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Abstract: The work of A. P. Dempster in 1960s extending Fisher’s fiducial infer-

ence for parametric inference using multivalued mapping and that of G. Shafer in

1970s on the assessment and combination of evidence led to what is now known as

the Dempster-Shafer (DS) theory of belief functions. However, application of DS

for parametric inference has been limited due, perhaps, to its computational diffi-

culty, non-uniqueness, and lack of frequency properties. In this paper, we return to

Dempster’s original approach to constructing belief functions for parametric infer-

ence, called basic DS models (BDSMs), which are usual probability models on the

space of the so-called focal elements. We propose to modify BDSMs by enlarging

focal elements to obtain belief functions that have desired frequency properties. We

call our method Weak Belief (WB). When it enlarges the focal elements no more

than necessary, the method of WB is called Maximal Belief (MB). The MB method

is illustrated with two examples: (i) inference about a binomial proportion, and

(ii) inference about the number of outliers (µi 6= 0) based on the observed data

X1, ..., Xn with the model Xi
ind
∼ N(µi, 1).

Key words and phrases: Belief functions, Fiducial inference, Frequentist evaluation,

Hypothesis testing, Maximal belief, Predictive random sets.

1. Introduction

Dempster (1966) extended Fisher’s fiducial argument to cases with multino-

mial observable variables and launched what we now call the DS theory of belief

functions. Dempster (1967a, 1967b, 1968a, 1968b, 1969) applied DS to a class of

statistical models, but he dropped this line of work because it could not be im-

plemented computationally at the time, Shafer (1973, 1976) took up the theory

starting in the 1970s, emphasizing the assessment and combination of evidence

in general rather than statistical modeling. DS migrated from Shafer’s work to

artificial intelligence via the expert systems of the time, and thence to a variety

of engineering applications. Many of Demspter’s and Shafer’s articles, along with

other classic DS articles, were recently reprinted in Yager and Liu (2008).
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In the 1980s, the methodology advanced with the recognition that DS mod-

els, as well as other probabilistic and fuzzy models, can be adapted to join trees

(Shenoy and Shafer, 1986; Dempster, 1990; Almond, 1995), where computations

of marginal inferences can be reduced to local computations in a small number of

dimensions. In this context, a wide variety of hidden Markov models and other

network models can be regarded as DS models. Other DS models continue to be

used, along with fuzzy methods, in a wide variety of engineering problems.

However, DS has not yet been accepted in statistical community for statis-

tical inference from observed data. This, perhaps, is due to its computational

difficulty, non-uniqueness, and lack of frequency properties. For example, the

application of the multinomial DS model (Dempster, 1966) and the Poisson DS

model (Dempster, 2008), both proposed as general tools to build belief functions

for parametric inference, has proved mathematically and computationally diffi-

cult (see, e.g., Denoeux (2006)). But recent advances in Markov chain Monte

Carlo methods for Bayesian computation make DS computation possible.

For prediction of future observations from the multinomial model, Denoeux

(2006) suggests a different way of building belief functions that have certain fre-

quency properties. He proposed to build belief functions based on frequentist

simultaneous confidence intervals for multinomial proportions. This idea is use-

ful and can be viewed as an example of the general method of building belief

functions based on likelihood functions. For an alternative, here we consider

to build belief functions by reasoning from the assumptions made in postulated

sampling models.

We modify Dempster’s original approach to obtain posterior belief functions

that have desired frequency properties. Given a statistical model with a param-

eter space Θ and observation space X , Dempster’s original approach is to set

up a multivalued mapping M from a probability space U into the product space

Θ×X , called the state space model (SSM). We derive the multivalued mapping

from a mapping a from Θ × U to X :

X = a(θ, U) (X ∈ X , θ ∈ Θ, U ∼ U(U)) (1.1)

where U (U) denotes the uniform distribution in the n-dimensional cube U =

[0, 1]n, but can be replaced with any fixed distribution for generality. We call

the variable U the auxiliary variable and the equation (1.1) the auxiliary (a)-
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equation. The subsets

M(U) = {(θ,X) : θ ∈ Θ,X ∈ X ,X = a(θ, U)}, U ∈ U ,

are known as focal elements in the DS theory. Thus the probability model U ∼

U(U) and the multivalued mapping M(U) define a DS model (DSM) on Θ×X :

M(U) = {(θ,X) : θ ∈ Θ,X ∈ X ,X = a(θ, U)} (U ∼ U (U)) (1.2)

In general, a DSM on a space Ω is a usual probability model on 2Ω, the power

space of Ω consisting of all subsets of Ω. Thus, M(U) will be referred to as a

random set when U ∼ U(U) and M(U) 6= ∅.

The setting (1.1) is similar to Fisher’s fiducial argument, e.g., in the context

of the functional models of Bunke (1975) and Dawid and Stone (1982) and the

structural inference of Fraser (1966). To call attention to the difference between

(1.1) and the setting for fiducial inference, we note that (i) X = a(θ, U) deter-

mines a multivalued mapping from U to Θ × X , and (ii) X can be the whole

sample of data, rather than a (minimal) sufficient statistic as required by Fisher’s

fiducial argument.

