
The Dynamic ECME Algorithm

Yunxiao He

Yale University, New Haven, USA

Chuanhai Liu

Purdue University, West Lafayette, USA

Summary. The Expectation/Conditional Maximisation Either (ECME) algorithm has proven
to be an effective way of accelerating the Expectation Maximisation (EM) algorithm for many
problems. Recognising the limitation of using prefixed acceleration subspaces in ECME, we
propose a Dynamic ECME (DECME) algorithm which allows the acceleration subspaces to be
chosen dynamically. The simplest DECME implementation is what we call DECME-1, which
uses the line determined by the two most recent estimates as the acceleration subspace.
The investigation of DECME-1 leads to an efficient, simple, stable, and widely applicable
DECME implementation, which uses two-dimensional acceleration subspaces and is referred
to as DECME-2s. The fast convergence of DECME-2s is established by the theoretical result
that in a small neighbourhood of the maximum likelihood estimate (MLE), it is equivalent to a
conjugate direction method. The remarkable accelerating effect of DECME-2s and its variant
is also demonstrated with multiple numerical examples.

Keywords: Conjugate direction; EM algorithm; ECM algorithm; ECME algorithm; Square itera-
tive methods; Successive overrelaxation.

1. Introduction

After its booming popularity of more than 30 years since the publication of Dempster et al.

(1977), the EM algorithm is still expanding its application scope in various areas. At the

same time, to overcome the slow convergence of EM, quite a few extensions of EM have

been developed in such a way that they run faster than EM while maintaining its attractive

simplicity and stability. We refer to Varadhan and Roland (2008) for a recent nice review

of various methods for accelerating EM. In the present paper, we start by exploring the

convergence of the ECME algorithm (Liu and Rubin, 1994), which has proved to be a

simple and effective method to accelerate its parent EM algorithm; see, e.g., Sammel and

Ryan (1996), Kowalski et al. (1997), and Pinheiro et al. (2001), to name a few.

ECME is a simple extension of the Expectation/Conditional Maximisation (ECM) algo-

rithm (Meng and Rubin, 1993) which itself is an extension of EM. These three algorithms are

summarised as follows. Let Yobs be the observed data. Denote by L(θ|Yobs), θ ∈ Θ ⊂ Rp,

the observed log-likelihood function of θ. The problem is to find the MLE θ̂ that maximises

L(θ|Yobs). Let Y = (Yobs, Ymis) represent the complete data with Yobs augmented by the

missing data Ymis. As an iterative algorithm, the t-th iteration of EM consists of an E-step,

which computes Q(θ|Yobs, θt−1), the expected complete-data log-likelihood function given

2 Chuanhai Liu

the observed data and the current estimate θt−1 of θ, and an M-step, which finds θ = θt to

maximise Q(θ|Yobs, θt−1).

The ECM algorithm replaces the M-step of EM with a sequence of simpler constrained

or conditional maximisation (CM) steps, indexed by s = 1, · · · , S, each of which fixes some

function of θ, hs(θ). The ECME algorithm further partitions the S CM-steps into two

groups SQ and SL with SQ ∪ SL = {1, · · · , S}. While the CM-steps indexed by s ∈ SQ

(refereed to as the MQ-steps) remain the same as with ECM, the CM-steps indexed by

s ∈ SL (refereed to as the ML-steps) maximise L(θ|Yobs) in the subspace induced by hs(θ).

A more general framework that includes ECM and ECME as special cases is developed in

Meng and van Dyk (1997). However, most of the practical algorithms developed under this

umbrella belong to the scope of a simple case, i.e., the parameter constraints are formed

by creating a partition, P, of θ as (θ1, · · · , θS) with associated dimensions (d1, · · · , dS).

Mathematically we have hs(θ) = (θ1, · · · , θs−1, θs+1, · · · , θS) for s = 1, · · · , S.

The advantage of ECME over EM in terms of efficiency depends on the relationship

between the slowest converging directions of EM and the acceleration subspaces of ECME,

i.e., the subspaces for the ML-steps. For example, when the former is effectively embedded

within the latter, ECME achieves its superior gain of efficiency over its parent EM. In prac-

tise, we usually have no information about the convergence of EM before obtaining the MLE

and cannot select the prefixed acceleration subspaces of ECME accordingly. Hence small

or minor efficiency gain by ECME is expected in some situations. This is illustrated by the

two examples in Section 2 and motivates the idea of dynamically constructing subspaces for

applying the ML-step. This idea is formulated as the generic DECME algorithm. The sim-

plest implementation of DECME is what we call DECME-1. It uses the line determined by

the two most recent estimates as the acceleration subspace for the next ML-step and is sim-

ilar to the classical Successive Overrelaxation (SOR) method (Frankel, 1950; Young, 1954;

Salakhutdinov and Roweis, 2003; Hesterberg, 2005, among many others although sometimes

under different names). However, as shown later in Section 3.2, DECME-1 suffers from

what is known as the zigzagging problem (see Figure 1 for an illustration).

Motivated by the zigzagging phenomenon observed on DECME-1, we propose an effi-

cient DECME implementation, called DECME-2. It is shown that, under some common

assumptions, DECME-2 is equivalent to a conjugate direction method, which has been

proposed in several different contexts, e.g., solving linear systems (Concus et al., 1976)

and nonorthogonal analysis of variance (Golub and Nash, 1982). Jamshidian and Jennrich

(1993) propose to use the conjugate direction method to accelerate EM. They call the re-

sulting method AEM and demonstrate its dramatically improved efficiency. However, AEM

is not as popular as one would expect it to be. This is perhaps due to its demands for extra

efforts for coding the gradient vector of L(θ|Yobs), which is problem specific and can be

expensive to evaluate.

Compared to AEM, DECME-2 is simpler to implement because it does not require

computing the gradient of L(θ|Yobs). As DECME-1, the only extra requirement for imple-

menting DECME-2 is a line search scheme which can be used for almost all EM algorithms.

Furthermore, the required loglikelihood evaluation is typically coded with EM implementa-

tion for debugging and monitoring convergence. However, it is known that the line search

The DECME Algorithm 3

schemes without access to gradient information can take a large number of loglikelihood

evaluations to run. To remedy this problem, we propose a simplified version of DECME-2,

called DECME-2s . DECME-2s can significantly reduce the number of loglikelihood evalu-

ations required in each iteration while maintaining the fast convergence rate of DECME-2.

Numerical results show that DECME-2 and DECME-2s achieve dramatic improvement

over EM in terms of both the number of iterations and CPU time.

The remaining of the paper is arranged as follows. Section 2 provides a pair of motivating

ECME examples. Section 3 defines the generic DECME algorithm, discusses the conver-

gence of DECME-1, and proposes the two efficient novel implementations of DECME. The

relation between the DECME algorithm and the SQUAREM algorithm of Varadhan and

Roland (2008) is also discussed. Section 4 presents several numerical examples to compare

the performance of the two new methods and other state-of-art EM accelerators. Section 5

concludes with a few remarks.

2. Two Motivating ECME Examples

Following Dempster et al. (1977), in a small neighbourhood of θ̂, we have approximately

θ̂ − θt = DMEM (θ̂ − θt−1), (1)

where the p×p matrix DMEM is known as the missing information fraction and determines

the convergence rate of EM. More specifically, each eigenvalue of DMEM determines the

convergence rate of EM along the direction of its corresponding eigenvector (see Appendix

A).

It is shown in Liu and Rubin (1994) that ECME also has a linear convergence rate

determined by the p × p matrix DMECME that plays the same role for ECME as DMEM

does for EM. Obviously, ECME will be faster than EM if the largest eigenvalue of DMECME

is smaller than that of DMEM . With the following two examples we illustrate that it is

the choice of the acceleration subspaces by ECME that determines the relative magnitude

of the dominating eigenvalues of DMEM and DMECME , and hence the relative efficiency

of EM and ECME. All the numerical examples in this paper are implemented in R (R

Development Core Team, 2010).

2.1. A Linear Mixed-effects Example
Consider the rat population growth data in Gelfand et al. (1990, Tables 3, 4). Sixty young

rats were assigned to a control group and a treatment group with n = 30 rats in each. The

weight of each rat was measured at ages x = 8, 15, 22, 29, and 36 days. We denote by

yg
i the weights of the ith rat in group g with g = c for the control group and g = t for

the treatment group. The following linear mixed-effects model (Laird and Ware, 1982) is

considered in Liu (1998):

yg
i |θ ∼ N(Xβg + Xbg

i , σ2
gI5), bg

i ∼ N(0,Ψ), (2)

for i = 1, · · · , n and g = c and t, where X is the 5×2 design matrix with a vector of ones as

its first column and the vector of the five age-points as its second column, βg = (βg,1, βg,2)
′

4 Chuanhai Liu

contains the fixed effects, bg
i = (b

(g)
i,1 , b

(g)
i,2)′ contains the random effects, Ψ > 0 is the

2 × 2 covariance matrix of the random effects, and θ denotes the vector of the param-

eters, i.e., θ = (βc,1, βc,2, βt,1, βt,2,Ψ1,1,Ψ1,2,Ψ2,2, σ
2
c , σ2

t)′. Let β = (βc,1, βc,2, βt,1, βt,2)
′

and σ2 = (σ2
c , σ2

t)′. The starting point for running EM and ECME is chosen to be

β = (0, 0, 0, 0)′, σ2 = (1, 1)′, and Ψ = I2. The stopping criterion C1 in (8) was used

(see Section 4.1).

For this example, ECME converges dramatically faster than EM. Specifically, it takes

5, 968 iterations for EM to converge. With the same setting, ECME (version 1 in Liu and

Rubin (1994) with θPQ
= (Ψ1,1,Ψ1,2,Ψ2,2, σ

2′

)′ and θPL
= β) uses only 20 iterations. The

gain of ECME over EM is explained clearly by the relation between the slow converging

directions of EM and the partition of the parameter space for ECME. From Table 1, the two

largest eigenvalues of DMEM are 0.9860 and 0.9746, which are close to 1 and, thereby, make

EM converge very slowly. From Table 2, it is clear that the first four “worst” directions

of EM fall entirely in the subspace determined by the fixed effect β. Since θSL
= β for

ECME, the slow convergence of EM induced by the four slowest directions is diminished by

implementing the ML-step along the subspace of β. This is clear from the ECME row in

Table 1, where we see the four largest eigenvalues of DMEM become 0 in DMECME while

the five small eigenvalues of DMEM remain the same for DMECME .

