
3. Multithreading

Chuanhai Liu

Department of Statistics, Purdue University

2016

1/29

Table of Contents

3.1 Simple SupR additions . 3

3.2 Parallel computing . 6

3.3 Multithreading .14

3.4 Concurrency .21

3.5 Lazy evaluation .25

3.6 New developments . 28

3.7 Exercises . 30

References for the Parallel Computing section:

1 Introduction to Parallel Computing,
https://computing.llnl.gov/tutorials/parallel comp/

2 POSIX Threads Programming,
https://computing.llnl.gov/tutorials/pthreads/

3 The JAVA Programming Language, ...

2/29

3.1 Simple SupR additions

In addition to functions in the namespace:base of R, SupR introduces and modifies a
set basic functions, which include

the implicit(class, fun) function to make it possible to use objects as
function objects,

functions to handle so-called iterator objects, and

3/29

3.1 Simple SupR additions: the implicit function

implicit(class, fun=NULL)

’implicit’ associates non-function objects of the specified class with an anonymous
function so that the associated function can be called with non-function objects of the
class.

’implicit(class, fun = NULL)’ returns the function associated with the specified class.

’implicit(class, fun = ”remove”)’ removes the function associated with the specified
class.

’implicit()’ returns the list of the associated classes.

> # ? implicit

> # implicit()

> 100(1000)

100000

> A = matrix(1:10, 5)

> t(A)(A)

[,1] [,2]

[1,] 55 130

[2,] 130 330

>

4/29

3.1 Simple SupR additions: iterators

Iterators are used to represent a collection of values that can be obtained sequentially.
They consist of an environment and two functions, named ’has.next’ and ’get.next’.

The ’$has.next()’ call, evaluated in the enviroment, returns TRUE if there are more
values available and FALSE otherwise. After a ’$has.next()’ call returns TRUE, the
’$get.next()’ call, evaluated in the same enviroment, returns the next available value.

> # ? iterator

> iter = as.iterator(1:3)

> while(has.next(iter)) print(get.next(iter))

[1] 1

[1] 2

[1] 3

> implicit("iterator", function(iter, fun) {
while(has.next(iter))

fun(get.next(iter))

})
> # apply a function to each of the components of 1:4

> as.iterator(1:4)(function(x) print(x+10))

[1] 11

[1] 12

[1] 13

[1] 14

>

5/29

3.2 Parallel Computing: serial computation

A problem is broken into a discrete series of (computer) instructions

Instructions are executed sequentially one after another

Executed on a single processor

Only one instruction may execute at any moment in time

6/29

3.2 Parallel Computing: the parallelism

In the simplest sense, parallel computing is the simultaneous use of multiple compute
resources to solve a computational problem:

A problem is broken into discrete parts that can
be solved concurrently

Each part is further broken down to a series of
instructions

Instructions from each part execute
simultaneously on different processors

An overall control/coordination mechanism is
employed

7/29

3.2 Parallel Computing: computer clusters

Networks connect multiple stand-alone computers (nodes) to make larger parallel
computer clusters.

The schematic of a typical parallel computer cluster.

8/29

3.2 Parallel Computing: processes

A process is created by the operating system, and requires a fair amount of
”overhead”. Processes contain information about program resources and program
execution state:

Process ID, process group ID, user
ID, and group ID

Environment

Working directory.

Program instructions

Registers

Stack

Heap

File descriptors

Signal actions

Shared libraries

Inter-process communication tools
(such as message queues, pipes,
semaphores, or shared memory).

9/29

3.2 Parallel Computing: lightweight process (LWPs)

Threads use and exist within these process resources, yet are able to be scheduled by
the operating system and run as independent entities largely because they duplicate
only the bare essential resources that enable them to exist as executable code.

This independent flow of con-
trol is accomplished because a
thread maintains its own:

Stack pointer

Registers

Scheduling properties
(such as policy or
priority)

Set of pending and
blocked signals

Thread specific data.

10/29

3.2 Parallel Computing: lightweight process (LWPs)

In summary, in the UNIX environment a thread:

Exists within a process and uses the process resources

Has its own independent flow of control as long as its parent process exists and
the OS supports it

Duplicates only the essential resources it needs to be independently schedulable

May share the process resources with other threads that act equally
independently (and dependently)

Dies if the parent process dies - or something similar

Is ”lightweight” because most of the overhead has already been accomplished
through the creation of its process.

Because threads within the same process share resources:

Changes made by one thread to shared system resources (such as closing a file)
will be seen by all other threads.

