6. Distributed File System
for Subsets of Objects

Chuanhai Liu

DEPARTMENT OF STATISTICS, PURDUE UNIVERSITY

2016

Table of Contents

6.1 More simple SupR additions 3
6.2 R namespace: an overview 5
6.3 Distributed files as databases, 6
6.4 Environment objects as databases 8
6.5 Cluster distributed objects 9
6.6 The put or assign function 10
6.7 The get function 11
6.8 The 1s or objects function 12
6.9 The rm function, 13
6.10 Attach external distributed file systems and databases 14
6.11 Exercises 15

2/15

6.1 More SupR additions

3/15

Everything is an object. Loaded objects have a memory address. SupR objects can
alternatively be accessed by their memory address.

It is not recommended for ordinary computing in SupR, but is provided in case it can
be helpful in debugging interactive multithreaded programming, where dead locks can
occur and debugging can be challenging.

address displays the memory address in the hexadecimal format as a
character. Different variables can point to the same objects. Try the
following example:

>a <-1:10
>b <- a

> address(a)
0x282a4030

> address(b)
0x28a4030

What do you see in your R session?

6.1 More SupR additions

address symbol In the current version of SupR, symbols formed from memory
address characters can be used to access the R object in the exact
same location.

> “0x28a4030°¢

[11 123456789
> address(‘0x28a4030°¢)
0x28a4030

4/15

6.2 R namespace: an overview

An overview can be found in the second set of slides. Taking a look at the following
topics, we should see a set of functions for understanding what are available to R users
on R namespaces.

@® 7getNamespace

@ 7loadNamespace

In particular, the loadedNamespaces () call tells us that R name spaces are a
collection (internally as an environment object) of loaded namespaces.

> loadedNamespaces ()
[1] "base" "datasets"

6.3 Distributed files as databases

A file system has a tree structure. Everyone should be familiar with this. Otherwise,
you can do the following simple exercise:

@ Type the pwd command to see your present working directory in the file system
of your unix-like computer.

@ Type the cd / command to jump to the top-level or root directory of your file
system.

@ Type the 1s command to see what subdirectories (and files) are there.

Use the cd command go step by step to your home directory.

@ You can also use the cd command go to any directory with its so-called absolute
path.

6/15

6.3 Distributed files as databases

What do we know?
@ For linked objects having a tree-type structure, such as file systems, we can
represent them with our fimiliar environment objects.

@ All file systems that we use in SupR can be considered as a collection of
environments.

Here is what we have (or will have) in parallel with R namespaces:

@ connectedDatabases() shows all the connected file systems, which we call
databases.

@ connectDatabase(name, ...) connects or attaches the database with the
given name.

@ disconnectDatabase(name) disconnects or detaches the named database.

@ getDatabaseEnv(name) returns the environment object of the connected
database specified by the name argument.

6.4 Environment objects as databases

Tree nodes can be represented by envir objects and tree leaves can be put in envir
objects.

Once represented as environment objects, organized objects can be accessed by the
usual way of stepping through environments with the ’*$’ operator.

> getDatabase("cluster")$lr

SupR also allows you to use a somewhat simplified notation, adopting the internet
convention for urls:

name:/ /toplevel /secondlevel/...

which is equivalent to

getDatabaseEnv(name)S$toplevel$secondlevel$...

When name: is omitted, the built-in cluster: is used as the default database.

8/15

6.5 Cluster distributed objects

9/15

SupR comes with a built-in distributed file system (DFS). The built-in DFS server is
managed by a set of what are called block managers.
@ These block managers are started when SupR runs in the cluster mode.

@ To be run in the cluster mode, a cluster master, set of workers, and one or more

drivers are working together, creating the cluster computing environment for the
user.

@ In the cluster mode, you can access distributed objects with functions such as
1s, without having to think about the exact locations the distributed objects are.

More discussions are to be given in the slides on cluster computing.

The current experimental dfs.* functions will be fully integrated, hopefully, with what

is described here in later versions.

6.6 The put and assign functions

The current dfs.put and distribute functions can/may be made as special cases of
put and assign functions.

The usual assignment operator <- should also be made to work with distributed

objects.

10/15

6.7 The get function

The current dfs.get function can/may be made as a special case of get function on
environment variables.

The usual accessing objects by name should also be made to work with distributed
objects.

11/15

6.8 The Is and objects functions

The current dfs.1s functions can/may be made as a special case of 1s function on
environment variables.

12/15

6.9 The rm function

The current dfs.rm functions can/may be made as a special case of rm function on
environment variables.

13/15

6.10 Attach external distributed file systems and databases

The famous HDFS has already been made to work with the current experimental
dfs.attach function.

This may be integrated or modified to use the connectDatabase() function.

With more development, SupR should be able to work with external databases without
much challenges.

14/15

6.11 Exercises

15/15

