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In statistical hypothesis testing, the α-risk (probability of rejecting true null) is controlled
by construction, but the β-risk (probability of accepting false null) is left open. To also
control the β-risk at specific alternatives, one needs large enough sample sizes.

The probabilty of rejecting the null is known as the power of the test; it is the α-risk
when the null is true, and it is one minus the β-risk when the null is false.

The power is a property of specific tests as procedures, constructed for specific null and
alternative hypotheses in specific settings. Power analysis is logically detached from the

execution of the tests using observed data, though past data might assist power analysis for
future studies in similar settings.

Power analysis is “analytically” possible in limited settings, of which some are covered
in these notes. Power analysis is always doable via simulations, but with one sample size,

one alternative at a time.

1 One/Two-Sample Settings

Power analysis is analytically tractable for one/two-sample tests concerning normal means,
but numerical calculations require variance values which are typically unknown. Ballpark
variance estimates might be obtained from past/pilot studies or using empirical ranges taken
as 4σ or 6σ; larger σ values are conservative for sample size planning.

1.1 One-Sample Tests

Observing Yi ∼ N(µ, σ2), i = 1, . . . , n, one has Ȳ ∼ N(µ, σ
2

n
) independent of (n− 1)s2/σ2 ∼

χ2
n−1, leading to Ȳ−µ

s/
√
n
∼ tn−1.

Consider the one-sided hypotheses H0 : µ ≤ µ0 vs. Ha : µ > µ0. For σ
2 known, one uses

a z-test, rejecting H0 when Ȳ−µ0

σ/
√
n
> z1−α. For σ2 unknown, one uses a t-test, rejecting H0

when Ȳ−µ0

s/
√
n
> t1−α,n−1.

At µ > µ0,
Ȳ−µ0

σ/
√
n
has mean µ−µ0

σ/
√
n
and unit variance, and Ȳ−µ0

s/
√
n

follows a non-central t-

distribution with df (n − 1) and noncentrality parameter µ−µ0

σ/
√
n
. The power of the z-test is

given by

p(µ) = P
(

Ȳ−µ0

σ/
√
n
> z1−α

)

= P
(

Ȳ−µ
σ/

√
n
> −µ−µ0

σ/
√
n
+ z1−α

)

= 1− Φ
(

− µ−µ0

σ/
√
n
+ z1−α

)

. (1)

The power of the t-test can be obtained in R using function pt.
As a toy example, consider µ−µ0

σ
= 0.8 and n = 15. At level α = 0.05, the following R

code calculates the powers of the z-test and the t-test.

1-pnorm(qnorm(.95)-0.8*sqrt(15))

1-pt(qt(.95,14),14,0.8*sqrt(15))

To ensure p(µ) ≥ 1 − β for µ ≥ µ1 with the z-test, one needs z1−α − √
nµ1−µ0

σ
≤ zβ =

−z1−β, or

n ≥
( z

1−α+z
1−β

δ

)2
, (2)
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where δ = µ1−µ0

σ
is the effect size. The sample size for t-test should be slightly bigger,

obtainable via trial-and-error using the pt function. With δ = 0.8, α = 0.05, and β = 0.1,
try

((qnorm(.95)+qnorm(.9))/0.8)^2

1-pt(qt(.95,13),13,0.8*sqrt(14))

1-pt(qt(.95,14),14,0.8*sqrt(15))

For the two-sided hypotheses H0 : µ = µ0 vs. Ha : µ 6= µ0, the z-test rejects H0 when
∣

∣

Ȳ−µ0

σ/
√
n

∣

∣ > z1−α/2, and the t-test rejects H0 when
∣

∣

Ȳ−µ0

s/
√
n

∣

∣ > t1−α/2,n−1. The power of the z-test

at µ 6= µ0 is given by

p(µ) = 1−P
(

−z1−α/2 ≤ Ȳ−µ0

σ/
√
n
≤ z1−α/2

)

= 1−Φ
(

− µ−µ0

σ/
√
n
+z1−α/2

)