Two pointers having the same value point to the same data.

Reading and writing to the same memory locations is possible, and therefore
requires explicit synchronization by the programmer.

11/29

3.2 Parallel Computing: why threads?

Light Weight When compared to the cost of creating and managing a process, a thread can be created with

much less operating system overhead. Managing threads requires fewer system resources than managing processes.

Efficient Communications/Data Exchange The primary motivation for considering the use of
Pthreads in a high performance computing environment is to achieve optimum performance. In particular, if an
application is using MPI for on-node communications, there is a potential that performance could be improved by
using Pthreads instead.

Other Common Reasons

Threaded applications offer potential performance gains and practical
advantages over non-threaded applications in several other ways:

Overlapping CPU work with I/O: For example, a program may have sections where it is performing
a long I/O operation. While one thread is waiting for an I/O system call to complete, CPU
intensive work can be performed by other threads.
Priority/real-time scheduling: tasks which are more important can be scheduled to supersede or
interrupt lower priority tasks.
Asynchronous event handling: tasks which service events of indeterminate frequency and duration
can be interleaved. For example, a web server can both transfer data from previous requests and
manage the arrival of new requests.

A perfect example is the typical web browser, where many interleaved tasks can
be happening at the same time, and where tasks can vary in priority.

Another good example is a modern operating system, which makes extensive
use of threads.

12/29

3.2 Parallel Computing: thread-safeness

Shared Memory Model:

All threads have access to the same global,
shared memory

Threads also have their own private data

Programmers are responsible for
synchronizing access (protecting) globally
shared data.

Thread-safeness: in a nutshell, refers an application’s ability to execute multiple threads

simultaneously without ”clobbering” shared data or creating ”race” conditions.

13/29

3.3 Multithreading: SupR thread “name spaces”

threadenv() s -

threadenv() s
-

...

threadenv() s -
globalenv()

.GlobalEnvs-

WRLOCK

package:statss-
...
cor
...
var
...

... s-
baseenv()

package:bases-
...
.GlobalEnv

...
ls
...

emptyenv()

namespace:base s
6

namespace:datasets

imports:

s 6
s�

loadedNamespaces()

search()

namespace:stats

imports:

s 6
s

�

... namespace:utils

imports:

s 6
s

�

14/29

3.3 Multithreading: SupR thread functions

SupR’s multithreading and concurrency framework is similar to that of JAVA. It
consists of a set of functions, partitioned into the following three categories.

Thread basics You can create threads to evaluate expressions with the
new.thread(), start.thread(), join.thread(),
cancel.thread(), current.thread(), threadenv(), and
thread.info() functions.

Interruption You can put a thread into sleep with a thread.sleep(time) call in
the thread run script, and during the sleep of the running thread,
you can wake up the thread with the interrupt() call from a
different thread. After thread is waken up due to either timeout
expiration or thread interruption, the function is.interrupted()

call tests if the thread was interrupted.

Synchronization You can synchronize thread evaluations with the sync.eval(),
set.synchronized(), is.synchronized(), wait(), and notify()

functions

For more information, type the ?thread command.

15/29

3.3 Multithreading: create and run threads

The new.thread() function creates a new thread of stack size = ’stacksize’ to
evaluate ’expr’ (or ’.expr’ when ’expr’ is missing) in the ’env’ environment if ’env’ is
not globalenv() and in new.env(parent=’env’) otherwise.

If ’start’ or ’join’ is TRUE, this thread will be started immediately. In this case, if
’join’ is also TRUE, the ’new.thread’ call waits for the new thread to terminate.

Otherwise, a separate ’start.thread’ call must be used to start it. In this case, the
optional ’join’ argument and a separate ’join.thread’ call can be used for the calling
thread to wait for the thread specified by ’name’ to terminate.

> new.thread(1+2, start=TRUE, join=TRUE)

[1] 3

> th1 = new.thread({thread.sleep(20); 1+2})
> th2 = new.thread({thread.sleep(15); 1+3})
> start.thread(c(th1, th2), join = rep(T, 2))

$thread 3

[1] 3

$thread 4

[1] 4

>

16/29

3.3 Multithreading: thread joining

”Joining” is one way to accomplish synchronization between threads. For example:

� � � �
Master
Thread � � � �

Worker
Thread� � � �
Worker
Thread

new.thread()

start.thread()

?

-

-DO WORK

join.thread()

EXIT

6

-

A schematic of thread “joining”.