For statistical inference, the a-equation (1.1) is specified in such a way that it

would reproduce the probability distribution for the observed data X ∈ X when

restricted to θ ∈ Θ. When conditioned on X, the DSM (1.2) defines the random

set

MX(U) = {θ : X = a(θ, U), θ ∈ Θ} (U ∼ U(U)) (1.3)

and, thereby, a DSM on Θ for inference about θ. We call the DSM (1.3) the

posterior DSM (PDSM). In the case that MX(U) is not singleton, we “don’t

know” the exact value of θ in MX(U). We note that Hannig (2006) discussed

the use of multivalued mappings in the context of generalized fiducial intervals,

where “don’t know” is removed by taking θ to be a single point in MX(U).

Let A ⊆ Θ represent an assertion of interest about θ and let A denote the

denial of A, i.e., A = Θ \ A. Write

p
X

(A) =
Pr (MX(U) ⊆ A)

Pr (MX(U) 6= ∅)
, q

X
(A) =

Pr
(

MX(U) ⊆ A
)

Pr (MX(U) 6= ∅)
, (1.4)

and r
X

(A) = 1 − p
X

(A) − q
X

(A). Then, using the new terms introduced by

Dempster (2008) for statisticians, we call p = p
X

(A) the probability for the
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truth of A, q = q
X

(A) the probability against the truth of A, and r = r
X

(A)

the probability of “don’t know”, which supports neither A nor A. For readers

who are familiar with Shafer (1976), we note that p is the lower probability or

belief for the truth of A and p + r is the upper probability or plausibility for the

truth of A. In the remaining of this paper, we refer to DSMs as belief models or

simply beliefs.

DS (p, q, r) probabilities are personal and may not have desired frequency

properties. We call the DSM (1.2) a Basic DSM (BDSM). To obtain the desired

frequency property, we propose to modify the BDSM by enlarging its focal ele-

ments, before conditioning on the observed data X. We do this enlargement in

a systematic way, and enlarge just enough to obtain the desired frequency prop-

erty. Because enlarged focal elements result in DSMs representing weaker beliefs,

we call our method Weak Belief (WB). Accordingly, the WB method enlarging

focal elements no more than necessary is called Maximal Belief (MB).

The remainder of this article is arranged as follows. Section 2 gives a brief

introduction to the ideas from DS theory. Section 3 describes the WB and MB

methods. Section 4 presents a specific class of WB models. Sections 5 and

6 illustrate the method of MB with the binomial and the many-normal-means

problems. Section 7 concludes with a brief discussion.

2. A Brief Introduction to BDSMs

We review in Section 2.1 the DS calculus (Demspter, 2008) for deriving the

sampling model, called sampling DSM, for data X given parameter θ and the

posterior DSM for θ conditional on X, and give in Section 2.2 two illustrative

examples. We assume basic knowledge of the DS calculus; See Shafer (1976).

2.1. Sampling and posterior DSMs

The sampling distribution of X given θ can be recovered by combining a DSM

on Θ×X with a DSM that has the single focal element {(θ,X) : X ∈ X} ⊆ Θ×X .

The random set of the combined DSM is obtained, by applying Dempster’s rule of

combination, as the intersection of the subset {(θ,X) : X ∈ X} and the random

set M(U) of the BDSM (1.2). It can be written as

{(θ,X) : X ∈ X ,X = a(θ, U)} (U ∼ U(U))
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Applying the DS marginalization operation on this combined DSM leads to the

DSM on X , called the sampling DSM, having the random set

Mθ(U) = {X : X ∈ X ,X = a(θ, U)} (U ∼ U (U)) (2.1)

Similarly, one can derive the posterior DSM (1.3) discussed in Section 1.

2.2. Examples

Example 2.1. In this example, we consider the simple Gaussian model with the

a-equation

X = µ + Φ−1(U) (µ ∈ R, U ∼ U(0, 1)) (2.2)

where R = (−∞,∞) and Φ−1(.) stands for the inverse CDF of the standard

normal distribution N(0, 1). That is, the sampling model is X ∼ N(µ, 1) with

unknown µ ∈ R. The SSM is the product space R × R for (µ,X). The focal

elements are the lines M(U) = {(µ,X) : X = µ+Φ−1(U)} indexed by U ∈ [0, 1].

Routine application of DS calculus leads to the following results: (i) the sampling

distribution of X given µ is N(µ, 1), and (ii) the posterior DSM for µ given X

is the usual fiducial posterior µ|X ∼ N(X, 1).

Example 2.2. Let X be a dichotomous observation with X ∈ X = {0, 1}.

Suppose that the Bernoulli model Bernoulli(θ)

Prθ (X = 1) = θ and Prθ (X = 0) = 1 − θ (2.3)

with unknown θ ∈ Θ = [0, 1] is considered to generate the observed data X. The

problem is to infer θ from X. We use the following a-equation for the quantities

X and θ with an auxiliary random variable U ∼ U(0, 1):

X =

{

1, if U ≤ θ;

0, if U > θ.
(2.4)

It follows that the sampling DSM has the random set

Mθ(U) =

{

{1}, if U ≤ θ;

{0}, if U > θ,
(U ∼ U(0, 1)) (2.5)

which is consistent with the Bernoulli model (2.3). The posterior DSM for θ has

the random set

MX(U) = [U, 1] for X = 1, and [0, U ] for X = 0 (U ∼ U(0, 1)) (2.6)
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To illustrate the DS (p, q, r) output based on the DSM (2.6) with state space

Θ = [0, 1], consider the assertion A = {θ ≤ θ0} ⊆ Θ for a known θ0. Given

X = 1, for example, we have the random interval [U, 1] for θ with U ∼ U(0, 1).