2.2. A Factor Analysis Example
Consider the confirmatory factor analysis model example in Jöreskog (1969), Rubin and

Thayer (1982), and Liu and Rubin (1998). The data is provided in Liu and Rubin (1998)

and the model is as follows. Let Y be the observable nine-dimensional variable on an

unobservable variable Z consisting of four factors. For n independent observations of Y , we

have

Yi|(Zi, β, σ2) ∼ N(Ziβ, diag(σ2
1 , · · · , σ2

9)), (3)

where β is the 4×9 factor-loading matrix, σ2 = (σ2
1 , · · · , σ2

9)′ is called the vector of unique-

nesses, and given (β, σ2), Z1, · · · , Zn are independently and identically distributed with

Zi ∼ N(0, I4) for i = 1, · · · , n. In the model, there are zero factor loadings on both factor

4 for variables 1-4 and on factor 3 for variables 5-9. Let βj·, j = 1, · · · , 4, be the four rows

of β, then the vector of the 36 free parameters is θ = (β1·, β2·, β3,1−4, β4,5−9, σ
2)′. Liu and

Rubin (1998) provided detailed comparison between EM and ECME, which shows that the

gain of ECME over EM is impressive, but not as significant as ECME for the previous linear

mixed-effects model example in Section 2.1.

The slow convergence of EM for this example is easy to explain from Table 3 which

shows that DMEM has multiple eigenvalues close to 1. From Table 4, the eigenvector

corresponding to the dominant eigenvalue of DMEM falls entirely in the subspace spanned

by β1 and β2. This clearly adds difficulty to the ECME version used by Liu and Rubin

(1998) where θSQ
= (β1·, β2·, β3,1−4, β4,5−9)

′ and θSL
= σ2. For this version of ECME, the

eigenvalues of DMECME are given in the ECME-1 row of Table 3, where we see that the

dominant eigenvalue of DMEM remains unchanged for DMECME . To eliminate the effect

of the slowest direction of EM, we can try another version of ECME by letting θSQ
= σ2

The DECME Algorithm 5

and θSL
= (β1·, β2·, β3,1−4, β4,5−9)

′. The eigenvalues of DMECME for this version are given

in the ECME-2 row of Table 3. Although the second version of ECME is more efficient than

the first version, it is difficult in general to eliminate all the large eigenvalues in DMEM

by accelerating EM in a fixed subspace. For example, the eigenvector corresponding to the

second largest eigenvalue of DMEM shown in Table 4 is not in the subspace spanned by

any subset of the parameters.

3. The DECME Algorithm

3.1. The Generic DECME Algorithm
As shown in last section, the efficiency gain of ECME over EM based on static choices of

the acceleration subspaces may be limited since the slowest converging directions of EM

depend on both the data and the model. It is thus expected to have a great potential to

construct the acceleration subspaces dynamically based on, for example, the information

from past iterations. This idea is formulated as the following generic DECME algorithm.

At the tth iteration of DECME, the algorithm proceeds as follows.

The Generic DECME Algorithm: the tth iteration with the input θ̃t−1

E-step: This is the same as the E-step of the original EM algorithm;

M-step: Run the following two steps:

CM-step: Compute θt = argmaxθQ(θ|θ̃t−1) as in the original EM algorithm;

Dynamic CM-step: Compute θ̃t = argmaxθ∈Vt
L(θ|Yobs), where Vt is a low-

dimensional subspace with θt ∈ Vt.

As noted in Meng and van Dyk (1997), the ML-steps in ECME should be carried

out after the MQ-steps to ensure convergence. Under this condition, ECME with only a

single ML-step is obviously a special case of DECME. In cases where multiple ML-steps

are performed in ECME, a slightly relaxed version of the Dynamic CM-step, i.e., simply

computing θ̃t such that L(θ̃t|Yobs) ≥ L(θt|Yobs), will still make DECME a generalisation of

ECME. In either case, the monotone increase of the loglikelihood function in DECME is

guaranteed by the nested EM algorithm (Dempster et al., 1977; Wu, 1983), which ensures

the stability of DECME. The convergence rate of DECME relies on the structure of the

specific implementation, i.e., how Vt is constructed.

3.2. DECME-1: a Simple but Inefficient Special Case of DECME
Let {θt − θ̃t−1} represent the linear subspace spanned by the vector θt − θ̃t−1. DECME-

1 is obtained by specifying Vt = θt + {θt − θ̃t−1} in the Dynamic CM-step of DECME,

i.e., θ̃t = θt + αtdt, dt = θt − θ̃t−1, and αt = argmaxαL(θt + αdt|Yobs). The so-called

relaxation factor αt can be obtained by a line search. See Figure 2 for an illustration of the

DECME-1 iteration.

The reason that DECME-1 can be used to accelerate EM is clear from the following

theorem with the proof given in Appendix B, which implies that in a small neighbourhood

6 Chuanhai Liu

of the MLE, a point with larger loglikelihood value can always be found by enlarging the

step size of EM.

Theorem 3.1. In a small neighbourhood of θ̂ (or equivalently, for sufficiently large t),

the relaxation factor αt of DECME-1 is always positive.

The conservative EM updates are illustrated in Figure 1 for a two-dimensional artificial

example. For simplicity, it has also been proposed to choose αt as a fixed positive number

(e.g., Lange, 1995). We call this version with fixed αt the SORF method. Let λ1 and λp

be the largest and smallest eigenvalues of I−1
comIobs (see Appendix B for detailed discussion).

It is well known that SORF achieves its optimal convergence rate (λ1 − λp)/(λ1 + λp) if

αt = 2/(λ1 + λp) − 1 for any t (see, e.g., Salakhutdinov and Roweis, 2003; Roland, 2010).

In the past, the theoretical argument for DECME-1 has been mainly based on this fact,

which is obviously insufficient. The following theorem with the proof given in Appendix C

sheds new lights on the convergence of DECME-1.

Theorem 3.2. For a two-dimensional problem (i.e., p = 2) and in a small neighbour-

hood of θ̂ (or equivalently, for sufficiently large t), the following results hold for SOR:

1.) αt = αt−2;

2.) DECME-1 converges at least as fast as the optimal SORF, and the optimal SORF

converges faster than EM; and

3.) DECME-1 oscillates around the slowest converging direction of EM; The DECME-

1 estimates from the odd-numbered iterations lie on the same line and so do those

from the even-numbered iterations; Furthermore, the two lines intersect at the MLE

θ̂.

The zigzagging phenomena of DECME-1 revealed by conclusion 3 is illustrated in Figure

1. For the case of p > 2, it is interesting to see that the relaxation factors αt generated

from DECME-1 also have a similar oscillating pattern as that for p = 2 (conclusion 1).

This is illustrated in Figure 3. The top panel of Figure 3 shows the relaxation factors for

the two-dimensional example used to generate Figure 1 and the lower panel shows those

for a nine-dimensional simulated example. The nine-dimensional example is generated by

simulating the behaviour of EM in a small neighbourhood of the MLE for the linear mixed-

effects example in Section 2.1.

3.3. DECME-2: a Basic Scheme with Quadratic Convergence
The zigzagging phenomenon of DECME-1 shown in Figure 1 suggests intuitively a line

search along the line connecting the zigzag points, as shown by one of the red dashed lines.

The resulting procedure converges immediately for two-dimensional quadratic functions,

basic approximations for iterative optimization methods. This motivated us to consider

a basic scheme that effectively considers two-dimensional acceleration subspaces. Such a

basic scheme, called DECME-2, is discussed here. It is shown that DECME-2 has a very

attractive theoretical property, i.e., it is equivalent to a conjugate direction method; see

Theorem 3.3.

The DECME Algorithm 7

Given the starting point θ̃0, DECME-2 takes one DECME-1 iteration to obtain θ̃1. The

tth (t > 1) iteration of DECME-2 consists of two steps: a DECME-1 iteration producing an

intermediate point θ̃⋆
t and a line search along the line connecting θ̃t−2 and θ̃⋆

t to obtain θ̃t.

This algorithm is illustrated in Figure 2 is formally described in Table 5 in the framework

of the generic DECME algorithm. We note that θ̃t is actually the point that maximises

L(θ|Yobs) over the two-dimensional subspace Vt = θ̃t−1 + {θ̃t−1 − θ̃t−2, θt − θ̃t−1} under

certain conditions. This can be seen from the proof, given in Appendix D, of the following

theorem, which demonstrates the efficiency of DECME-2.

Theorem 3.3. In a small neighbourhood of the MLE, DECME-2 with exact line search

is equivalent to the conjugate direction method AEM.

The most notable property of a conjugate direction method is that it converges to

MLE after at most p iterations, assuming that the loglikelihood is a quadratic function of

p parameters (Luenberger, 2003, pg. 240). In light of this observation, it is a common

practise to restart a conjugate direction method after a complete cycle of p iterations for

nonquadratic problems. More importantly, this property shows that a complete cycle of

a conjugate direction method solves a quadratic problem exactly as Newton-Raphson’s

method does in one iteration. It can be proved that a conjugate direction method like

DECME-2 has a convergence rate of order two w.r.t. each complete cycle of p iterations

(Luenberger, 2003, pg. 254). This implies a dramatic improvement of DECME-2 over EM.

As noted in Section 1, the evaluation of the gradient vector of L(θ|Yobs) required for

AEM is problem specific and thus demands substantial programming efforts. Compared to

AEM, DECME-2 is much easier to implement since the line search scheme can be performed

by utilizing the line search functions provided in popular software packages. For example,

the optimise function in R was used for our numerical examples in Section 4. In general,

these line search functions are developed primarily for unconstrained problems. Our way of

using the optimise function is described as follows. Denote the current estimate by θ and

the search direction by d. The feasible region, i.e., an interval I such that θ + αd is valid

for any α ∈ I, is first computed. Then the line search is strictly enforced inside the feasible

region by passing the interval I to the optimise function through its option interval=; see

detailed discussion about the computation of I in Appendix E. Furthermore, the accuracy

of the line search can be controlled, e.g., by setting tol = 0.01 in the optimise function.