17/29

3.3 Multithreading: thread local environments

Objects in evironments on R’s name spaces and environments on the search path
starting from globalenv() are shared by all threads.

The current.thread(), threadenv(), and thread.info() functions provide limited
information on running threads.

A ’current.thread’ call returns the thread name of the calling thread. ’threadenv’
returns the thread local environment, which typically has globalenv() on its search
path.

> a <- new.env()

> new.thread({ThreadEnv <- threadenv(); Thread <- current.thread()},
env=a, start=T, join=T)

[1] "thread 6"

> ls.str(a, all=T)

T MainExpression : length 3 { ThreadEnv <- threadenv(); Thread <-

current.thread() }
Thread : chr "thread 6"

ThreadEnv : <environment: 0x27899e8>

> identical(a, a$ThreadEnv)

[1] TRUE

>

18/29

3.3 Multithreading: thread information

The ’thread.info()’ call returns a data.frame object showing the existing threads with
limited gc information [FIXME]. If ’name’ is not NULL, ’thread.info’ requests the
thread specified by ’name’ to produce its evaluation backtrace.

> th1 = new.thread({thread.sleep(20); 1+2})
> th2 = new.thread({thread.sleep(15); 1+3})
> thread.info()

name int sig LWP id gc int mutex thread id

1 MAIN NA 1692 0 0 0x69c

2 thread 10 NA 5300 0 0 0x14b4

3 thread 11 NA 5301 0 0 0x14b5

> start.thread(c(th1, th2), rep(T, 2))

...

> thread.info()

name int sig LWP id gc int mutex thread id

1 MAIN NA 1692 0 0 0x69c

> new.thread(thread.sleep(30), start=T)

[1] "thread 13"

> unlist(thread.info("thread 13")) # what is it doing?

[1] "thread.sleep(30)"

[2] "new.thread(expr, env, stacksize, as.logical(start),

as.logical(join))"

[3] "new.thread(thread.sleep(30), start = T)"

>

19/29

3.3 Multithreading: thread interruption

’thread.sleep’ puts the calling thread into sleep for a specified time period. But the
sleep can be interrupted by other threads with an ’interrupt’ call. When woken up,
with an ’is.interrupted’ call the thread can test if it was woken up due to a thread
interruption.

> a = new.env()

> th = new.thread(env = a, start = T, {
thread.sleep(30)

interrupted <- is.interrupted()

})
> interrupt(th)

> ls.str(a)

...

interrupted : logi TRUE

> a = new.thread(start = T, {
thread.sleep(30)

interrupted <- is.interrupted()

environment()

}, join = T)

> ls.str(a)

...

interrupted : logi FALSE

> # replace thread.sleep(30) with st <- system.time(thread.sleep(30))

>

20/29

3.4 Concurrency: the wait-and-notify mechanism

The pair of functions ’wait’ and ’notify’ can be used to provide a way for threads to
communicate with each other when necessary. The pair also provides a mechanism for
object sharing.

wait ’wait(x, timeout)’ causes the current thread to wait until the timeout expires in
the ’timeout’>0 case or another thread invokes the notify() function with the
same object specified by ’x’.

notify ’notify(x, all)’ wakes up a single thread or all threads (specified with all=TRUE)
waiting on the waiting list of the object specified by ’x’.

> x = 1:10

> expr1 = quote({
sync.eval(x, {

cat(current.thread(), "OKAY 1-1", date(), "\n")
wait(x)

cat(current.thread(), "OKAY 1-2", date(), "\n")
})

paste(current.thread(), "returned value is 1", sep=" : ")

})
>

21/29

3.4 Concurrency: the wait-and-notify mechanism [Cont’d]

> expr2 = quote({
sync.eval(x, {

cat(current.thread(), "OKAY 2-1", date(), "\n")
wait(x)

cat(current.thread(), "OKAY 2-2", date(), "\n")
})

paste(current.thread(), "returned value is 2", sep=" : ")

})

> th1 = new.thread(.expr = expr1, start=T)

> th2 = new.thread(.expr = expr2, start=T)

thread 11 OKAY 1-1 Fri May 13 17:20:28 2016

thread 12 OKAY 2-1 Fri May 13 17:20:30 2016

thread 12 OKAY 2-2 Fri May 13 17:20:35 2016

thread 11 OKAY 1-2 Fri May 13 17:20:35 2016

>

22/29

3.4 Concurrency: synchronized evaluation

’sync.eval’, ’set.synchronized’, and ’is.synchronized’ provide a way to synchronize
evaluations on specified objects. With the object ’x’ synchronized, ’sync.eval(x, expr,
.expr, env=parent.frame())’ evaluates the expression ’expr’ in the environment ’env’.