There are two possible cases: (i) the case of U > θ0, which provides evidence

against the truth of A, and (ii) the case of U ≤ θ0, which does not have any

information about the truth or falsity of A. Note that there are no realizations

of the random interval that provide evidence for the truth of A. As a result, the

DS output for the assertion A has the following (p, q, r) components

p
X

(A) = 0, q
X

(A) = Pr (U > θ0) = 1 − θ0, and r
X

(A) = θ0.

3. Weak and Maximal Beliefs

Suppose that the a-equation (1.1) is considered for making inference about

an unknown θ given the observed data X. We are interested in making inference

about an assertion A ⊆ Θ.

3.1. Credibility: a frequentist evaluation

DS inference would be questionable if large values of p
X

(A) under the truth

of A or large values of q
X

(A) under the truth of A occur frequently in repeated

experiments. This motivates us to introduce the following definition of credibility

of DS inference.

Definition 3.1. Suppose that the observed data model X is specified by the a-

equation (1.1) with unknown θ ∈ Θ. Given α ∈ (0, 1), the DS (p
X

(A), q
X

(A), r
X

(A))

output for an assertion A is said to be credible at α-level if

Pr
θ
(p

X
(A) ≥ 1 − α) ≤ α (3.1)

for every θ ∈ A and

Pr
θ
(q

X
(A) ≥ 1 − α) ≤ α (3.2)

for every θ ∈ A, where the distribution of the random variable X is determined

by the a-equation (1.1) and θ ∈ Θ. The DS (p
X

(A), q
X

(A), r
X

(A)) output for an

assertion A is said to be credible if (3.1) and (3.2) hold for all α ∈ (0, 1).

To explain the definition of credibility, we consider the following simple solution

to the problem of choosing A, A, or neither, given the observed data X. Take

a small value α, e.g., α = 0.05, and choose A if p > 1 − α, A if q > 1 − α, and
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neither A nor A otherwise. It follows that if the (p, q, r) is credible at α-level,

we would make wrong choices at most α × 100% of the times. A familiar such

example is the precise/sharp hypothesis problem. Incidentally, we note that the

above definition of credibility is related to the fundamental frequentist principle

of Walley (2002).

Example 3.1. Consider the Gaussian model N(µ, 1) with unknown mean µ in

Example 2.1 for a single observation X. Example 2.1 showed that the PDSM for

inference about µ is the familiar fiducial posterior, i.e., µ|X ∼ N(X, 1). Here we

consider two types of assertions

(i) A1 = {µ ≤ µ0} for fixed µ0, and

(ii) A2 = {µ0 − δ ≤ µ ≤ µ0 + δ} for fixed µ0 and δ ≥ 0.

The DS (p, q, r) output for the assertion A1 is given by

p
X

(A1) = Pr (µ ≤ µ0|X) = Φ(µ0 − X), q
X

(A1) = 1 − p
X

(A1),

and r
X

(A1) = 0. For any α ∈ (0, 1), we have for every µ ∈ A1, i.e., µ > µ0,

Prµ (p
X

(A1) ≥ 1 − α) = Pr
µ

(Φ(µ0 − X) ≥ 1 − α)

= Pr
µ

(

X ≤ µ0 − Φ−1(1 − α)
)

= Φ(µ0 − µ − Φ−1(1 − α))

≤ Φ(Φ−1(α)) = α

and similarly for every µ ∈ A1, Prµ (q
X

(A1) ≥ 1 − α) ≤ α. Thus, the fiducial

inference about A1 is credible for all α ∈ (0, 1).

For A2, the DS (p, q, r) output has the following components:

p
X

(A2) = Φ(µ0 + δ − X) − Φ(µ0 − δ − X), q
X

(A2) = 1 − p
X

(A2),

and r
X

(A2) = 0. It follows that for δ ≈ 0 and α ∈ (0, 1),

Prµ (q
X

(A2) ≥ 1 − α) = Prµ (Φ(µ0 + δ − X) − Φ(µ0 − δ − X) ≤ α) ≈ 1

for every µ ∈ A2. This result shows that the DS inference about the assertion

A2 with a small δ is not credible.
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3.2. Weakening BDSMs: a motivating example

The posterior DSM for inference about the unknown parameter µ in the

Gaussian model N(µ, 1) from a single observation X may fail to be credible.

This indicates that the belief specified in the BDSM to derive the posterior DSM

is too strong in the sense that the resulting p or q are too large in repeated

experiments for certain assertions. To take a closer look at what that belief is,

assume that the observation X was indeed generated according to a-equation

(2.2). In this case, inference about the unknown θ is the same as inference about

the unobserved realization of U in the specific experiment. Let U∗ denote this

unobserved realization of U . Then, U∗ is known to have followed U (0, 1) and

satisfies the identity

X = µ + Φ−1(U∗). (3.3)

The fiducial posterior µ|X ∼ N(X, 1) can be viewed as obtained from a-equation

(3.3) by predicting U∗ with a random draw U from U (0, 1). We call the random

variable U the predictive random variable (PRV) and we call U∗ the generative

random variable (GRV). The BDSM for posterior inference is effectively specified

by assigning the distribution of the GRV to the PRV.

