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This paper is a continuation of the authors’ theoretical investiga-
tion of inferential model (IMs); see Martin, Hwang and Liu (2010).
The fundamental idea is that prior-free posterior probability-like in-
ference with desirable long-run frequency properties can be achieved
through a system based on predicting unobserved auxiliary variables.
In Part I, an intermediate conditioning step was proposed to reduce
the dimension of the auxiliary variable to be predicted, making the
construction of efficient IMs more manageable. Here we consider the
problem of inference in the presence of nuisance parameters, and we
show that such problems admit a further auxiliary variable reduction
via marginalization. Unlike classical procedures that use optimization
or integration, the proposed framework eliminates nuisance param-
eters via a set union operation. Sufficient conditions are given for
when this marginalization operation can be performed without loss
of information, and in such cases we prove that an appropriately
constructed IM is calibrated, in a frequentist sense, for marginal in-
ference. In problems where these sufficient conditions are not met,
we propose a marginalization technique based on parameter expan-
sion that leads to conservative marginal inference. The marginal IM
approach is illustrated on a number of examples, including Stein’s
problem and the Behrens-Fisher problem.

1. Introduction. In statistical inference problems, it is often the case
that only some components (or, more generally, some lower-dimensional
functions) of the parameter vector 6 are of interest. Linear regression, with
0 = (3,0?), is one such example where primary interest is in the vector 3 of
regression coefficients. Semiparametric problems (Bickel et al. 1998), such
as the Cox proportional hazards model, form another important class of ex-
amples. More formally, suppose 6 can be decomposed as 6 = (1, &), where
1 is the parameter of interest and £ is the nuisance parameter. The goal is
to make inference on % in the presence of unknown &.

In these nuisance parameter problems, a modification of the classical like-
lihood framework is called for. Frequentists often opt for profile likelihood
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2 MARTIN, HWANG, AND LIU

methods (e.g., Cox 2006, Ch. 7), where ¢ is replaced by its conditional max-
imum likelihood (ML) estimate £(1)). The effect is that the likelihood func-
tion involves only v, the parameter of interest, so point estimates and hy-
pothesis tests can be constructed as usual. The downside, however, is that
no uncertainty in £ is accounted for when it is fixed at its ML estimate. A
Bayesian-like alternative is the marginal likelihood approach, which assumes
an a priori probability distribution for £. The marginal likelihood for v is
obtained by integrating out ¢ with respect to this distribution. Marginal
likelihood inference effectively accounts for uncertainty in &, but difficulties
arise from the requirement of a prior distribution for £. Indeed, a subjective
prior may be difficult to elicit, suitable reference priors may not exist, and
even if an acceptable prior is available, computation of the marginal likeli-
hood can be challenging if £ is high-dimensional and its prior distribution is
not of a convenient form.

This is a difficult problem and neither the profile nor the marginal like-
lihood approach on its own, without any extra qualifications, is fully satis-
factory. In some sense, a compromise between the frequentist and Bayesian
approaches is needed. Progress along these general lines has been made re-
cently through the concept of inferential models (IMs), starting with Zhang
and Liu (2010) and later built upon by Martin, Zhang and Liu (2010).
The fundamental idea in these two papers is that inference on an unknown
parameter 0 is equivalent to predicting an unobserved auxiliary variable
drawn at random from a fully known a priori distribution. The practical
consequences of this idea are two-fold:

e No prior is needed, and yet the inferential output (a belief function)
is probabilistic in nature and conditioned on the observed data.

e Long-run frequency properties of IM-based decision procedures are
shown to be completely determined by coverage probabilities of user-
defined random sets for predicting this auxiliary variable.

That is, the IM framework automatically produces inferential output which
is meaningful for the problem at hand and, at the same time, calibrated in
a long-run frequency sense. Unfortunately, it can be difficult to find suitable
random sets in moderate- to high-dimensional problems with the right cov-
erage probabilities. Therefore, a natural idea is to reduce the dimension of
the auxiliary variable as much as possible before attempting to predict it.
In this series of papers we attempt to build, from the ground up, a general
IM framework based on this idea of dimension reduction.

In Part I (Martin, Hwang and Liu 2010) we observe that, in many prob-
lems, some functions of the unobserved auxiliary variable are actually ob-
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MARGINAL IMS 3

served, so it may not be necessary to predict the full auxiliary variable itself.
For such problems, they propose a method of dimension reduction based on
conditioning, and give general sufficient conditions under which this dimen-
sion reduction can be carried out without loss of information. They also
prove a “conditional version” of the fundamental Theorem 3.1 of Zhang and
Liu (2010), and draw parallels between this conditional IM framework and
Fisher’s notion of sufficiency and ancillarity (Fisher 1925, 1934, 1935) in
group transformation models.

This conditioning step, reviewed in Section 3, will often reduce the di-
mension of the auxiliary variable to that of the parameter. But in marginal
inference problems, where only parts of the full parameter are of interest,
we can expect to reduce the dimension even further. Here, in Part II, we de-
velop the IM framework for marginal inference problems based on a second
dimension reduction technique. It turns out that if the model is “regular”
(in the sense of Definition 1) then an easily interpretable (strong) marginal
inference exists. In Section 4.1 we prove that the lower-dimensional rela-
tionship between data, parameter, and auxiliary variable obtained from the
marginalization step is equivalent to the basic model for inference on . This
leads immediately to a system of marginal IMs, with interesting connections
to marginal likelihood methods in classical statistics. Some simple normal
distribution examples illustrate this approach.

When the sampling model is not regular, there are a number of ways to
reason towards a (weak) marginal inference. In Section 4.2 we consider a
general approach based on a concept of parameter expansion and illustrate
the corresponding weak marginal inference in Stein’s many-normal-means
problem. The Behrens-Fisher problem is taken up in Section 5, where we
show that a particularly convenient choice of IM recreates one of the most
popular frequentist solutions due to Hsu (1938) and Scheffé (1970). Section 6
contains a brief discussion, and proofs of theoretical results are collected in
Appendix A.