+Φ
(

− µ−µ0

σ/
√
n
−z1−α/2

)

. (3)

With |µ− µ0| = 0.8σ, n = 15, and α = 0.05, the powers of the z-test and t-test are via

1-pnorm(qnorm(.975)-0.8*sqrt(15))+pnorm(-qnorm(.975)-0.8*sqrt(15))

1-pt(qt(.975,14),14,0.8*sqrt(15))+pt(-qt(.975,14),14,0.8*sqrt(15))

By symmetry, p(µ0 + γ) = p(µ0 − γ), and for µ > µ0 and n reasonably large, the last
term in (3) is negligible, so to ensure p(µ) ≥ 1− β for |µ− µ0| ≥ |µ1 − µ0| with the z-test,
one needs

n ≥
( z

1−α/2
+z

1−β

δ

)2
, (4)

where δ = |µ1−µ0|
σ

. For δ = 0.8, α = 0.05, and β = 0.1, try

((qnorm(.975)+qnorm(.9))/0.8)^2

1-pnorm(qnorm(.975)-0.8*sqrt(17))+pnorm(-qnorm(.975)-0.8*sqrt(17))

1-pt(qt(.975,17),17,0.8*sqrt(18))+pt(-qt(.975,17),17,0.8*sqrt(18))

1-pt(qt(.975,18),18,0.8*sqrt(19))+pt(-qt(.975,18),18,0.8*sqrt(19))

1.2 Two-Sample Tests

With independent samples Yij ∼ N(µi, σ
2
i ), i = 1, 2, j = 1, . . . , ni, Ȳ1− Ȳ2 ∼ N(µ1−µ2,

σ2

1

n1

+
σ2

2

n2

), and z-tests can always be used for σ2
1, σ

2
2 known.

For σ2
1 = σ2

2 possibly unknown, (n1 + n2 − 2)s2p = (n1 − 1)s21 + (n2 − 1)s22 ∼ σ2χ2
n1+n2−2,

and Ȳ1−Ȳ2

sp
√

1/n1+1/n2

follows a t-distribution with df (n1+n2−2) and noncentrality µ1−µ2

σ
√

1/n1+1/n2

.

For σ2
1 6= σ2

2 unknown, the Behrens-Fisher problem is analytically intractable.
Consider the two-sided hypotheses H0 : µ1 = µ2 vs. Ha : µ1 6= µ2. Assuming σ2

1 = σ2
2,

n1 = n2, the z-test rejects H0 when
∣

∣

Ȳ1−Ȳ2

σ
√

2/n

∣

∣ > z1−α/2, and the t-test rejects when
∣

∣

Ȳ1−Ȳ2

sp
√

2/n

∣

∣ >

t1−α/2,2(n−1). The power of the z-test is seen to be

p(µ1 − µ2) = 1− Φ(− µ1−µ2

σ
√

2/n
+ z1−α/2) + Φ(− µ1−µ2

σ
√

2/n
− z1−α/2). (5)

With |µ1−µ2| = 0.8σ, n = 15, and α = 0.05, the powers of the z-test and t-test are available
via
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1-pnorm(qnorm(.975)-0.8*sqrt(15/2))+pnorm(-qnorm(.975)-0.8*sqrt(15/2))

1-pt(qt(.975,28),28,0.8*sqrt(15/2))+pt(-qt(.975,28),28,0.8*sqrt(15/2))

To ensure p(µ1 − µ2) ≥ 1− β for |µ1 − µ2| ≥ d with the z-test, one needs

n ≥ 2
( z

1−α/2
+z

1−β

d/σ

)2
. (6)

With d = 0.8σ, α = 0.05, and β = 0.1, try

2*((qnorm(.975)+qnorm(.9))/0.8)^2

1-pnorm(qnorm(.975)-0.8*sqrt(33/2))+pnorm(-qnorm(.975)-0.8*sqrt(33/2))

1-pt(qt(.975,64),64,0.8*sqrt(33/2))+pt(-qt(.975,64),64,0.8*sqrt(33/2))