For credible DS inference with the Gaussian model, we weaken the BDSM

and, thereby, the posterior DSM by expanding U into an interval, denoted by

S(U). To illustrate the idea, we enlarge the PRV U into the random interval

S(U) =

[

U −
U

2
, U +

1 − U

2

]

(U ∼ U(0, 1)) (3.4)

This modification replaces µ|X ∼ N(X, 1) with the DSM

SX(U) =

{

µ : X − Φ−1

(

U + 1

2

)

≤ µ ≤ X − Φ−1

(

U

2

)}

(U ∼ U(0, 1))

To investigate the credibility of this modified DSM for inference about the sharp

assertion {µ = µ0}, for which the BDSM is not credible, we now have the follow-

ing DS (p, q, r) output:

p
X

({µ = µ0}) = 0, q
X

({µ = µ0}) = 2Φ(|X − µ0|) − 1,

and r
X

({µ = µ0}) = 1−q
X

({µ = µ0}). Thus, the long-run frequency distribution

of q
X

({µ = µ0}) is the uniform on the interval [0, 1] when X ∼ N(µ0, 1). It follows
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that for all α ∈ [0, 1]

Prµ (p
X

({µ = µ0}) ≥ 1 − α) = 0 (≤ α)

for µ 6= µ0 and

Prµ (q
X

({µ = µ0}) ≥ 1 − α) = α (≤ α)

for µ = µ0. Hence, the resulting weak belief model specified by (3.4) leads to a

modified posterior DSM that is credible for the assertion {µ = µ0}.

A formal definition of weak belief is given in Section 3.3. The particular

choice of the above random interval is related to the concept of maximal belief

of Section 3.4 and discussed further in Section 4.

3.3. Weak beliefs

For a given DSM B and an assertion A, a subset of the SSM for B, we

write the components of (p, q, r) for A as (p
B
(A), q

B
(A), r

B
(A)). This notation

is consistent with (1.4) in the sense that the observed data X in (1.4) indexes

different DSMs. Let S ∼ B, that is, S is the random set of B. Then

p
B
(A) = Pr (S ⊆ A) , q

B
(A) = Pr

(

S ⊆ A
)

, (3.5)

and r
B
(A) = 1 − p

B
(A) − q

B
(A). One more useful DS concept is the so-called

commonality function:

c
B
(A) = Pr (S ⊇ A) , (3.6)

which is introduced by Shafer (1976) and plays an important role in DS calculus.

For building credible DSMs, we consider beliefs that are weaker than the

BDSM.

Definition 3.2. Let B and B′ be two DSMs on a common SSM. The DSM B is

said to be weaker than the DSM B′ if p
B
(A) ≤ p

B′
(A) holds for every assertion

A.

For convenience, a belief is said to be weak if it is weaker than the corresponding

BDSM. Weak beliefs can be interpreted from different perspectives, which are

summarized into the following three propositions, where all DSMs are assumed

to be on a common SSM. Proposition 3.1 serves as an alternative definition in
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terms of commonality. Proposition 3.2 implies that weaker DSMs have a larger

probability of “don’t know”. Proposition 3.3 provides a sufficient condition for

comparing the weakness of two beliefs and suggests a way of creating weaker

beliefs. The proofs of these results are straightforward and therefore omitted

here to save space.

Proposition 3.1. Suppose that B and B′ are two DSMs on a common SSM. If

c
B
(A) ≥ c

B′
(A) holds for every assertion A, then B is weaker than B′.

Proposition 3.2. If the DSM B is weaker than the DSM B′, then r
B
(A) ≥ r

B′
(A)

for every assertion A.

Proposition 3.3. Let S and S′ be the random sets of the two DSMs B and B′,

respectively. If the random set S can be obtained via a mapping S = m(S′) in

such a way that S′ ⊆ S = m(S′), then B is weaker than B′.

Let U∗ be the realization of U that corresponds to the observed data X via

the a-equation X = a(θ, U∗). Let B0 denote the BDSM for predicting U∗. To

weaken B0, we make use of Proposition 3.3 and replace the PRV U with a subset

S(U) of U containing U , i.e., U ∈ S(U). Accordingly, the posterior DSM (1.3)

becomes the weak DSM that has the random set

MX,S(U) = {θ : θ ∈ Θ,X = a(θ, u) for some u ∈ S(U)} (3.7)

where U ∼ U(U). Thus, the (p, q, r) output produced by the weakened DSM for

any assertion A ⊆ Θ has the p, q, r-components

p
X,S

(A) =
Pr

(

M
X,S

(U) ⊆ A
)

Pr
(

M
X,S

(U) 6= ∅
) , q

X,S
(A) =

Pr
(

M
X,S

(U) ⊆ A
)

Pr
(

M
X,S

(U) 6= ∅
) , (3.8)

and r
X,S

(A) = 1 − p
X,S

(A) − q
X,S

(A).

3.4. The method of maximal belief

Weak beliefs introduced in Section 3.3 are not unique. Assuming a class of

such weak beliefs of interest is available, we can seek a particular belief within

the class to balance between credibility and efficiency.

Let U∗ be an unobserved realization of U ∼ U(U) and let B be a DSM with

the random set S, called the predictive random set (PRS), for inference about
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U∗. Let m
B
(U∗) be the probability that S does not contain U∗, i.e.,

m
B
(U∗) = Pr (S 6∋ U∗) (3.9)

For credible inference, we want to bound the frequency of large values of m
B
(U∗).