2. Sampling model and a-events. The sampling model Py, indexed
by a parameter § € ©, is a probability measure on the sample space X that
encodes the joint distribution of the data vector X = (X71,..., X,,)". The case
where the individual X;’s take values in a more general space can be handled
similarly. As in Martin, Zhang and Liu (2010) and Martin, Hwang and Liu
(2010), we assume that Py can be constructed as follows. Take a more-or-
less arbitrary auxiliary space U, equipped with a fully known probability
measure v, and consider a pair of mappings

(2.1) p:Xx0O©—-K and a:Ux0 —K.
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4 MARTIN, HWANG, AND LIU

The space K will be determined by the context—all that matters in theory
is that both p and a map to the same space, so that (2.2) below makes sense.
Occasionally we may write pg and ag for these maps when @ is fixed. Now
fix 6 € © and choose X to satisfy

(2.2) po(X) =agp(U), where U ~v.

In other words, the sampling model for X given 6 is determined by the a-
measure v and the a-equation (2.2). The a-equation (2.2) is more general
than that in Zhang and Liu (2010) and Martin, Zhang and Liu (2010). They
consider p(x,0) = z in (2.2), which is most easily seen as a data-generation
mechanism; this is also the structural-equation version of Fraser (1968). The
case a(u,f) = u reduces to the pivotal-equation version as in Dawid and
Stone (1982). These two special cases cover many well-known models, and
the general case was shown by Segal (1938) to cover all continuous sampling
models; see also Barnard (1995). We will see the benefit of the more general
a-equation when we consider marginal inference in Section 4.

For an alternative construction of the sampling model Py given the a-
equation and a-measure, take any measurable B C X and define

(2.3) Up(0) = {u : pg(z) = ap(u) for some z € B}, 6 ¢€ 6.
Then the sampling model satisfies
(2.4) Po(B) = v{Ug(0)}.

The set Ug(#) will be called an a-event and will help justify our reason-
ing towards inference in the nuisance parameter problem. There is also an
interesting connection between a-events and likelihood.

REMARK 1. Fisher (1922) recognized the importance of the likelihood
function for general statistical inference problems. But he emphasized that
the likelihood function is not a probability distribution for 6. In fact, if
all that was observed was “X € B,” then the left-hand side of (2.4), as
a function of 0, is the likelihood function. Its interpretation is postdictive
in the sense that it can be used to compare different explanations of the
observed outcome “X € B.” The difficulty is that while Py(B) is a probabil-
ity, changing 6 changes the underlying probability space, so the usual laws
of probability do not hold. However, the probability space is fixed on the
right-hand side of (2.4) as 6 varies, so it may be possible to give likelihood a
predictive interpretation along these lines. For us, this connection between
likelihood and the a-events (2.3) will pay off when we consider the marginal
inference problem in Section 4.
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MARGINAL IMS 5

3. Quick review of a-inference. Belief functions and inferential mod-
els (IMs) for statistical inference on a parameter 6 are presented in detail in
Zhang and Liu (2010), Martin, Zhang and Liu (2010), and Martin, Hwang
and Liu (2010). Here we give a quick review for completeness.

3.1. Belief functions. Belief functions (Dempster 1967; Shafer 1976) are
similar to, but more general than, probability measures. The Dempster-
Shafer (DS) theory for statistical inference constructs a belief function on ©
as follows. For observed data X = x, define the focal elements

(3.1) My(u) =16 :p(z,0) =a(u,0)}, wuel,

representing all those 6 which are consistent with the observed data x and
the particular a-variable u. One can view these focal elements as “inverted”
a-events. Let A be a subset of ©—called an assertion about the parameter
f. Then the basic belief function, evaluated at A, is defined as

- M. C M,
(3.2) Bel,(A) = viu: My(u) € A, My(u) 7 (b},

v{u: My(u) # 0}

and can be roughly interpreted as the probability that the random set
M, (U), for fixed x and U ~ v, falls completely inside .A. A related quantity
is the plausibility function, defined as

(3.3) Pl,(A) = 1 — Bel, (A°),

and the subadditivity of Bel, implies that Bel,(A) < P1,(.A) for all .A. Mar-
tin, Hwang and Liu (2010) show how tests of hypotheses, plausibility regions,
etc can be built from the belief/plausibility functions.

3.2. Weak beliefs and IMs. The basic belief function (3.2) is not cali-
brated in a frequentist sense for all assertions A; cf. Example 3.1 of Zhang
and Liu (2010). A method of weak beliefs has been proposed by Zhang and
Liu (2010) that shrinks the basic belief function just enough so that de-
sirable long-run frequency properties are realized. Martin, Zhang and Liu
(2010) call this shrunken belief function an inferential model (IM). Here is
the basic idea. From (2.2), if x is the observed data and € is the true value
of the parameter, then surely

p(:E, 0) = a(U*7 9)7

where U™ is the unobserved auxiliary variable U ~ v. It is intuitively clear
that if we know x and can accurately predict/guess U*, then inference on 6

file: MHL-marg.tex date: August 17, 2010



6 MARTIN, HWANG, AND LIU

is possible. Fiducial and DS approach the problem in this way, but try to
predict U* with a random draw U ~ v. Zhang and Liu (2010) and Martin,
Zhang and Liu (2010) argue that this is overly optimistic. The method of
weak beliefs, on the other hand, tries to predict U* with a random set S(U)
assumed to contain the random draw U ~ v. More formally, let S : U — 2V
be a set-valued mapping with the property that u € S(u) for all u. The belief
that U* belongs to S(U), clearly weaker than the “conventional” belief that
U* = U, produces a focal element larger than that in (3.1) and, hence, a
smaller belief function. Define

(3'4) Mx(u78) = U Mx(u)

u'eS(u)

for M, (u) defined in (3.2). Clearly, M, (u;S) can be no smaller than M, (u).
Likewise, the corresponding belief function—the IM—defined as

v{iu: My(u;S) C A, My(u;S) # 0}

(3.5) Bel, (A; S) = v{u: My(u; S) # 0}

can be no more than Bel,(A). In most cases, the denominator in (3.5) is
equal to 1, but see Example 7 and Ermini Leaf and Liu (2010) for discus-
sion of the more general case. An appropriate choice of the mapping S will
produce credible IMs with desirable long-run frequency properties. See The-
orems 1 and 3 in Martin, Hwang and Liu (2010) for more details. Next is a
relatively simple example to illustrate the main ideas.