1-pt(qt(.975,66),66,0.8*sqrt(34/2))+pt(-qt(.975,66),66,0.8*sqrt(34/2))

1.3 Paired Tests

Observing Yij = µi+βj+ ǫij, i = 1, 2, j = 1, . . . , n, ǫij ∼ N(0, σ2), one is to test H0 : µ1 = µ2

vs. Ha : µ1 6= µ2. Working with dj = Y1j − Y2j = µ1 − µ2 + ej, where ej = ǫ1j − ǫ2j ∼
N(0, 2σ2), the z-test rejects H0 when

∣

∣

d̄

σ
√

2/n

∣

∣ > z1−α/2, and the t-test rejects H0 when
∣

∣

d̄
sd/

√
n

∣

∣ > t1−α/2,n−1, where s2d =
1

n−1

∑n
j=1(dj − d̄)2.

The power and sample size for the z-test are as given in (5) and (6), but the meaning of
σ here differs from that in §1.2. Also, the t-test here has df (n− 1) instead of 2(n− 1).

Note that βj’s do not appear in the paired tests so can be arbitrary. Assuming bj ∼
N(µb, σ

2
b ), independent of ǫij, the marginal variance of Yij is σ̃

2 = σ2
b +σ2 and the correlation

between Y1j and Y2j is ρ =
σ2

b

σ2

b+σ2
= σ̃2−σ2

σ̃2 , yielding σ2 = σ̃2(1− ρ).

2 One-Way ANOVA

Consider Yij ∼ N(µi, σ
2), i = 1, . . . , a, j = 1, . . . , ni. One has Ȳi ∼ N(µi, σ

2/ni) and

(N − a)s2p =
∑k

i=1(ni − 1)s2i ∼ χ2
N−a, where N =

∑a
i=1 ni. When a = 2, this reduces to §1.2

with σ2
1 = σ2

2.
Multiple pairs of (H0, Ha) could be formed to address different aspects of interest in

applications, and power analysis for the respective tests has to be conducted separately;
multiple comparison adjustments might be done via altered rejection regions.

2.1 Contrasts

Consider θ =
∑a

i=1 ciµi for some known ci’s with
∑a

i=1 ci = 0. One has θ̂ =
∑a

i=1 ciȲi ∼
N(θ, σ2

θ), where σ2
θ = σ2

∑a
i=1

c2i
ni
, and θ̂−θ0

sp
√∑

i c
2

i /ni

has df (N − a) and noncentrality θ−θ0
σθ

.

Tests concerning individual contrasts can be analyzed following the lines in §1.1;
∑

i ci = 0
is not used here, but general linear combinations of µi’s are not of much interest in applica-
tions.
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2.2 Overall F -Test

The F -test forH0 : µ1 = · · · = µa rejectsH0 when
MSTr
MSE

> F1−α,a−1,N−a, where (a−1)MSTr =
SSTr =

∑a
i=1 ni(Ȳi−Ȳ )2 for Ȳ = 1

N

∑a
i=1 niȲi, and MSE = s2p estimates σ2. If σ2 were known,

one would be using X2 = SSTr/σ2 instead, rejecting H0 when X2 > χ2
1−α,a−1.

X2 follows a χ2-distribution with df (a− 1) and noncentrality parameter φ =
∑

i ni(µi −
µ)2/σ2, where µ = 1

N

∑a
i=1 niµi, and

MSTr
MSE

follows an F -distribution with df (a − 1, N − a)
and the same noncentrality. With a = 5, N = 35, φ = 10, and α = 0.05, the power of the
F -test is given by

1-pf(qf(.95,4,30),4,30,10)

Doubling the sample sizes in the setting, the power becomes

1-pf(qf(.95,4,65),4,65,20)

For the example in §1.2 with |µ1 − µ2| = 0.8σ and n1 = n2 = 15, one has a = 2, N = 30,
and φ = 15(2)(0.4)2 = 4.8. The power of the F -test here matches the power of the two-sided
two-sample t-test in §1.2, as the two tests are equivalent.