This motivates us to consider the following definition of credibility of beliefs for

predicting U∗:

Definition 3.3. Given α ∈ (0, 1), a belief B for inferring (or predicting) U∗ is

said to be credible at level α if

Pr (m
B
(U∗) ≥ 1 − α) ≤ α, (3.10)

where U∗ ∼ U (U). A belief B for inferring (or predicting) U∗ is said to be

credible if it is credible at level α for all α ∈ [0, 1].

The following result relates the credibility of a PRS S(U), where U ∼ U (U),

for predicting U∗ and the credibility of the corresponding DS (p, q, r) output for

assertions about θ.

Theorem 3.1. Suppose that the BDSM is defined by the focal elements (1.2) with

U ∼ U (U). If a random set S(U) with U ∼ U (U) is credible at α-level for

predicting U∗, a realization from U (U), and Pr (MX(U) = ∅) = 0, then the DS

(p, q, r) output (3.8) for every assertion A ⊆ Θ is credible at α-level.

Proof. Let A be any assertion of interest. Then the probability q
X,S

(A) against

the truth of A is smaller than the probability q
X,S

({θ}) for every θ ∈ A, which

follows from the following inequality:

q
X,S

(A) = Pr
`

M
X,S

(U) ⊆ Θ \ A
´

≤ Pr
`

M
X,S

(U) ⊆ Θ \ {θ}
´

= q
X,S

({θ}), (3.11)

where the two equalities in (3.11) follow the assumption Pr (MX(U) = ∅) = 0.

Note that the event M
X,S

(U) ⊆ Θ \ {θ} is equivalent to θ /∈ M
X,S

(U), that is,

there is no u ∈ S(U) such that a(θ, u) = X. This implies that U∗ /∈ S(U) because

U∗ is known to satisfy a(θ, U∗) = X. Thus, it follows from (3.11) that

q
X,S

(A) ≤ q
X,S

({θ}) ≤ Pr (S(U) 6∋ U∗) .

That is, q
X,S

(A) is stochastically smaller than Pr (S(U) 6∋ U∗) in repeated ex-

periments. Making use of the condition that S(U) is credible for predicting
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U∗ at α-level, (3.2) holds for q
X,S

({θ}). The symmetry argument based on

p
X,S

(A) = q
X,S

(A) with θ ∈ A leads to the conclusion that (3.1) holds p
X,S

({θ}).

This completes the proof.

Among all beliefs credible at level α, some can be more efficient than others.

In general, the smaller the coverage probability Pr (S ∋ U∗), the more efficient

the belief B with the PRS S. Note that Pr (S ∋ U∗) = 1 − m
B
(U∗); See (3.9).

This motivates the following definition of a maximal belief (MB) at level α with

respect to a class of beliefs.

Definition 3.4. Let Bα be a class of beliefs that are credible at level α. A belief

B ∈ Bα is said to be a maximal belief at level α with respect to the class Bα if

Pr (m
B
(U∗) ≥ 1 − α) = max

B′∈Bα

Pr
(

m
B′

(U∗) ≥ 1 − α
)

. (3.12)

The following results are useful for constructing MBs.

Proposition 3.4. If a belief B on the SSM U satisfies

Pr (m
B
(U∗) ≥ 1 − α) = α (U∗ ∼ U (U)) (3.13)

then it is an MB. Furthermore, if (3.13) holds for all α ∈ (0, 1), then m
B
(U∗) ∼

U (0, 1).

The discussion in previous sections is on the credibility and efficiency of

DSMs and their weakened versions for all assertions. For a given assertion A of

interest, we can find an assertion-specific belief B such that it is both credible

and efficient for inference about A. For example, for the assertion {µ ≤ µ0} in

the Gaussian model X ∼ N(µ, 1) with the observed data X, the BDSM is both

credible and efficient. Section 6 provides another example of using assertion-

specific WBs.

4. A Class of Predictive DSMs for Uniform Samples

In this section we present a particular class of PRSs, based on intuition

and geometric simplicity, for predicting an unobserved sample from the uniform

distribution U (0, 1). The corresponding class of weak beliefs is used in Sections

5 and 6 to illustrate the proposed MB method.
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4.1. A class of predictive DSMs for a single uniform random variable

For each point U in [0, 1], we consider the subset of the form

Sw(U) = [U − wU, U + w(1 − U)] (w ∈ [0, 1])

Let U ∼ U(0, 1). Then we have a class of beliefs indexed by w ∈ [0, 1]:

B = {Bw : 0 ≤ w ≤ 1}

where the belief Bw has the random set Sw(U). Note that the interval length of

Sw(U) is w. Thus, B0(U) is the BDSM used for fiducial inference while B1(U)

represents the vacuous belief that has the entire space as the single focal element.

It can be shown that the MB for any level α is B1/2, which has the random set

S1/2(U) = [U/2, (U + 1)/2] (U ∼ U (0, 1))

Example 4.1. Consider again the Gaussian example of Section 3.2 where a single

observation X from N(µ, 1) with unknown mean µ. Here we conclude this “run-

ning” example with some numerical results. The random interval of the MB for

µ can be written as

MX,1/2(U) = [X − Φ−1(U + 1/2),X − Φ−1(U)] (U ∼ U(0, 1/2))

For the assertion A = {µ = µ0} with fixed µ0 ∈ R, the probability p for the truth

of A is 0 due to the fact that Pr
(

X − Φ−1(U + 1/2) = X − Φ−1(U) = µ0

)

= 0.

