information into fiducial and
objective Bayesian posteriors. Itis shown in Section 2 that, compared to valid Bayesian in-
ference in the context of situation-specific inference, objective Bayesian posteriors cannot
be interpreted as valid posteriors when used for combining constraint-type information.

The remaining sections of this paper are organized as follows: Section 2 reviews two
fundamental properties of valid Bayesian posteriors for statistical inference and shows that
the objective Bayesian posterior (1.1.4) is problematic when combined with additional in-
formation that is given in the form ad < 6 < b. Section 3 presents a new solution to
inference aboud from X with some types of constraints, including &< 6 < b and (ii)

0 € {a,b}, wherea < b. The approach we take follows the Maximal Belief method of
Zhang and Liu (2009). Section 4 concludes with a few remarks, which draw attention to
fundamental issues in statistical inference.

2 BAYESIAN INFERENCE

2.1 Valid Bayesian inference

The authors defineaalid prior distributionty(6) (8 € ©) as one that represents the cor-
rect sampling distribution foB, and thereby, the hyper-populati¢f (-|8)} in repeated
experiments. A valid prior distribution can also be personal, but in this case the authors
expect the numerical values of personal probability to be consistent with frequency proba-
bility so that the standard probability theory can be applied. With a valid prior distribution
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T(8), where [y 11(0)d6 = 1, the conditional distribution d given the observed dak,

(0)f(X|0)

JoT(®)f(X|6)de’ (2.2.1)

(0|X) =

is given by Bayes’ theorem. Whet{) is a valid prior distributiont(8|X) is called a valid
posterior distribution.

To construct an example of a valid posterior that has the same form as the objective
Bayesian posterior (1.1.4), we take

8~N(0,%) and Y|B~N(b,c), (2.2.2)

whereY = cX andc > 1. It follows from (2.2.1) that the valid posterior@&X ~ N(X,1),
ie,

mMOX)=@O-X) (8€cR), (2.2.3)

a familiar Gaussian distribution whose pdf and cdf are displayed in Fig. 1.
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Figure 1: The pdf (a) and cdf (b) of the poster®)K ~ N(X, 1) obtained from the model
(2.2.2)

For conceptual clarity, denote 8 the unobserved realization 6fin the specific ex-
periment whereX was collected. Suppose that the observed valu¢ isf0.5 and that we
are interested in the “sharp” or point assertion #tat 0, denoted byA = {6* : 6* = 0}.
When the posterior (2.2.3) is taken as a Dempster-Shafer (DS; Dempster, 2008) model
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(DSM) for inference abold*, the DS output for this assertion(ip,q,r) = (0,1,0), with p

as the (personal) probability for the truth Af q as the probability against the truth Af

andr =1- (p+q) as the remaining probability, known as the probability of “don’t know.”
By using (2.2.3) as a DSM, our probability agaif®st= 0 (or any other point assertion,

for that matter) is always one. Obviously, statisticians would not feel comfortable using
such a(p,q,r) output for inferring the truth or falsity of. Typically, applied statisticians
interpret the posterior as thaj {t is unlikely that6* lies outside ofX —2,X + 2] and (i)

it is very likely that®* is in the intervalX — 2, X+ 2], but it is difficult to claim with confi-
dence tha®* is very close to a particular point located in this interval. This interpretation
is necessarily personal. Moreover, this line of thought implies an informal inferential prob-
ability model representing degrees of belief about the realizati®h.dflartin, Zhang, and

Liu (2009) extended this idea and proposed to specify a DSM that precisely represents the
belief so that meaningful D&, q,r) output for assertions can be calculated formally.

2.2 Situation-specific inference

We call the above inference abdiit from the observed datd situation-specific The

term “situation-specific” has usually been taken to mean “conditioned on data”. This term
or, for clarity, “strong situation-specific” is used here to emphasize that inference is both
“conditioned on data” and “realization-specific” in the Bayesian context; see Martin et al.
(2009) for more discussion. The concept of “situation-specific” makes it possible to bring
both Bayesian and Frequentist schools of thought into a unified framework of statistical
inference. That is, solving inferential problems on a specific value no matter whether it is
an unknown fixed quantity or an unknown realization from a known distribution.