The idea behind DECME-2 is very similar to the parallel tangent (PARTAN) method

for accelerating the steepest descent method (Shah et al., 1964). PARTAN can be viewed as

a particular implementation of the conjugate gradient method (Fletcher and Reeves, 1964),

built upon the method of Hestenes and Stiefel (1952) for solving linear systems. It is also

worth noting that PARTAN has certain advantages over the conjugate gradient method as

discussed in Luenberger (2003, p. 257). For example, the convergence of PARTAN is more

reliable than the conjugate gradient method when inexact line search is used as is often the

case in practise.

8 Chuanhai Liu

3.4. DECME-2s : an Efficient DECME Implementation
While DECME-2 has the attractive quadratic convergence, its perfornamce in terms of CPU

can be further improved by reducing the CPU time for the two required line searches. Early

such efforts can be found in He (2009). A new version, called DECME-2s, is obtained by

replacing the two (inexact) line searches of DECME-2 with a single inexact two-dimensional

search based on a two-dimenional quadratic approximation. Although the idea is simple, as

with one-dimensional or line search, implementation of a two-dimensional or plane search

is somewhat tedious and is given below. However, it should be noted that the two line

searches in DECME-2 can be replaced with any method optimising the two-dimensional

function ft(x, y) = L[θt + x(θt − θ̃t−1) + y(θt − θ̃t−2)|Yobs] without compromising the

convergence rate.

Denote by ft(x, y) = L[θt+x(θt−θ̃t−1)+y(θt−θ̃t−2)|Yobs] the two-dimensional objective

function, i.e., the actual likelihood function restricted over the two-dimensional acceleration

subspace of DECME-2. We construct and optimise the quadratic approximation to ft(x, y):

f∗

t (x, y) = f0 + (x, y)(a, b)′ + (x, y)H(x, y)′, (4)

which has six free parameters f0, a, b, and two diagonal element (c, d) and an off-diagonal

element e of the 2 × 2 symmetric matrix H.

To determine the function f∗

t (x, y), six points with their corresponding loglikelihood val-

ues are required. Three pairs, (θt, L(θt|Yobs)), (θ̃t−1, L(θ̃t−1|Yobs)), and (θ̃t−2, L(θ̃t−2|Yobs)),

are already avaialble. The other three points, denoted by ξ
(i)
t (i = 1, 2, 3), are chosen from

the following three directions: d
(1)
t = θt − θ̃t−1, d

(2)
t = θt − θ̃t−2, and d

(3)
t = θ̃t−1 − θ̃t−2.

Although not explicitly stated, we have utilized the conventional coordinate system with

the origin θt and the basis (θt − θ̃t−1, θt − θ̃t−2) in defining the two functions ft(x, y) and

f∗

t (x, y). Under this convenient coordinate system, the three points θt, θ̃t−1, and θ̃t−2

have coordinates (0, 0), (−1, 0), and (0,−1), respectively. For each direction d
(i)
t , let ᾱ

(i)
t

be the maximum feasible step size such that θt + α
(i)
t d

(i)
t is a valid estimate of θ for any

α
(i)
t ∈ [0, ᾱ

(i)
t) (see appendix E for more discussion). Then ξ

(i)
t = θt + α

(i)
t d

(i)
t , where

α
(i)
t = min(1, 0.9ᾱ

(i)
t). When α

(1)
t = 1, ξ

(1)
t and θ̃t−1 are symmetric about θt. The same

is true for ξ
(2)
t and θ̃t−2 if α

(2)
t = 1. The particular number 0.9 is used to prevent ξ

(i)
t

from being too close to the boundary. In the above conventional coordinate system, the

coordinates of ξ
(i)
t , i = 1, 2, 3, are (α

(1)
t , 0), (0, α

(2)
t), and (α

(3)
t ,−α

(3)
t), respectively.

The stationary point (x̂, ŷ) of f∗

t (x, y) can then be easily computed as

(x̂t, ŷt) =
1

2
(a, b)H−1, (5)

where, suppressing Yobs for readability,

a =
L(ξ

(1)
t)−L(θt)−(α

(1)
t)2[L(θ̃t−1)−L(θt)]

α
(1)
t +(α

(1)
t)2

, b =
L(ξ

(2)
t)−L(θt)−(α

(2)
t)2[L(θ̃t−2)−L(θt)]

α
(2)
t +(α

(2)
t)2

, (6)

and the elements of H are determined by

c = L(θ̃t−1) − L(θt) + a, d = L(θ̃t−2) − L(θt) + b,

e = −L(ξ
(3)
t)−L(θt)−(a−b)α

(3)
t −(c+d)(α

(3)
t)2

2(α
(3)
t)2

.
(7)

The DECME Algorithm 9

Let d
(4)
t = x̂t(θt − θ̃t−1) + ŷt(θt − θ̃t−2) and similarly find the maximum feasible step size

ᾱ
(4)
t . Compute ξ

(4)
t = θt + α

(4)
t d

(4)
t , where α

(4)
t = min(1, 0.9ᾱ

(4)
t). Then θ̃t is chosen to be

the point with maximum loglikelihood values among {θt, ξ
(1)
t , ξ

(2)
t , ξ

(3)
t , ξ

(4)
t }.

Although individual ξ
(i)
t ’s, i = 1, · · · , 4, are not necessarily better than θt in terms of

loglikelihood, it is easy to see that L(θ̃t|Yobs) ≥ L(θt|Yobs). In addition, (x̂t, ŷt) maximises

the function f∗

t (x, y) when −H is positive definite. Thus the point ξ
(4)
t is expected to

be very close to the maximum of ft(x, y), especially when the current estimate is near the

MLE.

A one-dimensional quadratic function can be similarly constructed for computing the

first and the restarting iterations. However, to keep the programming simple, we didn’t

perform the restarting step for DECME-2s in our numerical examples. In the first iteration

of DECME-2s, only one EM iteration is computed without doing any acceleration.

An illustration of DECME-2s is provided in Figure 2. A pseudocode summarising the

computations in DECME-2s is provided in Table 6. The first iteration of DECME-2s re-

quires one EM iteration and two loglikelihood evaluations. For all other DECME-2s itera-

tions, one EM iteration and five loglikelihood evaluations are required. When terminated

after t iterations, DECME-2s uses t EM iterations and 5t − 3 loglikelihood evaluations,

resulting in a dramatic reduction from DECME-2.

3.5. Relationship to the SQUAREM Algorithm
DECME-2 is not the first algorithm that is motivated by the slow convergence of EM and

SOR-like algorithms such as DECME-1. In Varadhan and Roland (2008), an analogy was

made between SOR (under the name of Steffensen-type methods for EM or simply STEM)

and the gradient descent method (under the name of Cauchy’s method). An idea for acceler-

ating the gradient descent (the Cauchy-Barzilai-Borwein method) was then adopted to accel-

erate EM and the resulting algorithm was called the squared iterative method (SQUAREM).

Several versions of SQUAREM were proposed and the scheme SqS3 was recommended in

Varadhan and Roland (2008). Two different implementations of SqS3, SQUAREM1 and

SQUAREM2, have been developed by the authors of Varadhan and Roland (2008), where

loglikelihood evaluation is required by SQUAREM1, but not by SQUAREM2. Empirical

results in Varadhan and Roland (2008) demonstrated the superiority of SQUAREM over

EM and SOR or DECME-1.

There are some similarities between DECME and SQUAREM. Both DECME-2 and

SQUAREM use two-dimensional acceleration subspaces. However, they are quite different

in many aspects. Each iteration of DECME-2 and DECME-2s contains one EM iteration. A

two-dimensional acceleration subspace is then determined by the current EM iteration and

the previous DECME iteration. SQUAREM requires two EM iterations for the “square”

acceleration step (step 7 in Table 1 of Varadhan and Roland, 2008). Furthermore, Theorem

3.3 provides a strong theoretical adjustment for the fast convergence of DECME-2 and

DECME-2s .

Another major distinction between DECME and SQUAREM comes from the different

means of stabilizing the algorithms. A common problem for acceleration schemes such as

SQUAREM and DECME is that the model constraints cannot be automatically handled.

10 Chuanhai Liu

The details of our treatment of this problem are given in Sections 3.3, 3.4, and Appendix

E. Although these procedures are very simple to implement, they do need some problem-

specific information. In SQUAREM, the third EM iteration (step 8 in Table 1 of Varadhan

and Roland, 2008) is not required for acceleration purpose. Rather, it is utilized primarily

for stabilizing the algorithm. In addition, some other stabilization techniques are also used

in SQUAREM1 and SQUAREM2. For example, in SQUAREM1 the loglikelihood is used for

detecting violations to constraints: an estimate is considered to be invalid if the loglikelihood

cannot be computed. The application of these stabilizing strategies in SQUAREM avoids

using any problem-specific information except for the EM iteration itself.

It is easy to see that the stabilization methods in SQUAREM can also be used in DECME

to avoid the simple model-specific procedures for feasible region calculation. However, we

didn’t adopt their methods in our implementation since these strategies may fail for some

commonly used models. For many statistical models, the model constraints are sometimes

more restrictive than the constraints defining the domain of the loglikelihood. For instance,

in the factor analysis example in Section 2.2, the loglikelihood computation merely requires

that the variance matrix β′β +diag(σ2) to be positive definite. However, the factor analysis

model specifies that diag(σ2) is positive definite, which defines a feasible region smaller than

the domain of the loglikelihood. Similar problems also arise for the mixed-effects example

in Section 2.1 and the multivariate Student-t example in Section 4.4. As a consequence,

the model constraints can still be violated even loglikelihood is used as a safeguard. These

points are further illustrated with the numerical examples in Section 4.

4. Numerical Examples

One of the advantages of DECME and SQUAREM is that they can be applied whenever EM

is available. Two other popular EM accelerators, the Alternating ECM (AECM) algorithm

of Meng and van Dyk (1997) and the parameter-expanded EM (PX-EM) algorithm of Liu

et al. (1998), accelerate EM by making use of specific model structures. As a consequence,

they can only be used in limited situations. In this section, we use four examples to

compare the performance of EM, DECME-2, DECME-2s , SQUAREM1, and SQUAREM2.

The comparison to PX-EM and AECM is done for two of the four examples for which they

are available. We omit the comparison with DECME-1 here because it is conclusive that

DECME-1 is less favorable based on the theoretical results in Section 3.2 and the simulation

results in previous studies.