ExAMPLE 1 (Normal model). Suppose that X is a single observation
from a normal population, N(u, 0?), with known standard deviation o but
unknown mean p. One choice of the basic a-equation is

X =p+0d 1 (U), U~ Unif(0,1),

where @ is the cdf of N(0,1). If x is the observed value of X, then the basic
belief function Bel,, is the N(x, 0?) probability measure, exactly the fiducial
and (flat prior) Bayes answer. An IM may be constructed by predicting the
unobserved U* with a PRS of the form

S(u) = [u—vyu,u+~v(1 —u)], for somey € [0,1].

Martin, Zhang and Liu (2010) give a formula for Bel,({x < uo};S), and
Zhang and Liu (2010) prove that this belief function has the desirable long-
run frequency properties so long as v € [1/2,1].
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MARGINAL IMS 7

3.3. Conditional a-inference. An important feature of Example 1 is that
the dimension of the data equals that of the unknown parameter. But in
many cases, particularly in the iid setting, the dimension n of the data is
greater than that of the parameter. Accurately predicting a high-dimensional
a-variable is difficult, and if inference on a comparatively low-dimensional
parameter is the goal, then efficiency can be gained by first reducing the
dimension of the a-variable. This is the topic of Part I. The key point here
is that, in many cases, certain functions of U* are observed so it may not be
necessary to predict the entire a-variable.

For this dimension reduction, the primary assumption in Martin, Hwang
and Liu (2010) is that the basic a-equation can be written as

(3.6) pi(x,0) = a1(v1,0) and po(x) = az(ve),

where v; = @;(u), i = 1,2. The second constraint carries no information
about 6, but since the value of V5" = p(U*) is effectively observed, it carries
some information about U*, which we condition on. Moreover, v1 = ¢1(u)
will be lower-dimensional, often the same dimension as the parameter. Mar-
tin, Hwang and Liu (2010) prove that for general group transformation mod-
els, this reduction can be made without any loss of information. Indeed, when
the partition (3.6) exists, the basic a-equation/a-measure pair (2.2), and the

conditional a-equation
pl(Xu 0) - al(‘/lv 9)5

with the corresponding a-measure being the conditional distribution of V7,
given az(Va2) = pa(x), are equivalent for inference on 6.

ExAMPLE 2 (Normal model, cont.). Suppose Xi,..., X, are iid obser-
vations from a N(z, 02) population with unknown g but known o. Following
the ideas in Example 1, we can write the basic a-equation in vector form as

X = pl, +0oU, U~ Ny0,I),

where 1, is an n-vector of unity and [ is the n x n identity matrix. From this
a-equation it would appear that IM-based inference would require that we
predict the entire unobserved n-vector of a-variables U*. However, as men-
tioned above, certain functions of U* are observed, making it unnecessary
to predict the full vector. Partition the a-equation as

X;i—X
o

Theorem 2 of Martin, Hwang and Liu (2010) shows that the above system
of equations that are independent of p can be effectively “ignored.” In other

X =p+0oU, and =U;-U, i=1,...,n.
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8 MARTIN, HWANG, AND LIU

words, the original n-dimensional a-variable can be reduced to a scalar in
the conditional a-equation

X =p+on 26 YU), where U ~ Unif(0,1).
Clearly this problem is now identical to the one in Example 1.

REMARK 2. In what follows, we assume that this first conditioning step
has been performed. That is, unless otherwise stated, when we refer to the
basic a-equation and a-measure, we mean the one obtained after this initial
dimension reduction step has been taken.

4. Marginal a-inference. The marginal inference problem boils down
to one in which the assertions of interest contain statements about the pa-
rameter ¢ only. This problem can be handled completely within the general
framework described in Section 3. However, we can expect an overall gain
in efficiency if we incorporate the marginal nature of the problem into the
construction of the IM. Again, this efficiency gain is achieved by reducing
the dimension of the a-variable to be predicted. The following important
example motivates our investigation.

EXAMPLE 3 (Stein’s problem). Suppose that Xi,..., X, are indepen-
dent observations with X; ~ N(u;, 1), ¢ = 1,...,n. The means uq,..., t,
are unknown. In vector notation, the sampling model is

X ~ Nn(/'bal)a

where X and p are the n-vectors of observations and means, respectively,
and I is the n x n identity matrix. Re-parametrize p as (1, €), where ¢ = |||
is the length of p and & = p /1) is the unit vector in the direction of p. The
goal is to make inference on 1. For point estimation, note that the natural
estimate || X||? of 12 performs poorly on average. That is,

E(IX]1%) = 4* +n,

so || X||? can drastically overestimate 12 when n is large. The fact that es-
timates which are component-wise optimal can perform poorly in the com-
pound problem is commonly referred to as Stein’s paradox (Stein 1956).
Attempts to understand this phenomenon have led, at least in part, to the
development of empirical Bayes methods and shrinkage estimation (Efron
and Morris 1977; Robbins 1956, 1964).

The basic a-equation for this problem is

(4.1) X =9+ U, U~Ny0,I).

file: MHL-marg.tex date: August 17, 2010



MARGINAL IMS 9

The parameter £ is not of interest. In fact, there is no less information about
Y in (4.1) if we let £ range freely over S,,, the unit n-sphere. That is, write

(4.2) X =y&4+U, for some& €S,.