In the present context of making inference ab®frbom a single observatiori = cX ~
N(8,c) with the prior distributior® ~ N (0, c%;), it is obvious that we would not use the
posterior distributio®|X ~ N(X,1) as a DSM to represent our personal uncertainty about
the particular realizatio®*. As argued earlier, statisticians and scientists make use of
intervals based 0f|X ~ N(X,1) to represent their uncertainty abdit Intervals of this
kind are personal and take different forms in practice for different assertions of interest.
Following Zhang and Liu (2009), we use random intervals and their corresponding DSMs
for a systematic treatment. In particular, we consider three types of random intervals:

1. Left-sided

L(6) ={6": 6" <0} = (—w,0], (2.2.4)
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2. Right-sided
R(6) = {6": 6" >0} =[0,), (2.2.5)
and
3. Centered
CO)={6": 18" —X|<|0—X]|} =X£|6-X], (2.2.6)

wheref|X ~ N(X,1).

The attractive feature of using DSMs to represent our uncertainty &jayiven the
observed datX is that we can compute the induced beliefs on the truth or falsity of any
assertion. Consider, for example, the DSM specified by the random intg8jahnd the
assertionA = {6* : 6 = 0}. The probability that the random intervia{6), believed to
contain®*, does not contain 0 is the implied belief against the trutA obsing this DSM,
we have the followingp,q,r) for A:

p(A) =0, q(A) =Pr(8 < 0|X) = ®(—X), andr(A) = ®(X).

Similarly, if we choose the DSM specified by the random inte@@), then the(p,q,r)
for A becomes

p(A) =0, q(A) = Pr(|X| > |8 - X||X) = 2(|X|) - 1, and
r(A) =2—-20(]X]).
2.3 Two characteristics of valid posteriors

Here we consider properties of valid Bayesian posteriors for inference. In particular, the
long-run frequency distributions of

QL(X,0%) = Pr(6* ¢ L(8)|X) (2.2.7)
and
Qr(X,0") =Pr(0* ¢ R(8)|X), (2.2.8)

corresponding to familiar tail probabilities, are of interest. We refer to the resulting infer-
ential property, formally summarized into the following theorem, assthetion-specific

property.
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Theorem 1. (Situation-specific) Suppose tiat- N (0, %) and

’c—-1
(cX)|6 ~ N(B,c) with c> 1. Then Q(X,0*) ~ Unif(0,1) and Q(X,6*) ~ Unif (0,1).
Proof. Note that according to the definition (2.2.@Q\, (X, 6) is the cdf of the conditional
distribution of0|X evaluated a6*. Since this cdf is continuous afd is a random sam-
ple from this distribution in repeated experiments, it holds QafX,0*) is distributed
uniformly on the interval from zero to one. Similarly, it can be shown atX,6*) ~
Unif (0, 1). |

Theorem 1 implies that the D, q,r) output based on either random &) or R(8),
has desirable frequency properties. Another important property, concerning inference with
constraints on parameters, is on combining the information given by the posiptier
N(X,1) and an additional piece of information of the form

6 € [a,b] (—o<a<b< o), (2.2.9)

wherea andb are known constants. Probability theory defines the rule of combination that
results in the combined posterior,

meX,a<8<b)0eO-X) (6€]ah). (2.2.10)

For this combined posterior, the corresponding situation-specific property (Theorem 1)
holds. Formally, we have the following theorem, a property of what we call Bayes’ rule
of combination, which can be viewed as Dempster’s rule of combination (Dempster, 2008)
when the Bayesian posterior is taken as a DSM for inference &out

Theorem 2. (Combining information) Assume that the assumptions of Theorem 1 hold
and, in addition, thab* satisfies the constraint (2.2.9). Then(®,8*) ~ Unif(0,1) and
Qr(X,0%) ~ Unif(0,1), where Q (X,0%) and Qx(X, 6*) are given in (2.2.7) and (2.2.8) but
their corresponding probabilities determined by (2.2.10).

Proof. Note that the constrained posterior (2.2.10) is continuous. The proof is similar to
that of Theorem 1. |
2.4 Adifficulty in interpreting objective Bayesian posteriors

We now turn to objective Bayesian inference ab@&ufrom a single observatioX of
N(8,1) with no prior knowledge abo. The objective Bayesian posteri@X ~ N(X,1)
is obtained from Bayes’ theorem by taking the so-called non-informative pt®r 1. It
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has been well demonstrated that this posterior has nice frequency properties when used for
situation-specific inference. This is due to the following results that are similar to those of
Theorem 1 with a slightly different proof.