4.1. The Setting for the Numerical Experiments

Our comparison study focuses on the efficiency and stability of different algorithms. Here

we discuss our choice of starting values, stopping criteria, and the different measures we

report for all examples except for the normal-mixture example in Section 4.5, where slightly

different criteria were used for the simulation study involvs many simulated data sets.

All algorithms were run 5, 000 times with randomly generated starting points. Each run

was terminated by a stopping rule combining three criteria (with minor modifications for

The DECME Algorithm 11

SQUAREM, see below):

C1 : L(θ̃t|Yobs) − Lmax > −ǫL;

C2 : ‖θ̃t − θ̃t−1‖2 < ǫθ;

C3 : t > tmax.

(8)

The maximum log-likelihood Lmax used in C1 was obtained by running EM with reasonable

starting values and very stringent stopping criteria. Criterion C2 is commonly used in

practise. However, the use of C2 alone for comparing different methods is unfair because

fast algorithms usually converge to better estimates (in terms of loglikelihood) than slow

algorithms. Criterion C1 was used to resolve this problem. In addition, C1 also prevents

unnecessary runs for slow algorithms since it can take a large number of iterations for them

to fine-tune the estimation. A large value of tmax in C3 was used to allow the algorithms to

run sufficiently long enough to explore their convergence behavior. For SQUAREM, we kept

the two stopping criteria used in the code developed by its authors (C3 and a modification

of C2); their code was only modified to enforce C1.

We set ǫL = 10−6, ǫθ = 10−8, and tmax = 30, 000. Under this configuration, C2 and

C3 are usually more stringent than C1. As a consequence, C2 and C3 only function if an

algorithm moves very slowly around a non-optimal estimation or if the algorithm converges

to a local rather than the global maximum. If an algorithm was terminated by C2 or C3, the

gradient of the loglikelihood at the final estimation was calculated using the grad function in

the R package numDeriv. This is used to verify if the final estimate is a maximum. Denote

the calculated gradient by g̃ and let ‖g̃‖∞ be its l∞ norm, the largest absolute component

of g̃. To report the numerical results, each run of each algorithm was classified into one of

the three categories:

1) “successful”: either the program was terminated by C1 or ‖g̃‖∞ < ǫg, ǫg = 10−4;

2) “non-optimal”: the program was terminated by C2 or C3, but ‖g̃‖∞ ≥ ǫg;

3) “invalid”: either the program crashed without providing any estimate or it produced

an invalid estimate, i.e., (i) the model constraints were violated, or (ii) the estimate

was so close to the boundary that the gradient was not computable by the R function

grad.

The results for the first three examples are summarised in Tables 7-11. For each algo-

rithm, we report the number of “successful” cases (#(suc)), “non-optimal” cases (#(non)),

and “invalid” cases (#(inv)) based on the 5, 000 runs. These results facilitate the compari-

son of stability. As discussed in Varadhan and Roland (2008), the number of EM iterations

measures the rate of convergence, while the CPU time is a measure of the overall computa-

tional efficiency. For comparison in terms of efficiency, we report the mean and the standard

deviation (in bracket) of the number of EM iterations (#(EM)), number of loglikelihood

evaluations (#(llk)), and CPU time (CPU (s)) from the “successful” runs. To make the

comparison more meaningful, the mean and the standard deviation were computed after

excluding extreme values with the following simple rule of thumb: the observations beyond

12 Chuanhai Liu

3 ∗ IQR are considered as extreme, where IQR represents the interquartile range. The

number of observations/runs after excluding extreme values (#(obs)) is also reported.

It should be noted that EM, PX-EM, AECM, and SQUAREM2 do not need loglike-

lihood evaluations originally. To implement criterion C1, we computed the loglikelihood

once in each iteration, which enforced some seemingly unnecessary overhead. However, it

is a common practise to monitor the loglikelihood increase when implementing EM-type

algorithms. Moreover, one loglikelihood evaluation is typically much faster than one EM

iteration. Hence, this treatment does not change the overall conclusion of the compari-

son. This is especially true for the comparison to SQUAREM because each iteration of

SQUAREM runs three EM iterations with only one loglikelihood evaluation.

4.2. The Linear Mixed-effects Example
Consider the mixed-effects example of Section 2.1. Since the convergence speed of EM was

very sensitive to the choice of starting values for this example, we used two different sets

of starting values. The first set has the starting values with (i) each component of the

unconstrained β chosen from U(−10, 10), where U(a, b) represents the uniform random

distribution over the interval (a, b), (ii) each of Ψ1,1, Ψ2,2, σ2
c , and σ2

t chosen from U(0.1, 20),

and (iii) Ψ1,2 set to 0. The second set was obtained similarly, but with the two uniform

distributions replaced by U(−50, 50) and U(0.1, 100). Since EM can be extremely slow

for the second set of starting values, we set tmax = 2 × 105 for criterion C3 in (8). The

corresponding results are shown in Tables 7 and 8.

The columns #(suc/non/inv) in Tables 7 and 8 show that EM almost never failed

for this example. While EM is obviously the best in terms of stability, SQUAREM1 and

SQUAREM2 showed poor performance, especially for the second set of starting values where

SQUAREM1 failed with invalid solutions for 312 times; this is due to the reason explained

in Section 3.5. Both DECME-2 and DECME-2s failed with invalid solutions occasionally,

which should not have happened theoretically and is due to accumulated numerical errors

along the boundary. In theory, an EM update of a valid estimate should always be valid.

However, if the input value is close to boundary, numerical errors may cause the output of

an EM iteration to fall outside of the constrained area.

In terms of number of EM iterations, DECME-2 is clearly the best and outperforms

EM by factors of about 70 (116 versus 8, 013 on average) and 190 (299 versus 57, 072 on

average) for the two sets of starting values. DECME-2 is also faster than the two SQUAREM

methods by factors of more than 10 and more than 20 for the two sets of examples. This

result is consistent with the theoretical result on the fast convergence of DECME-2. As

expected, the number of iterations for DECME-2s (146 and 432 on average for the two

sets of examples, respectively) did not increase much compared to DECME-2. Thus not

surprisingly, DECME-2s is the best in terms of CPU time: it outperformed EM by a factor

of about 16 and 40 on average under the two sets of starting values. DECME-2s is also

about two and four times faster than SQUAREM for the two set of starting values.

A PX-EM implementation for a type of linear mixed-effects model has been proposed in

Liu et al. (1998). However, it is not applicable to the current example, where the subjects

are assumed to be from two different groups with different variances of the error terms.

The DECME Algorithm 13

In this case, each iteration of PX-EM needs to solve a weighted-least-square problem with

unknown variances, which does not have a closed-from solution.

4.3. The Factor Analysis Example
Here we used the factor analysis example in Section 2.2, but with a minor modification.

Note that in the original model, the first two rows of the loading matrix β are still subject

to an orthogonal rotation. To make the comparison more reliable, we further enforced

zero factor loading on factor 1 for variable 1. This modified model has 35 free parameters

θ = (β1,2−9, β2·, β3,1−4, β4,5−9, σ
2)′.

The difficulty of using EM to fit a factor analysis model has been reported in a number of

papers and at least three issues have been discussed. First, it is reported in Liu and Rubin

(1998) that the extremely slow increase of loglikelihood far before convergence makes it

difficult to assess the convergence of EM. Second, the possible presence of multiple local

maximums have been discussed (Rubin and Thayer, 1982; Bentler and Tanaka, 1983; Duan

and Simonato, 1993, etc.). Third, optimisation algorithms may converge to improper

(Heywood) solutions, i.e., certain components of the estimated uniqueness are close to zero

(see Jöreskog, 1967; Duan and Simonato, 1993, and the references therein).

The PX-EM implementation for explanatory factor analysis proposed in Liu et al. (1998)

cannot be directly applied for the current confirmatory factor analysis model because the

parameter expanded model does not preserve the observed-data likelihood due to the con-

straints of zero factor loadings. To remedy this problem, we change the expansion param-

eter, the matrix α in Liu et al. (1998), to a diagonal matrix. The PX-EM implementation

under this expanded model is obtained by replacing α(t+1) = C
(t+1)
zz in Liu et al. (1998)

with a diagonal matrix α(t+1) where diag(α(t+1)) = diag(C
(t+1)
zz).

The initial value for each component of the unconstrained β was chosen from U(−50, 50).

Each component of the constrained parameter σ2 was started from U(0.1, 100). The results

for the 5, 000 runs of this example are shown in Table 9. As shown by the number of “non-

optimal” cases in Table 9, all algorithms stopped prematurely for a large proportion of runs.

This happened most frequently for EM (1,486 out of 5,000 runs), whereas DECME-2s was

the best (1,135 out of 5,000 runs). All the “successful” cases were terminated by criterion

C1, i.e., the final loglikelihood estimations for all “successful” cases were essentially the

same. Table 10 shows the total number of Heywood cases (#(Heywood)) and the number of

Heywood cases among the “non-optimal” cases (#(Heywood | non)) for all seven algorithms.

It is clear that the occurrence of “non-optimal” cases from DECME and SQUAREM were

all due to the Heywood problem, i.e., these algorithms stopped prematurely around the

boundary. EM and PX-EM didn’t show a similar pattern about their premature stops.

One explanation is that both EM and PX-EM were so slow that they were terminated by

criterion C2 or C3, as discussed in Liu and Rubin (1998). Furthermore, if we relax criterion

for defining “successful” runs by increasing ǫg from 10−4 to 10−3, a large number of “non-

optimal” cases will enter the “successful” group (#(near optimal) in Table 10). For the four

DECME and SQUAREM algorithms, all these transition cases belong to Heywood cases

and their estimations are clearly not in the same neighborhood of the estimations from the

“successful” cases.

14 Chuanhai Liu

In terms of efficiency, DECME-2 is the best in terms of convergence rate and it is

about 30 times faster than EM on average. DECME-2s is the best and it outperforms

EM by a factor of 10 on average in terms of CPU time. DECME-2s is also better than

SQUAREM1 and SQUAREM2, in terms of both convergence rate (82 EM iterations versus

269 EM iterations) and CPU time (0.25 seconds per run versus about 0.3 seconds per run

on average).