In light of (4.2) we can “integrate out” £, leaving the following relationship
between X, U and 1 only:

(4.3) IX - U|? =42

This reasoning will be made more formal in the following subsections. Fidu-
cial, DS, and (flat-prior) Bayes take (4.3) as the baseline for inference on
Y. But, from an a-inference perspective, (4.3) suggests that inference on a
scalar ¢ still requires prediction of a n-vector U. Clearly, efficiency can be
gained by reducing the dimension of the a-variable.

Here we present an apparently new approach in which a sort of marginal
likelihood is obtained directly from the joint likelihood without any prior
for £. The key ingredient is the connection between a-events and likelihood
mentioned in Remark 1—integration of the likelihood is replaced by taking
unions of a-events over £. For problems in which these unions are suitably
regular, a strong marginal a-event exists; otherwise, a weak marginal a-event
is available. We define what it means to be “regular,” and discuss each of
these two methods in turn.

4.1. Strong marginal a-inference. In this section we consider the most
natural form of marginal inference within our framework. The basic idea is
to set up a relationship similar to (2.2) between the data z, the a-variable u,
and the parameter of interest 1. This boils down to being able to partition
the basic a-equation into two, one involving ¢ and the other involving &.
Models in which this partitioning is possible are called regular. For the a-
equation p(z,0) = a(u, §) in Section 3, write

(4.4) p(x;9, &) = a(u; 9, )

to emphasize the fact that 6 is made up of two distinct components, 1) and
¢. Remember that the a-equation (4.4) is assumed to have already been
through the conditioning process of Section 3.3; see Remark 2.

DEFINITION 1. A sampling model with a-equation (4.4) is called regular
for inference on 9 if there exists mappings ¢, p, a, and ¢ such that

(4.5) p(z,v) = a(e(u),v) and c(u,z,&) =0,

file: MHL-marg.tex date: August 17, 2010



10 MARTIN, HWANG, AND LIU

or, equivalently, the a-event U, (v, &) in (2.3) can be written as
(4.6) Ua (9, &) ={u: plz,v) = ale(w),¥)} N{u: c(u,z,§) = 0}.

The examples will show that regularity is not an unnatural property. But
there are models which are not regular; see Example 6 and Section 5.

Suppose the model in question is regular. Then the condition ¢(u, z, &) = 0
carries no information about the parameter of interest ¢. So the actual value
of £ is not important, only that there is at least one & that satisfies this
constraint for the given x and w. That is, for inference on 1, a-equation
(4.5) ought to be equivalent, in some sense, to

(4.7) p(z, ) = a(e(u),v) and c(u,x,&) =0 for some €.

In terms of a-events, we can define

U, (¥) = | JUs(¥,€)
3
(4.8) = J{u:p(z,9) = alew), ¥)} N{u: c(u,z,£) = 0})
3
={u:p(x,v) = a(p(u),y)},

where the last equality requires some mild conditions on the c-constraint;
see Theorem 1. We call U, (%)) the marginal a-event.

The last line in (4.8) looks similar to the definition of the basic a-event
in (2.3) but with a different constraint. The new constraint, namely

(4.9) p(z,9) = a(w, ),

is what we call the marginal a-equation; the corresponding marginal a-
measure is 7 = vy~ !, the distribution of W = ¢(U) for U ~ v. Again
note that the dimension of w = ¢(u) will generally be smaller than that of
u, often the same as that of ¥). Consequently, credible/efficient prediction of
W* should be easier than that of U*.

DEFINITION 2. Consider two sets of a-equations and a-measures, say

pl(Xﬂwvé) :al(Ul;waé)v Ul ~ 1 and
p2(X;59,8) = az(Uz; 9, §), Uz ~ 1a.

These two are said to be equivalent for marginal inference on v if the corre-
sponding basic belief functions Bell and Bel? are identical for all assertions
of the form A = ¥y x =, for ¥y C V.
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MARGINAL IMS 11
Next is the main result of this section. For the proof, see Appendix A.1.

THEOREM 1. If the sampling model is regular, and if for any x and u,
there exists £ such that c(u,x,£) = 0, then the basic a-equation and the
marginal a-equation (4.9) are equivalent for marginal inference on .

REMARK 3. In Remark 1 we highlighted the connection between like-
lihood and probabilities of a-events. This same connection remains in the
present context, only here we obtain a form of marginal likelihood. Note that
this “marginal likelihood” is defined not by integrating the joint likelihood
over £ but, rather, by taking a union of the basic a-events over &.

Theorem 1 above is similar in spirit to Theorem 1 of Martin, Hwang and
Liu (2010) in that it re-expresses the basic a-equation in terms of a lower-
dimensional a-variable. However, the latter is a general result that does not
depend on the inference problem at hand, while the former makes use of
the fact that only a component of the full parameter is of interest. This
is a special case of a more general idea—assertion-specific IMs—that one’s
approach to inference can be tailored to fit the problem of interest.

For marginal inference on v, start with the marginal a-equation (4.9) and
construct basic marginal focal elements as described in Section 3.1; that is,

(4.10) My(w) ={¢:p(z,) =alw, )} C¥, weW,

where W is the image of U under ¢. The basic marginal belief function,
evaluated at A C U, is again just the probability, under W ~ D, that
M, (W) falls completely inside A, i.e.,

T ALE M, (w) C A, M, (w) # 0}
(4.11) Bel,(A) = M,(w) # 0} '

v{w: M,
This basic marginal belief function can be suitably weakened by incorporat-
ing a PRS § = S(W) exactly as in Section 3.2, thereby producing a marginal
IM on ¥, written as Bel,(+;S), for inference on 1.

An important question is if, for suitable PRS &, the marginal IM is cal-
ibrated in a frequentist sense. We summarize the affirmative answer in the
following theorem. The proof closely follows that of Theorem 3.1 in Zhang
and Liu (2010) but, for completeness, Appendix A.2 contains the relevant
definitions and a sketch of the main ideas.