1-pf(qf(.95,1,28),1,28,4.8)

1-pt(qt(.975,28),28,0.8*sqrt(15/2))+pt(-qt(.975,28),28,0.8*sqrt(15/2))

The noncentrality parameter φ =
∑

i ni(µi − µ)2/σ2 depends on the unknown σ2 and
µi’s, for which one may use (conservative) ballpark estimates of σ2 and hypothetical values
of µi’s. The following R function takes (ni, µi) as inputs and returns

∑

i ni(µi − µ)2.

ncp=function(n,mu){mu0=sum(n*mu)/sum(n);sum(n*(mu-mu0)^2)}

ncp(5:9,c(3.9,4.1,4.2,4.3,4.5))

When ni’s are all equal and max |µi − µj| = δ,
∑a

i=1(µi − µ)2 ≥ δ2/2, with the lower bound
reached at (µ1, . . . , µa) = µ+ (−δ/2, 0, . . . , 0, δ/2).

3 Balanced Two-Way ANOVA

Consider Yijk ∼ N(µij, σ
2), i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , n. One may write µij =

µ+ αi + βj + (αβ)ij , with side conditions
∑

i αi =
∑

j βj =
∑

i(αβ)ij =
∑

j(αβ)ij = 0. The

ANOVA decomposition has SST = SSA+SSB+SSAB+SSE, where SST =
∑

i,j,k(Yijk−Ȳ···)
2,

SSA = bn
∑

i(Ȳi·· − Ȳ···)
2, SSB = an

∑

j(Ȳ·j· − Ȳ···)
2, SSAB = n

∑

i,j(Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···)
2,

and SSE =
∑

i,j,k(Yijk − Ȳij·)
2.

SSA/σ2, SSB/σ2, SSAB/σ2, SSE/σ2 are independent and all follow χ2-distributions,
with df’s (a − 1), (b − 1), (a − 1)(b − 1), ab(n − 1), in order, and noncentrality parameters
bn

∑

i α
2
i /σ

2, an
∑

j β
2
j /σ

2, n
∑

i,j(αβ)
2
ij/σ

2, 0.

When
∑

i,j(αβ)
2
ij > 0, the two-way structure is largely artificial, and the setting effectively

reduces to one-way ANOVA with ab treatment levels. The F -test for H0 :
∑

i,j(αβ)
2
ij = 0

rejects H0 when SSAB/(a−1)(b−1)
SSE/ab(n−1)

> F1−α,(a−1)(b−1),ab(n−1), and the power analysis follows the
lines of §2.2.
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3.1 Additive Models

The two-way structure is effectively meaningful only when
∑

i,j(αβ)
2
ij = 0. Assuming an

additive model µij = µ+ αi + βj, one should combine SSAB and SSE, using s2p =
SSAB+SSE
abn−a−b+1

to estimate σ2.
The F -test for H0 :

∑

i α
2
i = 0 rejects H0 when SSA/(a−1)

s2p
> F1−α,a−1,abn−a−b+1, and the

power analysis follows the lines of §2.2. The test for H0 :
∑

j β
2
j = 0 is similar.

For a one-way contrast θ =
∑

i ciαi with
∑

i ci = 0, θ̂ =
∑

i ciȲi·· ∼ N(θ, σ2
θ), where

σ2
θ = σ2

∑

i c
2
i /bn, and

θ̂−θ0

sp
√∑

i c
2

i /bn
follows a t-distribution with df (abn − a − b + 1) and

noncentrality parameter θ−θ0
σθ

. The power analysis follows the lines in §1.1. Contrasts of βj ’s

are similar.

3.2 Split-Plots

The standard design has a total of abn experimental units (EUs) evenly allocated to the
ab cells of treatment combinations, and the index k has no meaning so can be arbitrarily
permuted intra-cell.

