
3. Advanced Multithreading

Chuanhai Liu

Department of Statistics, Purdue University

2016

1/26

Table of Contents

4.1 More simple SupR additions . 3

4.2 Object caching .4

4.3 Computing with local variables . 14

4.4 Signal handling . 16

4.5 More on thread.join .19

4.6 More on cancel.thread . 21

4.7 The interrupt and is.interrupted functions 22

4.8 Debugging tools . 23

4.9 Exercises . 26

2/26

4.1 More SupR additions

To make everything simple but not simpler, we have the following examples of the
current more experiments.

Simplicity Handy tools.

Caching The original R caching seemed to have to be changed entirely for
SupR. A few functions are currently provided at the user level for a
new scheme.

Threading More built-in tools/functions for understanding and application of
multi-threading.

3/26

4.1 More SupR additions: two new simple functions

address(x), a primitive function that returns the internal memory location of
the object ’x’; See also .Internal(inspect(x)) and pryr::address(x) R
functions.

This function is useful, for example, for checking if multithreads
are indeed synchronized on intended common objects.

c(...) <- expr is introduced as a convenient tool to do multi-assignment.
The name-value matching is done sequentially. Whenever there are at least two
unbound names in the argument list, the unassigned value is divided into a pair
of what we can call ’head’ and ’tail’. For example, c(x, y, z) <- 1:10 will be
equivalent to the three expressions: x <- 1; x <- 2; x <- 3:10

4/26

4.2 Object caching

Caching is important for both object-sharing and efficiency in the multi-threading
context. Caching in R is implemented for the ’.GlobalEnv’ environment with an
internal hash table environment.

The current SupR experimentation is based on a new mechanism, which we call ”local
caching”.

To some extent, the current SupR implementation is user-transparent.

Here we discuss four levels of caching introduced in SupR.

5/26

4.2 Object caching: system-level

In the current experiment, only named objects with locked bindings are cached.
Internally, caching is implemented with ”hashtables”, which uses vectors of pairlist.
You can see what have been cached for an environment with cacheenv(env) function.

Recall that the global environment .GlobalEnv is shared by all threads and that the
search mechanism for installed packages remains the same as the that in R.

> cacheenv(.GlobalEnv)

<environment: 0x??????>

> ls(cacheenv(.GlobalEnv))

...

6/26

4.2 Object caching: thread-level

By default caching is enabled for threads. The following code shows how to take a
look at what have been cached for threads.

> new.thread(ls(cache(threadenv())), join=T)

...

7/26

4.2 Object caching: evaluation-level

In addition, the user can control caching at the R programming level with the three
functions, import(), cache(), and nocache().

import(..., from) imports objects from the ’from’ environment to the current
evaluation environment. See also the importIntoEnv() function.

> new.thread({
import(var, sd, from=as.environment("package:stats"))

ls.str()

}, join=T)

Note: In the future, imported objects may be changed to be placed in the cache
hashtable if it exists...

8/26

4.2 Object caching: evaluation-level

cache(TRUE) turns local/environment caching on.

cache(FALSE) turns local/environment caching off.

Examples: TO DO

9/26

4.2 Object caching: evaluation-level

nocache(...) prevents the named objects in the parent environments from
being cached in the local/evaluation environment, where the nocache() call is
made.

For each argument, the current implementation creates special and fancy
internal active binding objects in the current evaluation environment.

Examples: TO DO

10/26

4.2 Object caching: thread attach and detach tools

In R, you can insert/remove environment-like objects into/from the search path from
.GlobalEnv with the the attach() and detach() functions.

In SupR, with the thread.attach() and thread.detach() functions, you can do the
same on the search path from .ThreadEnv to .GlobalEnv.

Examples: TO DO

11/26

4.2 Object caching: evaluation-level

Here we consider a few more examples.

Examples: TO DO

More examples are given in the Multithreaded-EM application.

12/26

4.2 Object caching: cluster-level

This topic will be discussed along with that on cluster computing.

13/26

4.3 Computing with local variables

While experimental, SupR introduces a concept of computing with local variables. It
eliminates the need for caching and can run much faster, especially for computing with
a large number of iterations.

To use it, you simply place a define() function call to declare the variables that
follow but within the same block, i.e., up to the nearest close brace }. Also, such
definitions can be nested. However, this new idea has not fully implemented yet.

Type ?cache and see the online example of using define() function.

Internally, evaluation of the define() function call amounts to ”compile” the
expressions that follow. This does something different from the R compiler, which
hasn’t been enabled yet in SupR.

14/26

4.3 Computing with local variables

Like R, everything of SupR should be made transparent to users.

“Show me the code!”

is perhaps a good way to tell everything.

For this, a simple function, show.code(), is provided and subject to improvement.

Again, type ?cache and see the online example of using define() function.

This could be an approach to make SupR run fast!

15/26

4.4 Signal handling

The C-level implementation of most SupR thread functions, such as pthread join(),
uses the corresponding functions in the pthread library.

But it is implemented in a user-friendly way so that user can cancel thread join, by
type Ctr-C to interrupt the thread joining process. More discussion follows shortly.