THEOREM 2. Suppose, in addition to the conditions of Theorem 1, that
S = S(W) is a-credible for predicting the unobserved W* = o(U*), and that
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12 MARTIN, HWANG, AND LIU

M (W;8) # 0 with v-probability 1 for all x. Then for any assertion A C ¥,
the marginal belief function Belx (A;S), as a function of X, satisfies

Pw.o) {@X(A; §)=21- a} <a, V(1€ eA xE.

Next we give two relatively simple examples to illustrate the proposed
approach to marginal inference.

EXAMPLE 4 (Normal model, cont.). Suppose X1, ...,X,, are iid obser-
vations from a N(u,0?) distribution, where both u and ¢ are unknown.
Starting from where we left off in Example 2, we have the a-equation

X=p+Sn"Y2U,;/Uy and S =ols,
where the a-variables U; and Us are independent, with
Uy ~N(0,1) and (n—1)Us ~ ChiSq,,_;.

From this, constructing a marginal a-equation for p or o is fairly simple. For
example, if 1 is the parameter of interest, then (after a change of a-variable
and a-measure) the marginal a-equation is

(4.12) X =pu+Sn~V2E7YU), U~ Unif(0,1),

where F, is the distribution function of the t,_; distribution. Moving terms
around in (4.12) reveals the usual t-statistic used for classical inference on
1 when o is unknown. But rather than using the sampling distribution of
the t-statistic for inference on p, we proceed by building an IM based on
predicting the unobserved value U* of the uniform variate U in (4.12). Since
we have reduced the dimension of the a-variable to 1, constructing a credible
and efficient IM is straightforward.

ExAMPLE 5 (Normal model, cont.). Again, suppose X, ..., X, are iid
observations from a N(u, 02) distribution, where both ;1 and o2 are unknown.
The goal is to make inference on the standardized mean p = p/o. Consider
an a-event representation of the a-equation in Example 4; that is,

_ S U
Uy(p,0) = {(ul,ug) : w:u—l—mu—Q ands-auQ}.

Taking a union over all (i, o) such that u = po gives the marginal a-event

nl2z  pl/? U
U= U Umw,a):{(ul,uz): _ et }

S u9g
(w,0):u=po
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MARGINAL IMS 13

Extracting the marginal a-equation we get

711/22Xf B 711/2ﬁ)—F l/l
s U, ’

and we recognize that the random variable on the right-hand side has a
non-central t-distribution, namely tn_l(nl/ 2p). Making one more change of
a-variable and a-measure, we can rewrite this marginal a-equation as

n'?X/8 = Fn_?;(U), where U ~ Unif(0,1).

A credible and efficient IM for inference on p can then be constructed based
on a PRSs for an unobserved uniform a-variable U*.

EXAMPLE 6 (Stein’s problem, cont.). The basic a-equation X = ¢ £+ U
in (4.1) can be written in the form

X-U

IX-U|>=%* and 0=
X -U|

£.

This appears to be of an acceptable form, but it turns out that the nuisance
parameter £ is lurking within the former equation. By expanding the sum-
of-squares on the left-hand side and using (4.1), we find that

X'X =y 4+ 206U + U'U,

which clearly involves &. Therefore, this model is not regular, so there is no
strong marginal a-inference in this case. We will revisit this example once
more in Section 4.2.

4.2. Weak marginal a-inference. Strong marginal inference, in the sense
of Section 4.1, may not be available for a given sampling model. That is,
even though we can always write a basic marginal a-event

Uz () = {u: p(x;9,€) = a(u; 9, £) for some £},

this may not reduce to the convenient form (4.8). But recall that the primary
goal of marginalization is to reduce the dimension of the a-variable to be
predicted, which can be accomplished under less restrictive conditions than
in Section 4.1. The key concept here is that of weakening the a-event; that is,
we can “approximate” the marginal a-event U, () by another event U, (1)
that has the convenient form (4.8). In other words, we strive for a nice
trade-off between weakening and dimension reduction for efficient marginal
inference on .
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14 MARTIN, HWANG, AND LIU

DEFINITION 3. An a-event U, (¢) is said to be weaker than the marginal
a~event Uy (1) if Uy(v) D Uy (v).

According to Definition 3, any superset of U, () is a weak a-event. The
intuition is that being less precise about the a-variable U may allow more
flexibility in dealing with the nuisance parameter £. Our approach to weak-
ening is to systematically relax/ignore some of the constraints defining the
basic marginal a-event U, (v) via a method of parameter expansion. Propo-
sition 1 makes this precise.

PROPOSITION 1. Suppose that 0 — (¢, &) is one-to-one and that there
exists a mapping w = w(&) such that Uy(¥) can be written as

Ua(v) = (J{u = pla; v, w(€)) = ale(u); v, w(€)) and c(u,z,€) = 0}
3

Then the a-event @x(w), given by

Uy = U Afu:plasy,w) = ale(u), v, w) and e(u,z,£) = 0},

(Ew)eEXQ

is weaker than Uz(vy). Furthermore, if for every x and u there evists a §
such that c(u,x,&) = 0, then Uy () simplifies to

(4.13) U (v) = | J{u: pla;v,w) = alp(u); v, w)}.

Parameter expansion, in this context, starts by reparametrizing the nui-
sance parameter £ as a pair (§,w) where, initially, w is taken as a function
of £. Then the basic marginal a-event U,(1)) is weakened by treating w as a
free parameter on its own, independent of £.

EXAMPLE 7 (Stein’s problem, cont.). Following up on Example 6 we see
that the basic marginal a-event can be written as

: —ul ~

By replacing £ with w, an independent copy of &, in the first constraint, we
construct a weak marginal a-event as in Proposition 1, (4.13):

U, (v) = U{u cx'r = p? 4 2p'u + u'ul.

file: MHL-marg.tex date: August 17, 2010



MARGINAL IMS 15

In terms of a-equations, we can conclude that
X'X =9+ 20U+ U'U, U ~N,0,I), forsome w.