Now suppose one can only assign the a levels of factor A to an blocks, but each block is
divided into b subplots to receive the b levels of factor B. This leads to a split-plot design,
with the an blocks as the EUs for factor A and the abn subplots as the EUs for factor B.
One may write

Yijk = µ+ αi + βj + (αβ)ij + gk(i) + ǫijk,

where gk(i) ∼ N(0, τ 2), independent of ǫijk ∼ N(0, σ2).
The index k is now meaningful, nested under levels of factor A but crossed with levels of

factor B, and
∑

i,j,k(Yijk − Ȳij·)
2 involves both gk(i) and ǫijk. Decomposing

∑

i,j,k(Yijk − Ȳij·)
2 = b

∑

i,k(Ȳi·k − Ȳi··)
2 +

∑

i,j,k(Yijk − Ȳij· − Ȳi·k + Ȳi··)
2

= b
∑

i,k(gk(i) − ḡ·(i) + ǭi·k − ǭi··)
2 +

∑

i,j,k(ǫijk − ǭij· − ǭi·k + ǭi··)
2

= SSBlk + SSE,

one has SSE/σ2 following a central χ2-distribution with df a(b−1)(n−1) and SSBlk/(σ2+bτ 2)
central χ2 with df a(n− 1). SSAB = n

∑

i,j((αβ)ij + ǭij· − ǭi·· − ǭ·j· − ǭ···)
2, so one may test

H0 :
∑

i,j(αβ)
2
ij = 0 using SSAB/(a−1)(b−1)

SSE/a(b−1)(n−1)
, which has noncentrality n

∑

i,j(αβ)
2
ij/σ

2.

Tests for main effects make practical sense only in an additive model where
∑

i,j(αβ)
2
ij =

0, and one should pool resources and form SSE∗ = SSE + SSAB with df (b− 1)(an− 1);

SSE∗ =
∑

i,j,k(Yijk − Ȳi·k − Ȳ·j· + Ȳ···)
2 =

∑

i,j,k(ǫijk − ǭi·k − ǭ·j· + ǭ···)
2.

SSA = bn
∑

i(αi+ ḡ·(i)− ḡ·(·)+ ǭi··− ǭ···)
2, and one may test H0 :

∑

i α
2
i = 0 using SSA/(a−1)

SSBlk/a(n−1)
,

which has noncentrality bn
∑

i α
2
i /(σ

2 + bτ 2). Now SSB = an
∑

j(βj + ǭ·j· − ǭ···)
2, and one

may test H0 :
∑

j β
2
j = 0 using SSB/(b−1)

SSE∗/(b−1)(an−1)
, which has noncentrality an

∑

j β
2
j /σ

2.
The power analysis of the above F -tests follows the lines of §2.2.
Contrasts of αi’s and βj ’s can be analyzed following the routines used earlier, with the

former involving σ2 + bτ 2 and the latter involving σ2.
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4 Proportions

Observing Yi ∼ Bin(1, p), i = 1, . . . , n, one is to test H0 : p ≤ p0 vs. Ha : p > p0.
One has µ = p, σ2 = p(1 − p) ≤ 0.52, and Y =

∑n
i=1 Yi ∼ Bin(n, p). One may use normal

approximation to get started, then use R function pbinom to elicit via exact calculations. The
normal approximation would set the rejection region as Y > n(p0 + z1−α

√

p0(1− p0)/n).
Consider p0 = 0.3, α = 0.05, and one would like p(0.4) ≥ 0.8; δ = 0.4−0.3

0.5
= 0.2 to use in

(2).

n=ceiling(((qnorm(.95)+qnorm(.8))/0.2)^2); n

c=ceiling(n*(.3+qnorm(.95)*sqrt(.3*(1-.3)/n))); c

1-pbinom(c,n,c(0.3,0.4))

So with n = 155 and rejection region Y > 56, one has α ≤ 0.042 and 1 − β ≥ 0.816
for p ≥ 0.4. In general, one may need to fiddle a bit around the results based on normal
approximation.

Two-sided and/or two-sample situations could be tricky, but one should be able to get
around using normal approximation, and possibly perform exact power calculations via
pbinom using hypothetical true values of p. The sample sizes needed here are usually large,
so normal approximation should be safe unless p gets too close to 0 or 1.
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