Theorem 3. (Situation-specific) Suppose tha%- N(8, 1) with no prior knowledge about
6. Then Q(X,0*) ~ Unif(0,1) and Qz(X,6*) ~ Unif(0,1), where Q (X,6*) and Qr(X,6%)
are defined in(2.2.7) and (2.2.8) but wiiiX ~ N(X, 1), obtained by applying Bayes’ the-
orem with the non-informative priar(6) O 1.

Proof. It follows from (2.2.7) that for the given paijiX,08*) in an experiment
QL(X,0) = Propj (8 < 0°|X) = @(6" — X),

where the “obj” subscript in Bg; indicates that the corresponding probability calculation
is with respect to the objective Bayesian posteidt ~ N(X,1). Thus, in repeated experi-
ments that requir¥ to be the random variablé(6* — X), and therebyQ, (X, 8*), follows

the Unif(0, 1) for any8*. Similarly, it can be shown th&@r(X,6*) ~ Unif (0,1). 1

Theorem 3 makes objective Bayes attractive for inference without prior information
about6. However, the objective Bayesian posterior does not have the desirable property
corresponding to Theorem 2 when constraints are introduced. Suppose that in addition to
X|6 ~N(8,1), itis known that (2.2.9) holds for some fixed pairao&ndb. In this case, the
combined objective Bayesian posterior has the cdf,

®(6— X) — D(a—X)
()

FOX,a<8<b) = g =5

(2.2.11)

For the results corresponding to Theorem 2 to h&lB*|X,a < 6 < b) must follow the

Unif (0,1) distribution for fixeda andb in repeated experiments witk — 8* ~ N(0,1)

and no prior knowledge abo@t. This is not true. For example, in the casefdf=a in
repeated experimenit8]X,a < 6 < b) = 0 with probability one and in the case@f= Db

in repeated experimenks(6|X,a < 8 < b) = 1 with probability one. The lack of results
corresponding to Theorem 2 leads to the conclusionithgeneral, objective Bayesian
posteriors cannot be interpreted or used for statistical inference in the same way as those
obtained with valid priorsMore discussion on objective Bayes is given in Section 4.
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3 SITUATION-SPECIFIC FIDUCIAL INFERENCE
USING WEAK BELIEFS

In the case with no prior information abo@itall the known information is given by the
postulated sampling modx||6 ~ N(8,1) for the single observatiod. The uncertainty is
entirely due to the randomness of

Z=X-6 (Z~N(0,1),0€R). (3.3.1)

The unknown value dd in a particular experiment, denoted Y is uniquely determined
by the realization oZ* in that experiment, wher¥ = 6* + Z*. However, having only ob-
servedX we can only say that the poi(f*,Z*) falls somewhere on the liné=0+Z. The
problem of inference is then to represent our uncertainty abofrom the observed data
X, equation (3.3.1), and the fact ttiat- N(0O, 1). This approach leads to direct probabilistic
inference whereas objective Bayesian inference can be viewed as indirect inference.

In the context of the current paper’s focus on the long-run frequency interpretation of
probability, Fisher’s fiducial distributiore(g, Fisher, 1959), to be used for inference about
0 from X has the cdf,

F(B]X) = DB —X). (3.3.2)

This distribution can be viewed as obtained from (3.3.1) by believing that under complete
ignorance abou® or, more exactlyp*, the knowledge of (3.3.1) provides no evidence
to alter the long-run frequency distribution 8f That is,Z|X ~ N(0,1). In this case,
equation (3.3.1) serves as a transformation to propagate our uncertaintyZatio®" in

the particular experiment with observed dxtaThen, the fiducial distribution (3.3.2) can

be used as a DSM for making inference ab@ufZhang & Liu, 2009).

Note that the fiducial cdfF (8]X) given in (3.3.2) is identical to the objective Bayesian
posterior, but with a well defined interpretation of the underlying probability. Hence, The-
orem 3 for objective Bayes applies to the fiducial distribution as well. It is the authors’
opinion that objective Bayes and fiducial inference both aim to accomplish the same task,
with fiducial inference being the more direct method, but whose ultimate acceptable ver-
sion has yet to be developed. Consequently, fiducial distributions also share with objective
Bayesian posteriors the difficulty in inference with constraints on unknown parameters.