For good reasons, SupR doesn’t use the pthread cancel() function in the pthread
library. It implements its own cancel.thread() function via signal handling.

It can be particularly problematic in the case the “main” thread joins threads that can
be potentially involved in deadlocks in synchronization operations.

Here we discuss how to use the Interrupt signal (SIGINT) at the user level. An
SIGINT signal is generated when you type Ctr-C, i.e. hit the C key while holding the
Control key down.

16/26

4.4 Signal handling: user interruption and default actions

Signal handling is a tricky problem in interactive computing environments, especially
in computing with multithreads. When typing Ctr-C, for example, the system delivers
a SIGINT to one of the running threads.

For example, when I used Scala, a nice “interactive-JAVA” language, to run Spark, I
often felt frustrated with user-interruptions. Handling SIGINT is not that trivial as we
may think. Killing threads is easy, but you have to make sure that the interactive
system remains to work in the way that you would expect. expected.

In SupR, SIGINT is redirected to the thread that you directly interact with. For
convenience, let’s call it the user thread. Typically this is the “main” thread you start
with and normally use for interactive data analysis.

You may like the experimental “double-interruption”, i.e., type Ctr-C twice quickly.
For example, it can be used as a simple way to kill all running threads.

17/26

4.4 Signal handling: user interruption and default actions

What action the user thread will take to respond to SIGINT depends on what it is
doing when receiving the signal. Here are the current default reactions to SIGINT.

Reading commands from the key board: restart reading.

Joining (waiting for) some thread to exit: cancel the joining/waiting process
itself but not the thread it is waiting for.

Waiting for jobs to finish (in cluster computing): stop waiting and let the job
continue to run in somewhat a detached mode.

Evaluating expressions: stop the evaluation and return.

Waiting for synchronization: this is treated as a special case of evaluating
expressions.

18/26

4.5 More on thread.join

The C-level implementation uses the pthread join() function in the pthread library.
Its man page says:

The pthread join() function waits for the thread specified by thread to
terminate. If that thread has already terminated, then pthread join()
returns immediately. The thread specified by thread must be joinable.
...

Here are some relevant points:

All threads are created initially as joinable. This means that a thread join call
must be invoked to release system resources allocated for created threads.

However, SupR handles thread join operation automatically if
you don’t call it before they return from join.thread() function
calls.

The values of expressions evaluated by threads are returned to the
thread.join() calls or kept in the .ThreadSet environment, which is located
in .GlobalEnv. Such results will be automatically removed after they are
accessed through the thread.join() function.

19/26

4.5 More on thread.join: Examples

There are functions that you may find useful:

alive.threads() displays all alive threads.

all.threads() displays all alive threads and previous threads that are waiting
for the user to handle their returned results. Currently, all.threads() simply
returns the .ThreadSet environment object. Some user interface functions can
be easily developed later.

See on-line examples.

A remark: the concept of thread group may be considered later.

20/26

4.6 More on cancel.thread

SupR doesn’t use the pthread library function pthread cancel(). It implements its
own cancel.thread() function via signal handling.

This low-level treatment allows the R-side cleanups to be handled normally. For
example, certain semaphore-based synchronizations can be taken care of easily and
safely.

TO DO: Introduce the concept of thread groups so that when some threads in a group raise an error, appropriate

actions can be taken on all threads in the same group

21/26

4.6 The interrupt and is.interrupted functions

These are two more functions for which the C-level implementation is signal-based.

The action taken by the target thread in responding to interrupt(target thread)

can be ignored but can be handled programmingly in R with the test
is.interrupted() function.

Two remarks:

Threads can call interrupt(target.thread) any time.

The target threads may not react immediately.

You use the pair interrupt(target.thread) and is.interrupt() to
synchronize two threads running concurrently. For this, you make use of the
thread.sleep(time) function to put one thread into sleep and use another to
wake it up with the interrupt(target.thread) function.

More examples :

TO DO if necessary: A similar user interface for the cancel.thread() but with restrictions in that it must

terminate as soon as possible.

22/26

4.8 Debugging tools

4.8.1 Working with the browser function

The browser() and debug() functions are useful tools for debugging R code. In SupR
with multithreads, they can be used in two ways.

One way is to use them with the interact() function, as is shown in the last
example.

The other way is to insert calls to these functions in your R code.

> new.thread(x = 1:4; browser(); y = sin(x), start = T)

>

MORE TO DO ?

23/26

4.8 Debugging tools

4.8.2 Understanding synchronization with the
sync.inspect function

A simple version of this function is available. This function summarizes the basic
synchronization info by two data.frame objects.

One data.frame gives a detail list of objects on which operations of relevant
threads are synchronized.

The other is a Object x Thread table showing how some threads may depend on
other some threads.

You may also use two related functions: sync.cleanup and sync.remove. See the
online documentation.

24/26

4.8 Additional functions

More functions/command that can be useful:

thread.exit

thread.time

where command, experimental.

See more such function by typing, for example, ?thread and ?cache.

25/26

4.9 Exercises

26/26