We note that PX-EM is only slightly more efficient than EM for this example as com-

pared to its performance for the examples in Liu et al. (1998). As discussed in Liu et al.

(1998), the fast convergence of PX-EM is due to the adjustment on the estimation for the

deviations between C
(t+1)
zz and its expectation under the original EM model. For the ex-

planatory factor analysis model in Liu et al. (1998), the adjustment is performed with a

matrix for which all elements are free parameters. In the current case, however, only a

diagonal matrix can be used due to the constraints on the loading matrix. The use of the

reduced parameter expansion space may well explain the slow convergence of PX-EM for

the current example.

4.4. A Bivariate t Example with Unknown Degrees of Freedom
Consider the multivariate t distribution tp(µ,Ψ, ν) with mean µ, scale matrix Ψ, and degrees

of freedom ν. Finding the MLE of the parameters (µ,Ψ, ν) is a well known interesting

application of the EM-type algorithms. For the case of known degrees of freedom ν, a simple

but effective strategy for accelerating EM has been developed from different perspectives

in several papers (Kent et al., 1994; Meng and van Dyk, 1997; Liu et al., 1998). Extensions

of EM for the case with unknown ν can be found in Liu and Rubin (1994), Liu and Rubin

(1995), Liu (1997), and Meng and van Dyk (1997). One of AECMs of Meng and van Dyk

(1997), called AECME 1 and recommended by its authors, was used here for comparison.

Here we used the bivariate t distribution example in Liu and Rubin (1994), where the

data are adapted from Table 1 of Cohen et al. (1993). The initial value for each component

of the unconstrained µ was chosen from U(−50, 50). Each component of the constrained

parameters Ψ1,1, Ψ2,2, and ν was started at a random draw from U(0.1, 100), except for

Ψ1,2, which was started from 0. The results are shown in Table 11.

All algorithms showed nice stability for this example where all runs converged success-

fully. In terms of convergence rate, DECME-2 and DECME-2s again significantly outper-

formed the others, e.g., DECME-2 was 10 times faster than EM even though EM has been

relatively fast for this example (248 iterations on average). However, in terms of CPU

time, SQUAREM1 and SQUAREM2 appeared to be slightly faster than DECME-2s since

the latter performed more loglikelihood evaluations. From Table 11, AECM 1 only showed

mild improvement over EM in terms of number of EM iterations (201 compared to 248 on

average). In terms of CPU time, the two were almost the same because an iteration of

AECM 1 is computationally more expensive than an EM iteration.

It is not surprising that SQUAREM may outperform DECME for problems where EM

converges relatively fast as in the current example. The reason is that SQUAREM relies

more heavily on the EM updates. Each iteration of SQUAREM runs three EM iterations,

while DECME uses only one.

The DECME Algorithm 15

4.5. Gaussian Mixture Examples
The EM algorithm has been known as a powerful method for fitting mixture models, which

are popular in many areas such as machine learning and pattern recognition (e.g., Jordan

and Jacobs, 1994; McLachlan and Krishnan, 1997; McLachlan and Peel, 2000; Bishop, 2006).

While the slow convergence of EM has been frequently reported for fitting mixture models, a

few acceleration methods have been proposed in the literature (Liu and Sun, 1997; Dasgupta

and Schulman, 2000; Celeux et al., 2001; Pilla and Lindsay, 2001, among others). Here

we show that DECME, as an off-the-shelf accelerator, can be easily applied to achieve

dramatically faster convergence than EM.

Consider the class of mixtures of two univariate normal densities used by Redner and

Walker (1984) to illustrate the relation between the efficiency of EM and the separation of

the component populations in the mixture. The mixture has the form of

p(x|π1, π2, µ1, µ2, σ
2
1 , σ2

2) = π1p1(x|µ1, σ
2
1) + π2p2(x|µ2, σ

2
2),

pi(x|µi, σ
2
i) = 1√

2πσ2
i

e−(x−µi)
2/2σ2

i , i = 1, 2.
(9)

Let π1 = 0.3, π2 = 0.7, σ2
1 = σ2

2 = 1, and µ1 = −µ2. Random samples of 1, 000 observations

were generated from each case of µ1 − µ2 = 6, 4, 3, 2, and 1.5. Since EM converges very

fast for the first three cases, we used the last two cases for comparing different algorithms.

For each of the two cases, µ1 − µ2 = 2 and 1.5, we simulated 5,000 data sets. For each

simulated data set, all the algorithms were started from π
(0)
1 = π

(0)
2 = 0.5, σ2(0)

i = 0.5, and

µ
(0)
i = 1.5µi for i = 1 and 2. The algorithms were terminated when either C2 or C3 in

(8) was satisfied. Criterion C1 was not applied for this example since it takes too long to

obtain Lmax for all data sets. The results are shown in Tables 12 and 13.

For the case of µ1 − µ2 = 2, all algorithms showed nice stability. However, for the

µ1 − µ2 = 1.5 case where EM becomes very slow, the stability issue turned out to be a

liability problem for EM and SQUAREM2. There were 261 EM runs stopped prematurely,

and 57 SQUAREM2 runs stopped with invalid solutions. Although both situations also

happened for DECME-2 and DECME-2s, they appeared to be less severe. It is noteworthy

that 5 EM runs ended up with invalid solutions when µ1 − µ2 = 1.5, due to accumulated

numerical errors when the estimation is close to the boundary of the feasible region; see,

e.g., Ueda et al. (2000) and Figueiredo and Jain (2002) for more discussion on this issue.

In terms of number of EM iterations, DECME-2 is still the best and outperforms EM by

factors of about 80 and 115 on average for the two cases. In terms of CPU time, DECME-

2s , SQUAREM1, and SQUAREM2 were very similar. They were about 10 and 20 times

faster than EM for the two cases.

5. Conclusion

Dynamically constructing the subspaces for ML-steps of ECME is shown to be promising

for accelerating the EM algorithm. We have formulated this idea into the generic DECME

algorithm. An implementation of DECME, called DECME-2, is shown to be equivalent to a

conjugate direction method, which provides theoretical justification for its fast convergence.

16 Chuanhai Liu

To improve efficiency in terms of CPU time, a variant of DECME-2, called DECME-2s, was

proposed to remedy the problem of DECME-2that it uses too many loglikelihood evaluations

in each iteration.

The numerical results show that DECME-2s typically outperforms EM by significant

margins in terms of both convergence rate and CPU time. These examples also show that

DECME-2s holds a clear edge over other state-of-art EM accelerating algorithms such as

SQUAREM and PX-EM, especially when the model is complicated and EM is very slow.

We note that although the statistical models used in the numerical studies has variuous

structures, the number of unknown parameters are not very large. The computational gain

of DEMCE over EM and other acceleration methods remains to be seen in the future. It

should be also noted that, sharing with DECME the same fundamental idea of adaptively

constructing acceleration subspaces, the SQUAREM algorithm shows impressive perfor-

mance over EM.

Our main focus in the current paper has been on accelerating EM. However, it is note-

worthy that the proof of Theorem 3.3 only depends on the linear convergence rate of the

underlying algorithm being accelerated rather than its specific structure. Hence an im-

mediate point to make is that the proposed methods should also work for other EM-type

algorithms of linear convergence rate or more broadly for the MM algorithm (Hunter and

Lange, 2004). We leave this problem open for future investigation.

Acknowledgement

The authors thank Mary Ellen Bock, Aiyou Chen, William Cleveland, Ahmed Sameh,

David van Dyk, Hao Zhang, Heping Zhang, and Jian Zhang for helpful discussions and

suggestions. They are especially grateful to the Editor, AE, and referees for their helpful

and constructive comments and to Professor Ravi Varadhan for sending us the code of

SQUAREM and the helpful discussions which led to a more meaningful comparison study.

Yunxiao He’s research was partially supported by NIH grant R01DA016750. Chuanhai Liu

was partially supported by the U.S. National Science Foundation grant NSF-DMS-1007678.

Appendix

A. The Linear Convergence Rate of EM: a Quick Review

This section reviews some well known convergence properties of EM (see, e.g., Dempster

et al. (1977) and Meng and Rubin (1994)) to establish necessary notations. In a small

neighbourhood of the MLE, the observed log-likelihood L(θ|Yobs) may be approximately by

a quadratic function:

L(θ|Yobs) = −1

2
(θ − θ̂)′Iobs(θ − θ̂). (10)

With this approximation, Dempster et al. (1977) proved that EM has a linear convergence

rate determined by DMEM in (1). The matrix DMEM is called the missing information

fraction. It is named after the following identity:

DMEM = Ip − I−1
comIobs = I−1

comImis, (11)

The DECME Algorithm 17

where Ip represents the identity matrix of order p, Iobs and Icom are the negative Hessian

matrices of L(θ|Yobs) and Q(θ|Yobs, θ̂) at the MLE, and Imis = Icom − Iobs. The matri-

ces Iobs, Imis and Icom are usually called observed-data, missing-data, and complete-data

information matrices. We assume that these matrices are positive definite.

Since Icom is positive definite, there exists a positive definite matrix, denoted by I
1/2
com,

such that Icom = I
1/2
comI

1/2
com. Denote by I

−1/2
com the inverse of I

1/2
com. Then I−1

comIobs is similar

to I
1/2
com× I−1

comIobs× I
−1/2
com = I

−1/2
com IobsI

−1/2
com and, thereby, I−1

comIobs and I
−1/2
com IobsI

−1/2
com have

the same eigenvalues. Since I
−1/2
com IobsI

−1/2
com is symmetric, there exists an orthogonal matrix

T such that

I−1/2
com IobsI

−1/2
com = TΛT

′

, (12)

where Λ = diag(λ1, · · · , λp), and λi, i = 1, · · · , p, are the eigenvalues of I−1
comIobs. Therefore,

I−1
comIobs = I−1/2

com TΛT
′

I1/2
com. (13)

Let P = I
−1/2
com T , then we have I−1

comIobs = PΛP−1. Furthermore, the columns of P and the

rows of P−1 are eigenvectors of I−1
comIobs and IobsI

−1
com, respectively. Define η = P−1(θ̂− θ),

then from (1) we have ηt = (Ip − Λ)ηt−1, or equivalently

ηt,i = (1 − λi)ηt−1,i, i = 1, · · · , p. (14)

Equation (14) implies that EM converges independently along the p eigenvector directions

of I−1
comIobs (or equivalently DMEM) with the rates determined by the corresponding eigen-

values. For simplicity of the later discussion, we assume 1 > λ1 > λ2 > · · · > λp > 0 and

η0,i 6= 0 for i = 1, · · · , p.