But, as a function of U ~ N, (0, I), the quantity ¢? + 21w'U + U'U has the
same distribution for all w on the unit n-sphere, namely the non-central chi-
square distribution ChiSq,,(1?). If F,, 2 denotes its distribution function,
then a simple change of a-variable and a-measure then shows that the weak
marginal a-equation may be written as

X'X =F, ,(U), U~ Unif(0,1).

Therefore, a-inference can be done by predicting a single uniform random
variable rather than a n-dimensional normal random vector. Note, however,
that the marginal focal element

Ma(u) = {6 2 = Fyo(w)

is empty for u in a set of positive v-probability, so conditions of the usual
credibility theorem are not satisfied. The elastic belief approach of Er-
mini Leaf and Liu (2010) could be used here to construct an IM having
the desired frequency properties.

Stein’s problem is particularly well-suited for the parameter expansion ap-
proach to weakening, due to the fact that the distribution of 1?2 + 2¢w'U +
U'U is independent of w. But this will not be the case in general; see Sec-
tion 5. There, the union over w will require more careful analysis.

Next we give some general remarks about the long-run frequency proper-
ties of weak marginal IMs. It should be intuitively clear that by weakening
the constraints issued by the underlying sampling model, the focal elements
would surely expand, thereby shrinking the belief function. The details are
somewhat problem-specific, so here we present only some heuristics.

If w € Q were fixed and known, then marginal inference on 1) would would
rely on a focal element of the form:

M, (u;8) = |J {v:plx;¢,w) =ale@);v,w)}.

u'eS(u)
Uncertainty about w suggests a weakened focal element
7Q —_
M, (4;8) = |J M (5 S).

we

(4.14)
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16 MARTIN, HWANG, AND LIU

Ideally, M;;(U;S) will be somehow monotone in w for fixed z and u, so

that the union Mil(u, S) reduces to a fixed choice of w. In Stein’s problem
(Example 7) the weakened focal elements are constant in w. In the Behrens-
Fisher problem presented in Section 5 we prove that the weakened focal
elements correspond to one of two possible extreme w-values, depending
on group sample sizes. These weak marginal focal elements can be further
weakened with PRSs to achieve the desirable long-run frequency properties.
A loss of efficiency, however, is the price one pays for this initial “weakening
by parameter expansion” step.

5. Behrens-Fisher problem. The Behrens-Fisher problem is one of
the most fundamental problems in statistics (Scheffé 1970). The problem
concerns inference on the difference between two normal means, based on
two independent samples, when the standard deviations are completely un-
known. It turns out that there are no exact tests/confidence intervals that
do not depend on the order in which the data is processed. Various approx-
imations are available, in particular those due to Scheffé (1970) and Welch
(1938, 1947). For a review of these and other procedures, see Kim and Co-
hen (1998) and Dudewicz et al. (2007). Here we use the proposed marginal
inference methodology to derive an IM for the Behrens-Fisher problem.

Suppose independent samples Xi1,..., X1, and Xo1,..., Xo,, are avail-
able from the populations N(u1,0?) and N(uz, 03), respectively. Summarize
the data sets with X and Sy, k = 1,2, the respective sample means and
standard deviations. The parameter of interest is 6 = uo — 1. When o1 and
o9 are known, or unknown but proportional, inference on 9 is fairly straight-
forward. But in the general case there is no simple solution. The following
subsections outline an approach based on marginal IMs.

5.1. A first marginalization step. The basic sampling model is of the
location-scale variety, so the general results in Martin, Hwang and Liu (2010)
suggest that we may immediately reduce to a lower-dimensional model based
on the sufficient statistics. That is, we may begin our analysis with the basic
a-equations

(5.1) Yk Z/Lk—l—Uk n;l/Q Ulky and Sk :JkUQk, k= 1,2,
where the a-variables are independent and, for k =1, 2,
Uig ~N(0,1) and (ng — 1)U3, ~ ChiSq,,, _;.

To incorporate § = g — j1, combine the set of a-equations in (5.1) for u
and o to get
D=6+0yn; " Uiy —ainy?Un,
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where D = X9 — X 1. Define f(01,09) := [0} /n1 + 03 /n2]'/? and note that
0'27’L2 / U12*O'1TL1 /2U11, and f(O'l,O'Q)Ul, U1 NN(O,l),

are equal in distribution. Therefore, making a change of a-variables leads to
a new (and simpler) set of a-equations for the Behrens-Fisher problem:

(5.2) E:5+f(01,02) Uy, and Sp=o0Us, k=1,2.
In terms of a-events, we may write

U,(9,01,02) = {(Ul,um,Um) d= (o1,02)u1, sg = Ukuzk}

= {(U1,U21,U22) (o 2w, s, = UkUQk}a
and marginalizing over o1 and o9 gives

(5.3) [Ux(é) = {(ul,UQl,UQQ) d=46+ f(uzl’ s )ul}

We then pluck out the marginal a-equation for inference on 9:
(5.4) D =6+ f(S1/Ua1, S2/Us)Us

Since both data and a-variables are tied together in the f-function, in order
to derive a strong marginal a-inference for §, a factorization of the following
form is needed:

(5.5) f(s1/u21,52/u22) = g1(s1,52) x g2(u21,u22).

Unfortunately, it does not appear that such a factorization exists, so we turn
our attention to constructing a weak marginal a-inference for 9.

5.2. Weak marginal a-inference. Our approach is to “approximate” the
factorization in (5.5). Towards this approximation, recall that the basic a-
equation states that s = opuor for £ = 1,2. Under this constraint, the
f-function satisfies

f2(51/U21782/U22) = f2(51’52) X %

The first factor involves data only; the second factor is data-free and depends

only on o1, o2 and a-variables. In fact, the second factor is a function of a

weighted average of the a-variables. Define the weight w = w(o1,02) as
o?/ny 1

w = = E Q = 07 1 .
O’%/’I’Ll + U%/ng 1+ nlaf/nga% 0,1]
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18 MARTIN, HWANG, AND LIU

If we consider w as a function of (01, 02), then the basic a-equation (5.2) can
be rewritten as

b—(s . U1 and 7115%_22221—00
f(Sl, 52) \/wU221 4 (1 _ w)U222 TLQS% U221 w

(5.6)

The reader will recognize the quantity on the far left of (5.6) as the usual
pivotal quantity used to construct confidence intervals, etc. The quantity w,
initially defined as a function of the nuisance parameter (o1, 03), will play
the role of the expansion parameter as in Proposition 1.