’set.synchronized(x, value)’ and ’is.synchronized(x)’ set and test for the
synchronization state of the object specified by ’x’.

Currently, synchronization is only implemented for binding and accessing objects in
synchronized environment objects and for calling synchronized functions.

> implicit(class(""), paste0)

> threads = character(10)

> A = TRUE

> for(i in 1:length(threads))

threads[i] = new.thread(sync.eval(A, {
print(current.thread()(" printed this line at ")(date()))

thread.sleep(5);

print(current.thread()(" printed this line at ")(date()))

}))
> start.thread(threads, join=rep(TRUE, length(threads)))

[1] "thread 1 printed this line at Fri May 13 17:00:22 2016"

[1] "thread 1 printed this line at Fri May 13 17:00:27 2016"

[1] "thread 7 printed this line at Fri May 13 17:00:27 2016"

...

>

23/29

3.4 Concurrency: synchronized evaluation [Cont’d]

> # Synchronization with synchronized objects

> is.synchronized(globalenv())

[1] TRUE

> is.synchronized(baseenv())

[1] FALSE

> foo = function(time) {
cat(current.thread(),"is going to sleep for",time,"seconds\n")
thread.sleep(time)

cat(current.thread(), "continues\n")
}

> set.synchronized(foo, TRUE)

> th1 = new.thread(foo(10), start=T)

> th2 = new.thread(foo(10), start=T)

thread 13 is going to sleep for 10 seconds

thread 13 continues

thread 14 is going to sleep for 10 seconds

thread 14 continues

> > set.synchronized(foo, FALSE)

> th1 = new.thread(foo(10), start=T)

> th2 = new.thread(foo(10), start=T)

...

24/29

3.5 Lazy evaluation

Lazy evaluation is also known as delayed evaluation. There are two types of evaluation
in R that are lazy: promise objects and active bindings.

Promise objects: The value of these objects represent (unevaluated) expressions.
These expressions are only evaluated once and when they are used the first time.

Active bindings: Active bindings refer to a mechanism of dynamically setting and
getting values of bindings through symbol/name objects. The mechanism is internally
implemented with a function, called binding function.

Getting When the binding value is accessed, the binding function is called
internally with no arguments to produce a value.

Setting When a binding value is assigned, the binding function is called
internally with the value as its argument. The binding function
returns a value as the value for this operation.

25/29

3.5 Lazy evaluation: promise objects

When such objects are shared, e.g., in the shared name spaces and on the search path,
synchronized evaluation must be enforced.

But the set.promiseSynchronized() and is.promiseSynchronized() functions are
available for the user to control synchronized evaluation of other promise objects.

> # Defining and accessing promise objects

> delayedAssign("x", sync.inspect("x"))

> x

> new.thread({
delayedAssign("x", sync.inspect("x"))

unlist(x)

}, join=TRUE)

marked active

FALSE FALSE

> new.thread({
delayedAssign("x", sync.inspect("x"))

setPromiseSynchronized("x", TRUE)

unlist(x)

}, join=TRUE)

marked active

TRUE TRUE

>

26/29

3.5 Lazy evaluation: active bindings

By default, evaluations of binding functions are not synchronized. Since binding
functions are function objects, synchronized evaluation of these functions can be
enabled by the user. Internal binding functions can be used with

> foo <- local({
x <- 1

function(v) {
if (!missing(v)) x <<- v

x

}
})

> makeActiveBinding("fred", foo, .GlobalEnv)

> is.synchronized(get.activeBinding("fred"))

[1] FALSE

> .Internal(address(foo))==.Internal(address(get.activeBinding("fred")))

[1] TRUE

> set.synchronized(get.activeBinding("fred"))

[1] TRUE

> fred

[1] 1

> fred <- 2

[1] 2

>

27/29

3.6 New developments

More new developments are necessary and under consideration. To list a few, we have

Thread caching: Naming and caching are two fundamental problems in software
development. This is particularly true in cluster computing.

C-level global and static variables: Currently, no all problems associated with such
variables have been taken care of. This is to discussed further when addressing the
C-interface topic.

Loading and attaching packages: Synchronization will be enforced for such operations

as it has something to do with the default shared objects.

28/29

3.7 Exercises

1 Implement an ”iterator” by making use of active binding. Hint:
?makeActiveBinding.

2 ...

29/29