The probability q against the truth of A is

q = 2Φ(|X − µ0|) − 1,

the probability that the random interval MX,1/2(U) does not contain µ0. For

example, for µ0 = 0 with the observed X = 0 we have (p, q, r) = (0, 0, 1), which

indicates no evidence for or against the truth of the assertion that µ = 0. For

µ0 = 0 with the observed X = 2 we have (p, q, r) = (0, 0.95, 0.05), which shows

evidence with q = 95% against the truth of the assertion that µ = 0. This

demonstrates a nice DS way of resolving the problem of significance testing with

the null hypothesis H0 : µ = 0 and the alternative hypothesis Ha : µ 6= 0. DS

(p, q, r) outputs for other assertions can also be computed similarly. For example,
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for the assertion µ ≤ 0 we have (p, q, r) = (0, 0, 1) conditional on the observed

data X = 0 and (p, q, r) ≈ (0, .95, 0.05) conditional on X = 2.

4.2. A class of predictive DSMs for ordered uniforms

For a uniform sample U1, ..., Un, we write their ordered values as U(1) ≤

U(2) ≤ ... ≤ U(n). A draw of U(1), ..., U(n) from the BDSM for U(1), ..., U(n) can

be obtained by taking a sample of n from U(0, 1) and sorting the sample in

ascending order. For large n, a more efficient method of generating U(1), ..., U(n)

is to take a sample of n+1, denoted by Z1, ..., Zn+1, from the standard exponential

distribution Expo(1) and compute U(i) =
∑i

j=1 Zj/
∑n+1

j=1 Zj for i = 1, ..., n.

It is known that the marginal distribution of U(i) is the Beta distribution

Beta(i, n − i + 1) for i = 1, ..., n. To construct a random set for predicting

an unobserved realization, denoted by U∗

(1), ..., U
∗

(n), we consider replacing U(i)

of a random draw U(1), ..., U(n), with an interval. The upper end point of the

interval is set to be the κ (0 ≤ κ ≤ 1) quantile of the truncated distribution

Beta(i, n − i + 1) restricted on the interval from U(i) to 1. The lower end point

of the interval is set to be the (1 − κ) quantile of the truncated distribution

Beta(i, n − i + 1) restricted on the interval [0, U(i)].

Let On be the space of (U(1), ..., U(n)), i.e.,

On = {(v1, ..., vn) : 0 ≤ v1 ≤ ... ≤ vn ≤ 1}.

Formally, in terms of a DSM we define the focal element as

K(V, κ) = {v : v ∈ On and Ai(Vi, κ) ≤ vi ≤ Bi(Vi, κ) for all i = 1, ..., n}

where V ∈ On, κ ∈ [0, 1],

Ai(Vi, κ) = qBeta(Pi(Vi) − κPi(Vi), i, n − i + 1)

and

Bi(Vi, κ) = qBeta(Pi(Vi) + κ(1 − Pi(Vi)), i, n − i + 1)

with Pi(Vi) = pBeta(Vi, i, n− i + 1) for i = 1, ..., n. The functions pBeta(., i, n −

i + 1) and qBeta(., i, n − i + 1) stand for the CDF of Beta(i, n − i + 1) and the

inverse CDF of Beta(i, n− i+1). We define a measure on the focal element space

as follows:
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1. V = (V1, ..., Vn) and κ are independent,

2. V = (V1, ..., Vn) follows the distribution of the ordered uniform (U(1), ..., U(n)),

and

3. κ = 1
2 + 1

2L with L ∼ Beta(wn, 1) and wn ≥ 0.

This results in a class of DSMs with the random set Swn indexed by wn.

The use of a distribution for κ is motivated by the fact that in the general

n case, there does not exist a constant κ ∈ [0, 1] that produces a satisfactory

DSM for balancing credibility and efficiency. The particular choice of the class

of distributions for κ is ad hoc and based on both mathematical simplicity and

flexibility for finding a satisfactory MB model. For the n = 1 case, we take

w1 = 0, which gives the MB model discussed in Section 4.1.

Given a prespecified value α, e.g., α = 0.05, the MB is obtained by finding

a solution wn to

Pr
(

mwn(U∗

(1), ..., U
∗

(n)) ≥ 1 − α
)

= α. (4.1)

For any fixed wn, mwn(U∗

(1), ..., U
∗

(n)) can be simulated using Monte Carlo meth-

ods. Since the long-run frequency distribution of mwn(U∗

(1), ..., U
∗

(n)) is monotone

in wn, the solution wn to (4.1) can be obtained via the Stochastic Approximation

(SA) algorithm of Robbins and Monro (1951). For example, with fixed α = 0.05,

the SA algorithm based simulated mwn(U∗

(1), ..., U
∗

(n)) produces the following re-

sults for a set of values of n

n 1 2 3 5 10 100 1,000 10,000

wn 0 0.33 0.57 0.98 1.8 6.6 13.7 22

It appears that wn for n in the range from 3 to 100 is approximately linear in

(ln n)2. This approximation is used in Section 6 for estimating the number of

outliers in the many-normal-means problem.