Let U, (d,w) denote the set of all (uy,u91,us2) for which the constraints
(5.6) hold; this is exactly Uy(d,01,02) above. Then the marginal a-event
U,(0) in (5.3) is just the union of U,(d,w) over w € [0,1]. Upon taking this
union, the second constraint in (5.6) drops out, leaving just

(5.7) @x(é):U{(ul,Um,Um):f(cil_i):\/ 5 +“(11 2 }
- 5 Wy — W)U

It is clear that U, (8) C U,(6), so the latter is weaker than the former.
Equation (5.7) produces an “a-equation” of the form
D-6§ Uy
(51, 52) \/WU221 + (1 -w)U3

for some w.

But unlike in Stein’s problem (Example 7), the distribution of the a-variable
quantity on the right-hand side depends on w. Let Gy (z) = Gy (2z;n1,n2)
denote its distribution function. Then another change of a-variable gives
D—-6

— =G4 U), U~ Unif(0,1), for some w.

s = G 0) 0.1),
To construct an IM, take the simple PRS S(u) = [u/2, (1 + u)/2] for pre-
dicting an unobserved uniform random variable. If w were known, the IM
under consideration would make use of the focal elements

H‘;(u,S) = U {(5 : fd—(5 = Gwl(u/)}
)

u' €S( (817 82)

u d—9§ 1+u
:{5'2§Gw(f(81,82)) = 2 }

Towards handling the additional uncertainty in w, we present the following
lemma, proved in Appendix A.3.
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LEMMA 1. Suppose X, Y1, and Yy are independent random variables,
with X ~ N(0,1) and n;Y; ~ ChiSq,,,, fori=1,2. For w € [0, 1], define

X
7 =
\/le + (1 — w)YQ

)

and let G, (z) denote its distribution function. Then for all w € [0, 1],

S Gu(2) <Gi(z), 2<0
n1 < no implies
Gu(z) > Gi(z) =z>0.

Assume, without loss of generality, that n; < ns. It follows from Lemma 1
and the symmetry of G, (z) about z = 0 for all w that the weakened focal
element (4.14) is

M (w:8) = U M () = Mo (w: §).

weN

That is, “conservative” marginal inference about 1 via parameter expansion
corresponds to taking w = 1, i.e., the weak marginal a-equation is
D-§
————~=G7(U), U ~ Unif(0,1).
f(Sl; 52) 1 ( ) ( )
Note that, in this context, G is the distribution function of t,,an,—1-
For the weak marginal IM described above, the plausibility can be easily

calculated for any assertion about J. For example, consider the assertion
A ={§ =0y} for fixed dy € R. Then

(5.8) PL(A4;8)=1-

)

d— &
f(51,82)) !

and this can be used to perform tests of hypotheses or to construct plausi-
bility intervals for ¢ as described in Martin, Hwang and Liu (2010).

2G1<

5.3. Example. Data on travel times from home to work for two different
routes are presented by Lehmann (1975, p. 83) and summarized in Table 1.
The goal is to determine if the two routes have the same mean travel times.
The plausibility function (5.8) for this data is shown in Figure 1. As ex-
pected, &y values near the observed d = 1.444 are highly plausible, and
those far away are not. In particular, the plausibility for dg = 0 is 0.099;
therefore, with a rule that “rejects” a proposed dg value iff its plausibility
is less than 0.05, we must “accept” A = {6 = 0} in this case. But note
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20 MARTIN, HWANG, AND LIU

TABLE 1
Summary data for the example in Section 5.3.

Route | Sample size (n) Sample mean (Z) Sample variance (s°)
1 5 7.580 2.237
2 11 6.136 0.073

that the inferential output here is more meaningful than that of an ordi-
nary significance test. Indeed, the output Pl,(A;S) = 0.099 has a posterior
probability-like interpretation measuring how likely it is, given the observed
data, that J equals 0. Compare this to the interpretation of a p-value.

A 95% plausibility interval for ¢ is obtained by finding all those dy values
such that the plausibility function (5.8) is greater than 0.05. After a bit of
algebra, the plausibility interval is simply

{d0:d= fls1,)Gr 1 (0.975) < 8 < d+ f(s1,52)G1 1 (0.975) } .
This region is displayed graphically in Figure 1; numerically, we have
95% plausibility interval for 6: (—3.314,0.427).

It turns out that, for our particular choice of PRS S(u), the plausibility
interval matches up exactly with the interval proposed by Hsu (1938) (see
also Scheffé 1970) based on approximating the degrees of freedom in the
t-distribution by n1 A ng — 1.

6. Discussion. In this paper we have considered the problem of infer-
ence in the presence of nuisance parameters. Classical approaches attempt
to eliminate nuisance parameters via optimization or integration, but here
the general idea is that unions of a-events over the nuisance parameters can
be used to construct a-equations involving the parameter of interest and a
lower-dimensional a-variable. This dimension reduction technique, in addi-
tion to that based on conditioning in Martin, Hwang and Liu (2010), sim-
plifies the task of building a credible and efficient IM. For the case when the
sampling model is regular (in the sense of Definition 1), marginal inference
is straightforward, and according to Theorem 1 the dimension reduction is
achieved without any loss of information or efficiency. In non-regular prob-
lems, however, a general approach to marginal inference has yet to emerge.
We present one technique, based on an idea of parameter expansion, for con-
structing a weak marginal a-equation, and illustrations on Stein’s example
and the Behrens-Fisher problem are provided. Whether the proposed weak
marginal IMs are efficient remains an open question; however, we conjecture
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Fic 1. Plot of the plausibility function (5.8) for the example in Section 5.3. The interval
bounded by the two X’s is the 95% plausibility interval for §.

that efficiency holds in cases such as Stein’s problem (Example 7) where the
marginal a-measure does not depend on the expansion parameter.