B. The Conservative Step Size of EM: Proof of Theorem 3.1

From (10) and the definition of DECME-1 in Section 3.2, it is easy to show that

αt =
(θt − θ̃t−1)

′Iobs(θ̂ − θt)

(θt − θ̃t−1)′Iobs(θt − θ̃t−1)
. (15)

Making use of the fact that θt = θt−1 + I−1
comIobs(θ̂−θt−1), followed from (1) and (11), leads

to

αt =
(θ̂ − θ̃t−1)

′IobsI
−1
comIobs(θ̂ − θ̃t−1)

(θ̂ − θ̃t−1)′IobsI
−1
comIobsI

−1
comIobs(θ̂ − θ̃t−1)

− 1. (16)

By definition of η, we have θ̂ − θ̃t−1 = I
−1/2
com T η̃t−1. Making use of (12) and the fact that T

is an orthogonal matrix yields

αt =
η̃′

t−1Λ
2η̃t−1

η̃′

t−1Λ
3η̃t−1

− 1. (17)

Since Λ is diagonal and all its diagonal elements are between 0 and 1, it follows immediately

that αt > 0. 2

18 Chuanhai Liu

C. The Convergence of DECME-1: Proof of Theorem 3.2

Similar to (1) and (14) for EM, we have the following results for DECME-1:

θ̂ − θ̃t = [Ip − (1 + αt)I
−1
comIobs](θ̂ − θ̃t−1), (18)

and

η̃t,i = [1 − (1 + αt)λi]η̃t−1,i , i = 1, · · · , p. (19)

For the p = 2 case, from (17) we have

αt =
λ2

1η̃
2
t−1,1 + λ2

2η̃
2
t−1,2

λ3
1η̃

2
t−1,1 + λ3

2η̃
2
t−1,2

− 1, (20)

and then,

1 − (1 + αt)λ1 =
λ2

2(λ2 − λ1)η̃
2
t−1,2

λ3
1η̃

2
t−1,1 + λ3

2η̃
2
t−1,2

, 1 − (1 + αt)λ2 =
λ2

1(λ1 − λ2)η̃
2
t−1,1

λ3
1η̃

2
t−1,1 + λ3

2η̃
2
t−1,2

. (21)

From (19) and (21), we get
η̃t,1

η̃t,2
= −λ2

2

λ2
1

η̃t−1,2

η̃t−1,1
. (22)

It follows that η̃t,1/η̃t,2 = ηt−2,1/η̃t−2,2. Furthermore, from (20) we have

αt =
λ2

1(η̃t−1,1/η̃t−1,2)
2 + λ2

2

λ3
1(η̃t−1,1/η̃t−1,2)2 + λ3

2

− 1, (23)

and immediately αt = αt−2 holds, which proves Conclusion 1.

Now consider a trivial algorithm, called SOR2, where each iteration of SOR2 includes

two iterations of DECME-1 . From (18), we have

θ̂ − θ̃t+1 = [I2 − (1 + αt)I
−1
comIobs][I2 − (1 + αt−1)I

−1
comIobs](θ̂ − θ̃t−1). (24)

By conclusion 1, [Ip−(1+αt)I
−1
comIobs][Ip−(1+αt−1)I

−1
comIobs] is a constant matrix, denoted

by DMSOR2, which obviously determines the convergence rate of SOR2. By using (13), we

have DMSOR2 = I
−1/2
com T [Ip − (1 + αt)Λ][Ip − (1 + αt−1)Λ]T ′I

1/2
com. Moreover, with (22) and

(23), it is easy to show that

[1 − (1 + αt)λj][1 − (1 + αt−1)λj] =
(λ2 − λ1)

2

λ2
1 + λ2

2 + λ1λ2

(

λ2
1

λ2
2

η̃2
t−1,1

η̃2
t−1,2

+
λ2

2

λ2
1

η̃2
t−1,2

η̃2
t−1,1

) , j = 1, 2. (25)

It follows that DMSOR2 = [1−(1+αt)λ1][1−(1+αt−1)λ1]I2, which means SOR2 converges

with the same rate [1 − (1 + αt)λ1][1 − (1 + αt−1)λ1] along any direction. From equation

(25), it is easy to see that

[1 − (1 + αt)λ1][1 − (1 + αt−1)λ1] ≤
(λ1 − λ2)

2

(λ1 + λ2)2
= (1 − 2λ2

λ1 + λ2
)2 < (1 − λ2)

2.

The DECME Algorithm 19

Note that (λ1 − λ2)/(λ1 + λ2) is the optimal convergence rate of SORF and that 1 − λ2 is

the convergence rate of EM. Hence Conclusion 2 follows.

Since λ1 > λ2, (21) implies that 1−(1+αt)λ1 < 0 and 1−(1+αt)λ2 > 0. It follows from

(19) that η̃t,1η̃t−1,1 < 0 and η̃t,2η̃t−1,2 > 0. This proves the first statement in conclusion 3.

Note that θ̃t+1 − θ̃t = (I −DMSOR2)(θ̂ − θ̃t−1) ∝ θ̂ − θ̃t−1. Hence θ̃t+1 − θ̃t−1 is parallel to

θ̂ − θ̃t−1, which concludes the second statement in Conclusion 3. 2

D. The Convergence of DECME-2: Proof of Theorem 3.3

We prove Theorem 3.3 by induction. The proof is similar to that of the PARTAN theorem

in Luenberger (2003, pp. 255-256). However, the difference between a generalised gradient

direction and the gradient direction needs to be taken into account.

It is certainly true for t = 1 since the first iteration is a line search along the EM direction

for both DECME-2 and AEM.

Now suppose that θ̃0, θ̃1, · · · , θ̃t−1 have been generated by AEM and θ̃t is determined

by DECME-2. We want to show that θ̃t is the same point as that generated by another

iteration of AEM. For this to be true θ̃t must be the point that maximises L(θ|Yobs) over

the two-dimensional plane θ̃t−1 + {θ̃t−1 − θ̃t−2, θt − θ̃t−1}. Since L(θ|Yobs) is assumed to be

quadratic with a positive definite Hessian matrix, L(θ|Yobs) is strictly convex and we only

need to prove g̃t (gradient of L(θ|Yobs) at θ̃t) is orthogonal to θ̃t−1 − θ̃t−2 and θt − θ̃t−1,

or equivalently θ̃⋆
t − θ̃t−2 and θt − θ̃t−1. Since θ̃t maximises L(θ|Yobs) along θ̃⋆

t − θ̃t−2, g̃t

is orthogonal to θ̃⋆
t − θ̃t−2. Similarly, g̃⋆

t is orthogonal to θt − θ̃t−1. Furthermore, we have

g̃′t−2(θt − θ̃t−1) = (θ̂ − θ̃t−2)
′IobsI

−1
comIobs(θ̂ − θ̃t−1) = (θt−1 − θ̃t−2)

′g̃t−1 = 0, where the last

identity is true due to the Expanding Subspace Theorem (Luenberger, 2003, p. 241) for the

conjugate direction methods. Then g̃′t(θ
⋆
t − θ̃t−1) = (θ̂− θ̃t)

′Iobs(θ
⋆
t − θ̃t−1) = [θ̂− θ̃t−2−(1+

α
(2)
t)(θ̃⋆

t − θ̃t−2)]
′Iobs(θ

⋆
t − θ̃t−1) = [−α

(2)
t (θ̂− θ̃t−2)Iobs +(1+α

(2)
t)(θ̂− θ̃⋆

t)′Iobs]
′(θ⋆

t − θ̃t−1) =

[−α
(2)
t g̃t−2 + (1 + α

(2)
t)g̃⋆

t]′(θ⋆
t − θ̃t−1) = 0. It follows that g̃t is orthogonal to θ⋆

t − θ̃t−1. 2

E. Computation of the Feasible Region

As discussed in Sections 3.3 and 3.4, both DECME-2 and DECME-2s rely on the computa-

tion of the feasible region given the current estimate θ and a searching direction d. For the

constraints involved in our numerical examples, we summarise the methods to obtain the

feasible region as follows. If a model has several sets of constraints, we can determine the

feasible region induced by each of them and then take their intersection. Without loss of

generality, we assume in the following that d is the counterpart of the discussed parameters

in the vector representing the search direction.

1.) The degrees of freedom ν in the t distribution. It is easy to compute the feasible

region by solving ν + αd > 0.

2.) The mixing coefficients, πi, i = 1, · · · ,K, in the mixture model. There are two types

of constraints here, i.e.,
∑K

i=1 πi = 1 and πi ≥ 0. The first constraint is equivalent

to that the first K − 1 coefficients with constraints
∑K−1

i=1 πi ≤ 1 and πi ≥ 0 for

20 Chuanhai Liu

i = 1, · · · ,K − 1. Then the feasible region is given by the intersection of the solutions

for the inequalities
∑K−1

i=1 πi + α
∑K−1

i=1 di ≤ 1 and πi + αdi ≥ 0, i = 1, · · · ,K − 1.

3.) The variance components in the linear mixed-effects model and the mixture model,

and the uniquenesses in the factor analysis model. This can be handled in the same

way as that for the degrees of freedom in the t distribution.

4.) The covariance matrices in the linear mixed-effects model and the t distribution. For

the current paper, only two-dimensional covariance matrices are involved. A two-

dimensional matrix Ψ is positive definite if and only if Ψ1,1 > 0 and det(Ψ) > 0.

Hence we only need to guarantee Ψ1,1 +αd1,1 > 0 and det(Ψ+αD) > 0 (assume D is

the matrix generated from the vector d in the same way as Ψ is generated from θ). For

other covariance matrices of fairly small size, a similar method could be used. When

the dimension of the covariance matrix is high, it is a common practise to enforce

certain structure on the matrix. For example, in spatial statistics, the covariance

matrices are usually assumed to be generated from various covariance functions with

very few parameters (Zhang, 2002; Zhu et al., 2005; Zhang, 2007). The feasible region

of α can be easily obtained.