4.3. A class of predictive DSMs for unordered uniforms

For predicting an unobserved realization (U∗

1 , ..., U∗

n) from U([0, 1]n), we

make use of the random set proposed in Section 4.2 for U∗

(1) ≤ U∗

(2) ≤ ... ≤ U∗

(n),

the ordered values of U∗

1 , ..., U∗

n . What is needed is a permutation π (∈ Pn) that
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assigns (U∗

(1), ..., U
∗

(n)) to (U∗

1 , ..., U∗

n),

U∗

i = U∗

(πi)
(i = 1, ..., n)

where Pn is the set of the n! permutations of (1, ..., n). Mathematically, we

need to specify a DSM on the space Pn. In this paper, we consider the vacuous

DSM. That is, we take the DSM with Pn as the single focal element. Care must

be taken, however, in computing (p, q, r) for certain assertions because there is

one and only one unknown assignment permutation. The use of this DSM is

illustrated in Section 6 for the multiple testing example.

5. The Binomial Problem

Inference about the binomial proportion θ based the observed data X from

the binomial distribution Binomial(n, θ) with known size n and unknown θ ∈

[0, 1] is a fundamental problem of practical statistics (Pearson, 1920; Clopper

and Pearson, 1934; Brown, Cai, and DasGupta, 2001; and references therein).

DS inference about θ (Dempster, 1966) provides the first classical example of DS

parametric inference. When conditioned on X, the posterior DSM for θ is the

random interval [U(X), U(X+1)] with the two end points U(X) and U(X+1) being

the X-th and (X + 1)-th order statistics of a sample of n from U (0, 1).

Here we consider WB models based on the following a-equation

X = a(θ, U) (θ ∈ [0, 1], U ∼ U(0, 1)) (5.1)

where X = a(θ, U) is given the constraints

X−1
∑

k=0

n!

k!(n − k)!
θk(1 − θ)n−k ≤ U <

X
∑

k=0

n!

k!(n − k)!
θk(1 − θ)n−k (5.2)

The two bounds for U in (5.2) are the CDF values of Binomial(n, θ) evaluated at

X−1 and X. Formally, the SSM of the DSM concerning the pair of quantities X

and θ is {0, 1, ..., n} × [0, 1]. It is easy to show that (i) the sampling DSM gives

the sampling distribution Binomial(n, θ) for X given θ and n, and the posterior

DSM has the random set

MX(U) = {θ : qBeta(U,X, n − X + 1) ≤ θ ≤ qBeta(U,X + 1, n − X)} (5.3)

where U ∼ U(0, 1) and qBeta(., α, β) denotes the inverse CDF of the beta distri-

bution Beta(α, β). It is easy to see that (5.3) is an interval and that the marginal
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Data (X, n) (p, q, r) Fisher’s p-value

(24, 1,000) (0, .9290, .0710) .0438

(1,680, 100,000) (0, .9536, .0464) .0438

Table 5.1: The (p, q, r) for the assertion A = {θ = 1.6%} based on the observed data X

with known n in the binomial example.

distributions of the two end points of this random interval are the same as those

of the random interval in the DSM of Dempster (1966). For WB analysis, we

prefer the posterior DSM with the random set (5.3) to the DSM of Dempster

(1966) because we need to predict only the univariate random variable U in (5.3)

and have to predict the bivariate random variable (U(X), U(X+1)) in the DSM of

Dempster (1966).

Suppose that we use the PRS S(U) = [U/2, (U + 1)/2] discussed in Section

4. The WB model has the following random set

MX,S(U) =

{

θ : qBeta(u,X, n − X + 1) ≤ θ ≤

qBeta(u,X + 1, n − X) for some u ∈ S(U)

}

(5.4)

where U ∼ U (0, 1). For a numerical illustration, consider the two artificial data

sets: (i) n = 1, 000 and X = 24, and (ii) n = 100, 000 and X = 1, 680, which

are similar to the two Poisson examples of Dempster (2008). Assume that the

assertion of interest is A = {θ = 1.6%} in the two cases. The probability for this

assertion is zero and the probability against this assertion is given by

Pr (qBeta(U/2,X, n − X + 1) > 1.6% or qBeta((U + 1)/2,X, n − X + 1) < 1.6%)

where U ∼ U (0, 1). These probabilities are shown in Table 5.1, where the Fisher

p-values based on the normal approximation are also given. As discussed by

Dempster (2008), it is interesting to see that Fisher’s p-value should be inter-

preted as a part of r, the probability of “don’t know”. We note that for obtaining

sensible (p, q, r) output for assertions, Dempster (2008) considered a “dull” null,

which effectively increases the value of r. With MB, such a treatment seems to

be unnecessary, making MB attractive for hypothesis testing.
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6. The Many-Normal-Means Problem

We consider the many-normal-means problem Xi
ind
∼ N(µi, 1) with unknown

means µi for i = 1, ..., n. This is a very important practical problem, which we call

the second fundamental problem of practical statistics, while referring the first

fundamental problem to the binomial population mean problem (Pearson, 1920).

Here we use it as an illustrative example by taking n = 100 and considering the

sequence of assertions, concerning the number of “outliers” (µi 6= 0):

AK = {|{µi : µi 6= 0, i = 1, ..., n}| < K} (6.1)

for K = 1, 2, ..., where |S| denotes the number of elements in the set S.

To compute our (p, q, r) probabilities for AK in (6.1), we use the following

a-equation

Xi = µi + Φ−1(Ui) (Ui
iid
∼ U(0, 1), i = 1, ..., n)

One can use the predictive random set for U1, ..., Un, as discussed in Section

4. The needed technique is essentially the same as what is described below for

an alternative MB method, where we are concerned with a predictive DSM for

a subset of U1, ..., Un. The purpose here is to show that MB analysis can be

conducted at the assertion level, that is, the MB analysis can be tailored for the

assertion(s) of interest.