In the context of marginal inference, the Behrens-Fisher problem is partic-
ularly challenging. The IM-based solution presented in Section 5 matches up
exactly with one of the popular classical solutions (Hsu 1938; Scheffé 1970).
But our derivation is based on a particularly convenient choice of PRS, and
other choices would lead immediately to different solutions. Although the
chosen PRS S /5(u) is “optimal” (Zhang and Liu 2010) in the class

Sy(u) = [u—yu,u+~(1-wu), ~€[0,1],

there is no reason to believe that this is the only reasonable class of PRSs.
Therefore, the best IM-based solution to Behrens-Fisher problem can do
no worse (in terms of Type I error rates or coverage probabilities) than
existing solutions. But it is important to keep in mind that, in general,
the conclusions of an IM-based analysis are more informative than that
of, say, a Neyman-Pearson test of signifcance—plausibility values have a
posterior probability-like interpretation in that they measure the amount of
information in the observed data in favor of the assertion in question.

APPENDIX A: PROOFS
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A.1. Proof of Theorem 1. In this context, the two sets of a-equations
and a-measures in question are

p(X;v,8) =a(Us;9,€), U~v, and
PX;0) =a(W,¢), W ~wph

Fix X = x and denote the corresponding basic belief functions as Bel, and

Bel,. Take any fixed ¥y C W. Then we have

{(,€) - p(z; ¢4, §) = a(u;9,8)} S Yo x &
= {(W,8) :p(z,¢) = a(p(u), ¥) and c(u,z,§) =0} C Yo x E
= {¢:p(x,¢) = alp(u),)} € ¥ and {: c(u,z,§) =0} #0
= {¢:p(z,¢9) = ale(u),¥)} € Yo
Since the first and last statements are equivalent, their respective probabil-

ities (with respect to U ~ v) must be equal. These two probabilities are
exactly Bel, (¥ x =) and Bel,(¥(), proving the claim. O

u

u

A.2. Proof of Theorem 2. Define the function

Qw;S) = v{w': S(w) F w},

which is the probability that the PRS S(WW') misses the target w when W ~
v :=vp~!. Then the PRS & = S(W) is said to be a-credible if

Hw: Q(w;S) > 1—a} <a.

The key idea behind the proof is that if ¢ is the true parameter value, then
the marginal focal element M, (w;S) misses 1 if and only if the PRS S(W)
misses W*. So, if ¥ € A, then by monotonicity of the belief function

Bel, (A;S) < Bel,({¢}%S)
=v{w: My(w;S) Z ¢}
=v{w: S(w) FW*} = QW*S).

Note that the a priori distribution of W* is v; that is, allowing X to vary
according to the sampling model is equivalent to varying W* according to
v. Therefore, we get the desired result:

P {Belx(A:8) > 1—a} <o{W*: QW*8) > 1-a} <a,

where the last inequality follows by the a-credibility assumption.
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A.3. Proof of Lemma 1. First we show that the distribution function
G, (2) of Z? is minimized at w = 1 for all fixed z > 0 when n; < ny. Then
we show that this implies the claim. Start by noticing that

1

T,15,13) .=
( b o2 3) n1Y1—|—n2Y2+X2

(n1Y1,n2Ya, X?)

is a Dir(a; = n1/2, a0 = na/2, a3 = 1/2) random vector. Therefore,
X2
GL(z)=P{Z? <z} =P{ ———— <
() { <z} {n1Y1 +ngYy — Z}
=1-P{en + 221 < 11y}
=1-P{(2+Hn+ 2+ Hn < 1}

ni
A(w) rB(w,t1)
=1- K/O /0 17527 1 — by — b)Y 2 dtg diy,

where

A = s Bt =

Alw) —t
({14 (1 —w)z/na2}’
and K = K(n1,ng2) is a positive constant. Let 0 = 8% denote the differenti-

ation operator. Applying Leibniz’s rule for differentiating under the integral
sign, and using the fact that B(w, A(w)) = 0, we obtain

AW)
oG/ (2) = —K/ 191 B(w, 1)1 =t — Blw, t1))"V20B(w, 1) dt.
0

Some tedious but straightforward algebra/calculus reveals that
G (2) = Kz~ Y2 A(w)* C(w)*2 V2 H (),
where
1/z
(1—w)/ne+1/z’

C(w) =

Ho(2) = /01 (1 gyt [ GO0 g g
and
=[5 (2 ]

Let w* =ny/(ny + ng). It is easy to check that H,«(z) = 0; also,

Hyp(z) x1-=C(0) >0 and Hi(z) x A(1)—1<0.
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We will now show that Hy,(z) < 0 for w* < w < 1, which implies that G/ (z),
for fixed z > 0, is decreasing in w on the interval [w*, 1]. That H,(z) > 0 for
0 < w < w* follows by symmetry.

For w € (w*, 1), the function f,(s) is analytic and strictly decreasing in
s. Therefore, the coefficients d,,(u), u € NT, of its power series are strictly
negative. Moreover, it follows from integration-by-parts that

1 A 1-
I(u) ::/ 30‘171(1 — S)O‘Tl (w)s — Clw) 5) s*ds > 0.
0 ni n9
Therefore, H,(z) = Y aeg dw(u)I(u) < 0, as was to be shown.

We have shown that G/,(z) is minimized at w = 1 (and maximized at
w = 0). That this also holds for G\, (z), the actual distribution function in
question, follows by symmetry. Indeed,

GZU(Z) = P{22 < Z} = Gw(\/g) - Gw(_\/g) = 2Gw(\/g) - 17

so minimizing Gy, (z) for fixed z > 0 is equivalent to minimizing G/,(z) for a
fixed but possibly different value of z. O
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