Note that the intervals computed above are usually very wide and some other information

may be used to narrow them down. For example, we always started the line search by forcing

α > −1 in our implementation. In addition, to prevent the estimation from getting too close

to the boundary, some simple tricks can be used. For example, in t distribution, instead of

solving ν + αd > 0, we may solve ν + αd > ǫ for a very small positive number ǫ.

References

Bentler, P. and J. Tanaka (1983). Problems with EM algorithms for ML factor analysis.

Psychometrika 48(2), 247–251.

Bishop, C. M. (2006). Pattern recognition and machine learning. Information Science and

Statistics. New York: Springer.

Celeux, G., S. Chrétien, F. Forbes, and A. Mkhadri (2001). A component-wise EM algorithm

for mixtures. J. Comput. Graph. Statist. 10(4), 697–712.

Cohen, M., S. R. Dalal, and J. W. Tukey (1993). Robust, smoothly heterogeneous variance

regression. Journal of the Royal Statistical Society, Series C: Applied Statistics 42, 339–

353.

Concus, P., G. H. Golub, and D. P. O’Leary (1976). A generalized conjugate gradient

method for the numerical solution of elliptic partial differential equations. In Sparse

matrix computations (Proc. Sympos., Argonne Nat. Lab., Lemont, Ill., 1975), pp. 309–

332. New York: Academic Press.

Dasgupta, S. and L. J. Schulman (2000). A two-round variant of em for gaussian mixtures.

In UAI ’00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence,

San Francisco, CA, USA, pp. 152–159. Morgan Kaufmann Publishers Inc.

The DECME Algorithm 21

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society, Series B:

Methodological 39, 1–22.

Duan, J. and J. Simonato (1993). Multiplicity of solutions in maximum likelihood factor

analysis. Journal of Statistical Computation and Simulation 47(1), 37–47.

Figueiredo, M. and A. Jain (2002). Unsupervised learning of finite mixture models. IEEE

Transactions on pattern analysis and machine intelligence 24(3), 381–396.

Fletcher, R. and C. M. Reeves (1964). Function minimization by conjugate gradients.

Comput. J. 7, 149–154.

Frankel, S. (1950). Convergence rates of iterative treatments of partial differential equations.

Mathematical Tables and Other Aids to Computation 4 (30), 65–75.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith (1990). Illustration of

Bayesian inference in normal data models using Gibbs sampling. Journal of the American

Statistical Association 85, 972–985.

Golub, G. H. and S. G. Nash (1982). Nonorthogonal analysis of variance using a generalized

conjugate-gradient algorithm. J. Amer. Statist. Assoc. 77(377), 109–116.

He, Y. (2009). Improving the EM algorithm for maximum likelihood inference. ETD

Collection for Purdue University.

Hestenes, M. R. and E. Stiefel (1952). Methods of conjugate gradients for solving linear

systems. J. Research Nat. Bur. Standards 49, 409–436 (1953).

Hesterberg, T. (2005). Staggered Aitken acceleration for EM. In ASA Proceedings of the

Joint Statistical Meetings, pp. 2101–2110. American Statistical Association.

Hunter, D. and K. Lange (2004). A Tutorial on MM Algorithms. The American Statisti-

cian 58(1), 30–38.

Jamshidian, M. and R. I. Jennrich (1993). Conjugate gradient acceleration of the em

algorithm. Journal of the American Statistical Association 88(421), 221–228.

Jordan, M. I. and R. A. Jacobs (1994). Hierarchical mixtures of experts and the em algo-

rithm. Neural Computation 6, 181–214.

Jöreskog, K. (1967). Some contributions to maximum likelihood factor analysis.

Psychometrika 32(4), 443–482.

Jöreskog, K. (1969, June). A general approach to confirmatory maximum likelihood factor

analysis. Psychometrika 34(2), 183–202.

Kent, J., D. Tyler, and Y. Vard (1994). A curious likelihood identity for the multivariate t-

distribution. Communications in Statistics-Simulation and Computation 23(2), 441–453.

22 Chuanhai Liu

Kowalski, J., X. Tu, R. Day, and J. Mendoza-Blanco (1997). On the rate of conver-

gence of the ECME algorithm for multiple regression models with t-distributed errors.

Biometrika 84(2), 269.

Laird, N. M. and J. H. Ware (1982). Random-effects models for longitudinal data.

Biometrics 38, 963–974.

Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm. J. Roy.

Statist. Soc. Ser. B 57(2), 425–437.

Liu, C. (1997). ML estimation of the multivariate t distribution and the EM algorithm.

Journal of Multivariate Analysis 63, 296–312.

Liu, C. (1998). Information matrix computation from conditional information via normal

approximation. Biometrika 85, 973–979.

Liu, C. and D. B. Rubin (1994). The ECME algorithm: A simple extension of EM and

ECM with faster monotone convergence. Biometrika 81, 633–648.

Liu, C. and D. B. Rubin (1995). ML estimation of the t distribution using EM and its

extensions, ECM and ECME. Statistica Sinica 5, 19–39.

Liu, C. and D. B. Rubin (1998). Maximum likelihood estimation of factor analysis using

the ECME algorithm with complete and incomplete data. Statist. Sinica 8 (3), 729–747.

Liu, C., D. B. Rubin, and Y. N. Wu (1998). Parameter expansion to accelerate EM: The

PX-EM algorithm. Biometrika 85, 755–770.

Liu, C. and D. X. Sun (1997). Acceleration of EM algorithm for mixture models using

ECME. In ASA Proceedings of the Statistical Computing Section, pp. 109–114. American

Statistical Association.

Luenberger, D. (2003). Linear and Nonlinear Programming (2nd ed.). Springer.

McLachlan, G. and D. Peel (2000). Finite mixture models. Wiley Series in Probability and

Statistics: Applied Probability and Statistics. Wiley-Interscience, New York.

McLachlan, G. J. and T. Krishnan (1997). The EM algorithm and extensions. Wiley Series

in Probability and Statistics: Applied Probability and Statistics. New York: John Wiley

& Sons Inc. A Wiley-Interscience Publication.

Meng, X. and D. B. Rubin (1993). Maximum likelihood estimation via the ECM algorithm:

A general framework. Biometrika 80, 267–278.

Meng, X. and D. B. Rubin (1994). On the global and componentwise rates of convergence of

the EM algorithm (STMA V36 1300). Linear Algebra and its Applications 199, 413–425.

Meng, X. and D. van Dyk (1997). The EM algorithm – An old folk-song sung to a fast new

tune (Disc: P541-567). Journal of the Royal Statistical Society, Series B: Methodologi-

cal 59, 511–540.

The DECME Algorithm 23

Pilla, R. S. and B. G. Lindsay (2001). Alternative EM methods for nonparametric finite

mixture models. Biometrika 88(2), 535–550.

Pinheiro, J. C., C. Liu, and Y. Wu (2001). Efficient algorithms for robust estimation in linear

mixed-effects models using the multivariate t distribution. Journal of Computational and

Graphical Statistics 10(2), 249–276.

R Development Core Team (2010). R: A Language and Environment for Statistical Com-

puting. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Redner, R. A. and H. F. Walker (1984). Mixture densities, maximum likelihood and the

EM algorithm. SIAM Review 26, 195–202.

Roland, C. (2010). A note on the parameterized em method. Statistics & Probability

Letters 80.

Rubin, D. B. and D. T. Thayer (1982). EM algorithms for ML factor analysis.

Psychometrika 47, 69–76.

Salakhutdinov, R. and S. Roweis (2003). Adaptive overrelaxed bound optimization methods.

In In Proceedings of International Conference on Machine Learning, ICML. International

Conference on Machine Learning, ICML, pp. 664–671.

Sammel, M. and L. Ryan (1996). Latent variable models with fixed effects. Biometrics 52(2),

650–663.

Shah, B. V., R. J. Buehler, and O. Kempthorne (1964). Some algorithms for minimizing a

function of several variables. J. Soc. Indust. Appl. Math. 12, 74–92.

Ueda, N., R. Nakano, Z. Ghahramani, and G. Hinton (2000). SMEM algorithm for mixture

models. Neural computation 12(9), 2109–2128.

Varadhan, R. and C. Roland (2008). Simple and globally convergent methods for acceler-

ating the convergence of any EM algorithm. Scand. J. Statist. 35(2), 335–353.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The Annals of

Statistics 11, 95–103.

Young, D. (1954). Iterative methods for solving partial difference equations of elliptic type.

Transactions of the American Mathematical Society 76(1), 92–111.

Zhang, H. (2002). On estimation and prediction for spatial generalized linear mixed models.

Biometrics 58(1), 129–136.

Zhang, H. (2007). Maximum-likelihood estimation for multivariate spatial linear coregion-

alization models. EnvironMetrics 18(2), 125–139.

Zhu, J., J. C. Eickhoff, and P. Yan (2005). Generalized linear latent variable models for

repeated measures of spatially correlated multivariate data. Biometrics 61(3), 674–683.