For each assertion AK , we will have no evidence for the truth of the assertion

because the posterior probability for each µi being zero is zero. Thus, we have

p = 0 for all AK , K = 1, 2, ... Note that the assertion AK can be stated as “there

are at most K − 1 outliers” in µ1, ..., µn. To compute the probability against the

truth of AK for each K = 1, 2, ..., we need only to find evidence that there does

not exist Ui1 , ..., Uin−K
, a sample n − K from U(0, 1), such that

Xij = Φ−1(Uij ) (j = 1, ..., n − K)

Computationally, one way of doing this is to first generate a predictive random

set for the ordered (n − K), instead of n, uniforms and then to assign each of

the n − K intervals, denoted by [aj , bj], for Ui1 , ..., Uin−K
to at most one of the

observed data {Xi}
n
i=1 in such a way that the number of matched interval-data

assignments is maximized. The required maximization is due to the fact that

we use the vacuous DSM for the unknown assignment permutation discussed
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in Section 4.3. The cases with unmatched intervals provide evidence against

the truth of AK . This matching problem is a simple version of the maximum

assignment problem. It can be solved in a straightforward manner by assigning

[aj, bj ] to the smallest Xi values that satisfy

aj ≤ Φ(Xi) ≤ bj

in the order j = 1, ..., n − K. This method creates the greedy matching and is

known as Glover’s algorithm (Glover, 1967; Soares and Stefanes, 2007).

To see the performance, we conducted a simulation study. To create the

observed data, four types of µis were considered:

(a) µi = 0 for all i = 1, ..., 100;

(b) 90 of µi are zero and the other 10 were generated from 2 + Expo(1);

(c) 90 of µi are zero and the other 10 were generated from 4 + Expo(1); and

(d) 90 of µi are zero and the other 10 were generated from 6 + Expo(1).

Each case was replicated 10 times, resulting in 10 sequences of probabilities for

the truth of the assertion that there are at least K outliers for K = 1, 2, .... These

probabilities are shown in Figure 6.1 (a)-(d). The fact that the probabilities for

the assertion that there is at least one outlier are spread quite evenly along the

vertical axis in Figure 6.1 (a) shows that the MB posterior probability is approx-

imately frequency-calibrated, which is supported by Fig. 6.2, the histogram of

the MB posterior probability obtained from a separated simulation study with

1,000 replicates of case (a). This can also be seen to some extent in Figure

6.1 (d). Case (b) is relatively difficult for detecting outliers because intuitively,

observed values in the interval, say, from 1 to 2, would cause problems. Even

in this difficult case, using both large probability values and their sequential

changes/differences would result in a good estimate of the number of outliers,

considering that the probabilities are intended to be used only for a kind of lower

bound on the number of outliers. Case (b) contains an interesting simulated data

set, where all the observed values in the data set are above -1.00. For this data

set, the large probability values are quite large and decrease very slowly in the

entire displayed range for K from 1 to 21. This is not surprising because the MB
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Figure 6.1: MB results for detecting outliers in 100 normal means. Each plot shows

the posterior probability Pr (there are at least K outliers) given each of 10 replicates of

simulated data based on generated normal means µ1, ..., µ100 having (a) no outliers; (b)

10 outliers generated from 2 + Expo(1); (c) 10 outliers generated from 4 + Expo(1); and

(d) 10 outliers generated from 6 + Expo(1). The case in (b) with large probabilities in

the displayed range corresponds to a simulated data having all the observed data values

larger than -1.00.

analysis here tries to find a subset of data that consists of as many as possible

data values under the condition that the subset looks like a typical sample from

N(0, 1). This phenomenon can be seen for some cases in Figure 6.1 (c) and (d),

where MB would do a pretty good job for detecting outliers.

We note that finding the number of “outliers” is important in the context of

multiple testing. The MB method provides a new approach to inference about
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Figure 6.2: The histogram of the probability against the assertion that “there are no

outliers (µi 6= 0)” (or for the assertion that “there is at least one outlier”) based on 1,000

simulated data sets from the model Xi

iid
∼ N(µi, 1) with µi = 0 for i = 1, ..., n = 100.

the fraction of µi that are zero (see, e.g., Efron (2004)). We are currently inves-

tigating MB methods, including MB approaches to statistical deconvolution, for

multiple testing.

7. Discussion

For credible and efficient fiducial and DS parametric inference or building

belief functions that have desired frequency properties, in this paper we proposed

WB and MB methods. The examples show that MB has the potential to resolve

challenging statistical inference problems. The idea of WB can also be used

to resolve non-uniqueness problems with DS (and fiducial) for a given sampling

model. When a class of a-equations is under consideration, the fact that we

“don’t know” which a-equation is to be used would lead us to using WB models

to capture the uncertainty about the choice of the a-equation.

We presented the work in the DS framework to build WB and MB models

by modifying BDSMs. Nevertheless, WB and MB-DSMs are indeed pure DSMs,
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where the conditional DSMs for X given θ in the context of a-equation (1.1)

should be interpreted as for situation-specific prediction rather than for data-

generation. We plan to make more detailed argument for this view elsewhere.

Also, more research is needed on defining efficient classes of weak beliefs from

which MB at both belief level and assertion level can be sought.
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