The above discussion motivates a way of resolving the problem regarding objective
Bayes in Section 2.4 by taking a closer look at inference with constraints in the light of the
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Figure 2: lllustration of constraints dhfrom observations oX in repeated experiments.

fiducial setting. Recall that the constratht [a,b] is considered in the simple Gaussian
exampleP|X ~ N(8,1). From (3.3.1), this constraint implies that

X-b<Z'<X—a (3.3.3)

It is seen from (3.3.3) that the usual Bayes’ rule of combination is valid for a long-run
frequency interpretation for all repeated experiments witommon Xbecause the real-
izations ofZ are known to be in the fixed interval (3.3.3). This assumption is obviously not
practical because the observed valueX ofiry in repeated experiments. In this more sen-
sible setting, the constraints faivary from experiment to experiment. That is, no common
constraint is available fof across all realizations of. This phenomenon is illustrated by
Fig. 2.

Recall that our goal of inference is to specify our uncertainty aBoat, more formally,



D. Ermini Leaf, J. Hui, C. Liu 11

to specify a DSM for producingp, q,r) for given assertions of interest. To accomplish this,
we consider a predictive random set (PR]) for Z*. To be more specific, take

SZ)={z": |Z'| <|Z]}  (ZIX~N(0,1)), (3.3.4)
which defines a DSM (see Zhang and Liu, 2009). It is easy to prove that
Pr(Zz* ¢ S(Z)|Z*) ~ Unif (0,1) (3.3.5)

asZ* ~ N(0,1) in repeated experiments. That is, according to Zhang and Liu (28(B),

is credible for inference aboit. Note that this PRS always contains the p@ht 0 and
treatsZ* = —co andZ* = o as extremal points, meaning that it will be surprising to have
values ofZ* far away from zero.

It was shown in Section 2.4 that combining the constraint information (3.3.3) directly
with Z|X ~ N(0,1) is problematic when the long-run frequency interpretation of proba-
bility is of interest. This raises the following question: what property does Dempster’s
rule of combination have when applied to the DSM (3.3.4) and (3.3.3)? The DSM (3.3.4)
represents a so-called credible belief function for inference abautn a certain sense,
(3.3.3) helps to refine the DSM (3.3.4) for inference ak®utHowever, we may not expect
to have a sensible long-run frequency interpretation of the resulting DSM because conflict
cases,

SZ)N{Z: X-b<Z'<X-a} =0, (3.3.6)

exist and can alter the long-run frequency in an uncontrollable way. One way to avoid
conflict cases is to weaken the DSM (3.3.4) by minimally enlarging the randoB{3gt
so that the resulting intersection wi{z* : X —b < Z* < X — a} will not be empty. More
specifically, we introduce a Weak Belief rule of combination for the present problem (a
more general definition will be considered elsewhere),

SZ)mCx ={ceCx: Sgnsl(g) lc—9 = trgérgsgnsl(r;) t—9}, (3.3.7)
whereCy is the set representing the constraintZ6iior an observed X. Whe®&Z) NCx #
0, thenS(Z) mCx is simply the intersection & Z) with Cx. In cases wher§Z)NCx = 0,
thenS(Z) mCx is the set of points i€x that are closest to the points$(Z). In the present
exampleCx = [X —b,X — a] and we replace

S(Z) NCx
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with

S(Z)ﬂCx, if S(Z)ﬂCx #0;
SZ)MCx =< {X—b}, if |Z] < X—b;
{X—a}, if —|Z| >X—a

to represent our belief abodt. An argument for this rule of combination is that the DSM
(3.3.4) represents our personal belief and thus can be subject to adjustments or refinements.
The combined DSM obtained by this new rule has the following appealing property.

Theorem 4. Suppose that %= 6* + Z* with Z* ~ N(0,1) and given an observation X,
Z* € Cx. Then the DSM, @) mCx, defined in (3.3.7), is credible for inference abotit Z

Proof. It is said that a random sé&tis credible for inference about a realizatiah of the
random variable iff the random variable,

Pr(S #Z*1Z*)  (SeScC2%),

as a function oZ* is stochastically not greater than a uniform random variablgdtj.
Letq(Z*) = Pr(S(Z) Z Z*|Z*). It is easy to show the®(Z) is credible for inference about
Z*. Thatis,

q(z*) 2 Unif (0,1),

whereZ denotes stochastic equality. Le(Z*) = Pr(S(Z) mCx # Z*|Z*). Note that for
anyZ* e Cy,

q(Z*) =Pr(S(Z) # Z2*,9(Z)NCx # 0|Z*) + Pr(S(Z2) N Cx = 0|Z*)
and

Ac(Z°) =Pr(S(2) #Z°,9(Z)NCx # 0|1Z7)
+Pr(S(Z)mCx # Z*,S(Z)NCx = 0|Z°).