24 Chuanhai Liu

Table 1. Eigenvalues of DMEM and DMECME for the Linear Mixed-effects
Example in Section 2.1

Algorithm Eigenvalues of the missing information fraction

EM 0.9860 0.9746 0.7888 0.6706 0.5176 0.3874 0.3260 0.2710 0.0364

ECME 0.5176 0.3874 0.3260 0.2710 0.0364 0.0000 0.0000 0.0000 0.0000

Table 2. The Four Largest Eigenvalues and the Corresponding Eigenvectors of
DMEM for the Linear Mixed-effects Example in Section 2.1

Eigenvalue Corresponding eigenvector

0.9860 (0.0000 0.0000 -0.0413 -0.9991 0.0000 0.0000 0.0000 0.0000 0.0000)

0.9746 (0.0413 0.9991 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000)

0.7888 (0.0000 0.0000 -0.0433 0.9991 0.0000 0.0000 0.0000 0.0000 0.0000)

0.6706 (-0.0433 0.9991 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000)

Table 3. The Ten Leading Eigenvalues of DMEM and DMECME for the Factor Analysis
Example in Section 2.2

Algorithm Ten leading eigenvalues of the missing information fraction

EM 1-2E-12 0.9992 0.9651 0.9492 0.9318 0.8972 0.8699 0.8232 0.8197 0.7876

ECME-1 1-2E-12 0.9979 0.9509 0.9292 0.9124 0.8725 0.8480 0.8031 0.7877 0.7539

ECME-2 0.9987 0.8715 0.7321 0.6673 0.5184 0.4770 0.4496 0.3727 0.3369 0.0000

Table 4. The Two Largest Eigenvalues and the Corresponding Eigenvectors of
DMEM for the Factor Analysis Example in Section 2.2

Eigenvalue Corresponding eigenvector

1-2E-12 0.0812 0.0934 -0.4897 -0.1335 0.0684 0.0748 0.0363 -0.0864 -0.0949

0.0996 0.1288 0.7171 0.1962 0.1085 0.1138 0.0954 0.2099 0.2047

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.9992 0.0046 0.0057 -0.0047 -0.0005 -0.0047 -0.0034 -0.0038 -0.0013 0.0005

-0.0062 -0.0071 -0.0092 -0.0064 0.0053 0.0060 0.0045 0.0049 0.0034

0.0267 0.0441 -0.2871 0.0013 -0.0103 -0.0177 -0.0106 -0.0139 -0.0144

-0.0028 0.0079 -0.9557 0.0111 0.0013 0.0040 -0.0011 -0.0028 0.0006

The DECME Algorithm 25

Table 5. Psudocode for DECME-2

Iterate until convergence: tth iteration of DECME

For mod(t − 1, p) 6= 0, given θ̃t−1 and θ̃t−2

1. θt = EM(θ̃t−1)

2. Compute θ̃⋆
t by a line search over the subspace θt + {θt − θ̃t−1}

3. Compute θ̃t by a line search over the subspace θ̃⋆
t + {θ̃⋆

t − θ̃t−2}

4. Check for convergence: C2 and C3 in equation (8)

For mod(t − 1, p) = 0 and given θ̃t−1: restart iteration

Only Steps 1, 2, 4 are run and set θ̃t = θ̃⋆
t

Table 6. Psudocode for DECME-2s

Iterate until convergence: tth iteration of DECME-2s

For t = 1 and given the starting value θ̃0

Compute θ̃1 = EM(θ̃0), L(θ̃0|Yobs), and L(θ̃1|Yobs)

For t > 1, given θ̃t−1, θ̃t−2, L(θ̃t−1|Yobs), and L(θ̃t−2|Yobs)

1. Compute θt = EM(θ̃t−1) and L(θt|Yobs)

2. Compute the three directions d
(1)
t = θt − θ̃t−1, d

(2)
t = θt − θ̃t−2, and d

(3)
t = θ̃t−1 − θ̃t−2

3. Compute the maximum feasible step sizes ᾱ
(i)
t , i = 1, 2, 3 (see appendix E)

4. Compute ξ
(i)
t = θt + α

(i)
t d

(i)
t and L(ξ

(i)
t |Yobs), where α

(i)
t = min(1, 0.9ᾱ

(i)
t), i = 1, 2, 3

5. Compute (x̂t, ŷt) (see equation 5)

6. Compute d
(4)
t = x̂t(θt − θ̃t−1) + ŷt(θt − θ̃t−2) and the maximum feasible step size ᾱ

(4)
t .

7. Compute ξ
(4)
t = θt + α

(4)
t d

(4)
t , where α

(4)
t = min(1, 0.9ᾱ

(4)
t).

8. Let θ̃t be the point with maximum loglikelihood among θt, ξ
(1)
t , ξ

(2)
t , ξ

(3)
t , and ξ

(4)
t

9. Check for convergence: C2 and C3 in equation (8)

Table 7. Comparison for the Linear Mixed-effects Example in Section 4.2 : First Set of Starting Values

Algorithm #(suc/non/inv) #(EM)/#(obs) #(llk)/#(obs) CPU(s)/#(obs)

EM 5000/0/0 8013 (4844)/5000 8013 (4844)/5000 7.460 (4.600)/5000

DECME-2 4967/0/33 116 (38)/4967 2600 (877)/4967 0.999 (0.371)/4967

DECME-2s 4986/0/14 146 (51)/4977 730 (256)/4986 0.453 (0.178)/4981

SQUAREM1 4941/2/57 1236 (767)/4939 451 (274)/4939 0.968 (0.613)/4939

SQUAREM2 4901/3/96 1191 (718)/4899 401 (241)/4899 0.925 (0.573)/4899

26 Chuanhai Liu

Table 8. Comparison for the Linear Mixed-effects Example in Section 4.2 : Second Set of Starting Values

Algorithm #(suc/non/inv) #(EM)/#(obs) #(llk)/#(obs) CPU(s)/#(obs)

EM 4996/4/0 57072 (40204)/4996 57072 (40204)/4996 54.116 (39.615)/4992

DECME-2 4991/0/9 299 (112)/4991 6871 (2624)/4991 2.720 (1.186)/4991

DECME-2s 4994/0/6 431 (173)/4992 2154 (868)/4994 1.372 (0.626)/4993

SQUAREM1 4679/9/312 7501 (5497)/4670 2847 (2153)/4659 5.995 (4.502)/4663

SQUAREM2 4898/6/96 6936 (5100)/4892 2334 (1714)/4892 5.472 (4.137)/4887

Table 9. Comparison for the Factor Analysis Example in Section 4.3

Algorithm #(suc/non/inv) #(EM)/#(obs) #(llk)/#(obs) CPU(s)/#(obs)

EM 3514/1486/0 2498 (874)/3284 2498 (874)/3284 2.908 (1.097)/3287

PXEM 3808/1192/0 2159 (463)/3793 2159 (463)/3793 2.705 (0.722)/3798

DECME-2 3839/1161/0 70 (26)/3464 1563 (631)/3495 0.465 (0.222)/3491

DECME-2s 3865/1135/0 82 (40)/3606 411 (203)/3621 0.246 (0.188)/3671

SQUAREM1 3692/1308/0 269 (101)/3399 91 (34)/3399 0.303 (0.175)/3447

SQUAREM2 3694/1305/1 269 (101)/3399 91 (34)/3399 0.310 (0.184)/3461

Table 10. Diagnosis for the Factor Analysis Example in Section 4.3

Algorithm #(Heywood) #(Heywood | non) #(near optimal)

EM 24 24 475

PXEM 0 0 80

DECME-2 1161 1161 332

DECME-2s 1135 1135 349

SQUAREM1 1308 1308 404

SQUAREM2 1305 1305 403

Table 11. Comparison for the Bivariate Student-t Example in Section 4.4

Algorithm #(suc/non/inv) #(EM)/#(obs) #(llk)/#(obs) CPU(s)/#(obs)

EM 5000/0/0 248 (6)/4984 248 (6)/4984 0.211 (0.041)/4982

AECM 1 5000/0/0 201 (2)/4932 201 (2)/4932 0.200 (0.042)/4977

DECME-2 5000/0/0 24 (2)/4981 531 (50)/4959 0.123 (0.027)/4919

DECME-2s 5000/0/0 30 (3)/4990 149 (14)/4990 0.065 (0.019)/4923

SQUAREM1 5000/0/0 67 (19)/4972 25 (6)/4959 0.043 (0.018)/4837

SQUAREM2 5000/0/0 78 (23)/4900 27 (8)/4880 0.055 (0.027)/4857

The DECME Algorithm 27

Table 12. Comparison for the Gaussian Mixture Example in Section 4.5 : µ1 − µ2 = 2

Algorithm #(suc/non/inv) #(EM)/#(obs) #(llk)/#(obs) CPU(s)/#(obs)

EM 4997/3/0 2449 (1704)/4891 \ 1.759 (1.179)/4910

DECME-2 5000/0/0 31 (9)/4918 786 (278)/4940 0.367 (0.131)/4951

DECME-2s 5000/0/0 40 (15)/4939 194 (75)/4939 0.143 (0.061)/4971

SQUAREM1 5000/0/0 148 (73)/4928 50 (24)/4928 0.155 (0.079)/4930

SQUAREM2 4999/0/1 148 (72)/4924 \ 0.130(0.066)/4928

Table 13. Comparison for the Gaussian Mixture Example in Section 4.5 : µ1 − µ2 = 1.5

Algorithm #(suc/non/inv) #(EM)/#(obs) #(llk)/#(obs) CPU(s)/#(obs)

EM 4734/261/5 7351 (6636)/4734 \ 4.664 (3.889)/4690

DECME-2 4988/6/6 56 (26)/4848 1388 (662)/4842 0.633 (0.300)/4859

DECME-2s 4983/10/7 64 (30)/4916 317 (149)/4916 0.225 (0.106)/4924

SQUAREM1 4960/33/7 263 (158)/4822 89 (53)/4821 0.263 (0.157)/4834

SQUAREM2 4908/35/57 263 (157)/4770 \ 0.222 (0.135)/4791

−4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0

Comparison of the Paths

θ̂

θ0

EM
SOR
DECME_v1

 −24

 −22

 −20

 −18

 −16

 −14 −12
 −10

 −8

 −6

 −4

 −2

Fig. 1. Comparison of the Paths of EM, DECME-1, and DECME-2 for a Two-dimensional Example.
The eigenvalues of DMEM are 0.9684 and 0.6232; the darkviolet cross on the upright corner shows
the directions of the two eigenvectors of DMEM ; The red dashed lines represent the true path of
DECME-2 in its second iteration.

28 Chuanhai Liu

θ~t−2
θ~t−1

θt

θ~t
SOR

ξt
(1)

θ~t
DECME_v1

ξt
(2)

ξt
(3)

EM

SOR

ξt
(1)

DECME_v1

ξt
(2)

ξt
(3)

Fig. 2. Illustration for One Iteration of the DECME Implementations.

0 10 20 30 40

2

3

4

5

6

7

Relaxation Factor: p=2

Iteration

α t odd iteration
even iteration

0 100 200 300

1.0

1.2

1.4

1.6

1.8

Relaxation Factor for the Mixed Effect Model Example

Iteration

α t

odd iteration
even iteration

Fig. 3. Relaxation Factor αt Generated from DECME-1. The top panel shows the sequence of αt for
the two-dimensional example used to generate Figure 1, and the bottom panel shows the sequence
of αt from the simulated nine-dimensional example in Section 3.2 by using information from the linear
mixed-effects model example in Section 2.1 and Section 4.2 .