By monotonicity of the probability measure on Z,
Pr(S(Z)mCx # 2*,5(Z)NCx = 0|Z") < Pr(S(Z)nCx =0|Z%).
Therefore,

Ue(Z*) < q(Z%)
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for all Z* € Cx over all realizations oK. It follows that

S
G(Z") < Unif (0,1).

This completes the proof of the theorem.

For an illustration of Theorem 4, tale= 0 andb = o, i.e, 6* > 0 in repeated ex-
periments. Fig. 3 shows the cdfs of the two end points of the combined random set for
inference aboud* from the observed dafd with 6* constrained to be non-negative. The
results show that these cdfs can be mixed continuous and discrete distributions with non-

zero point masses at the end points.
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Figure 3: lllustration of conditional cdf for random set with combined information in The-

orem 4.

To end this section, we apply the Weak Belief rule of combination (3.3.7) to inference
about based on a single observatigrfrom N(8, 1) with the constrain € {a, b}, i.e., the
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parameter space consists of two poia@ndb, wherea < b. Here,Cx = {X —b,X —a}
and the resulting DSM is

{X—b}, if Z] < X — 58,
SZ)mCx =1 {X-a}, f—|Z|>X—%b;
{X—bX—a}, if X=2Lor{X-bX-a}cCSz).
The results are given in Table 1. It is straightforward to show that the probabilities are
credible in the sense of Zhang and Liu (2009). For example, under the tr@th=08, the
probabilityagainstthe assertio®* = ais

Pr(X> a;b 2¢<x—¥> 1> 1—a>

- (x a>—X a>o (1—%)+b—;a>
- Pr(X 1—%)+b—;a>
< Pr(z (1——)):%«17 whereZ ~ N(0,1).

Table 1: Probability foB* = aor8* = b (a < b) given a single observatiofifromN(6, 1),
whereb € {a,b}.

Assertion Probability for the assertion, given X
b b
X <o X >0
0" =a 20 (352 —x) -1 0
0" =b 0 20 (X~ #2) ~1

4 CONCLUDING REMARKS

In this paper, we took a closer look at inference abbut N(6,1) from a single data
point X. If the frequency interpretation of probability is taken, several issues arise when
incorporating constraint-type information into existing inference methods.
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When a valid prior exists, random intervals can be used to form a DSM that allows
for credible, situation-specific inference with constraints. However, for many inference
problems, it may be difficult to find a sensible prior. Neyman’s concept of a confidence
interval is appealing to most statisticians and it is helpful to study large sample theory based
on Fisher’s concepts of consistency, efficiency, and sufficiency (Fisher, 1922). However, an
ultimate satisfactory solution should allow us to make direct probabilistic inference with
even the smallest sample size. Objective Bayes is a step in this direction, but we have
shown that incorporating constraint-type information can lead to difficulties in interpreting
objective posterior probabilities.

We believe the ultimate solution may be obtained by following what we call the funda-
mental principle of inferential problem solving in Section 1. In general, Fisher’s fiducial
argument seems to agree with this principle and applying DS theory to predictive random
sets is useful for representing our uncertainty. However, because DS is subjective, one must
be careful in applying DS theory when a frequency interpretation is required.

We proposed a new solution to constrained statistical inference that is consistent with
the frequency interpretation. Although we chose to focus on a relatively simple example,
at least, technically, our approach is very promising for the general problem of constrained
inference, which appears to be difficult with existing methods. The same approach can be
extended to inference abdditn theBinomial(6) model, which Karl Pearson (1920) called
the fundamental problem of practical statistics. We refer to Dempster (1966), Brown, Cai,
and DasGupta (2001), and Zhang and Liu (2009) for different approaches to inference
about the binomial model. The presence of constrain@witl certainly make the problem
more interesting and challenging.

A related problem concerns prediction of the next observation, denoté&d fpm
N(8,1) based on the observatioh where is unknown. In general, applying the Maximal
Belief approach amounts to considering two independent realizations,

Zi=X-0" and Z;=Y-6",

from the the standard normal distributidd(0, 1), with complete ignorance abo6t. A
simple method is to considér— X ~ N(0,2), which effectively integrates o*. That
is, Y|X ~ N(X,2). A DSM can be specified for inference abotigiven X in the same
way as inference abo@ based orB|X ~ N(X,1). However, this approach may not be
efficient when has a constraint. For examplefiE {a,b} with b >> a, then observing

is approximately equivalent to observigAs a result, inference abovtcan be based on
Y|X ~ N(a,1) or N(b,1), depending on whether the observed valuX @ close toa or b.
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