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Regression analysis is widely used in applications, with which one quantifies the depen-
dence of responses (outcomes, dependent variables) on a set of predictors/covariates (inputs,
independent variables).

Data for regression analysis come from observational studies or designed experiments.
With the former, one does not have much control but just records what happens. With the
latter, one sets inputs to specified values then observes the resulting outcomes.

In some applications, the sole purpose is to predict the outcomes from the inputs, but
in some others, one is more interested in how the inputs affect the outcomes. Designed
experiments are primarily used to serve the latter purpose.

The input variables could be categorical or numerical by nature, but in designed exper-
iments, numerical inputs are typically fixed to a few “grid” values (levels), and are often
treated as categorical variables in analysis.

The outcomes are generally affected by many factors, and one hopes to account for as
much a portion as possible via the available input variables; the portion unaccounted for are
deemed as “errors,” explicit with continuous responses and implicit with binary, ordinal, or
count responses. Do include terms that may not be of direct interest, or else those would be
shoveled into the “error” term.

Sometimes, one can control the inputs of interest but study subjects may carry extraneous
variables, traits that are beyond control but could impact the outcomes systematically.

1 Factorial Design

With crossed factors, (full) factorial design is convenient if feasible. Consider factor A with
a levels and factor B with b levels, the mean responses for the ab treatment combinations
(cells) are generally different,

Yijk = µij + ǫijk = µ+ αi + βj + (αβ)ij + ǫijk, (1)

i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , nij . The design is balanced when nij = n are all equal,
which we assume hereafter.

Expressing the ab independent µij’s by µ+αi + βj + (αβ)ij is overparameterization, and
to keep things identifiable, one needs a set of side conditions such as

∑

i αi = 0,
∑

j βj = 0,
and

∑

i(αβ)ij =
∑

j(αβ)ij = 0, for a total of 1 + 1 + (a + b − 1) = a + b + 1 constraints.
The degrees of freedom associated with αi’s is (a − 1), with βj’s (b − 1), and with (αβ)ij ’s
ab− (a+ b− 1) = (a− 1)(b− 1).

Decomposing Yijk − Ȳ··· = (Yijk − Ȳij·) + (Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···) + (Ȳi·· − Ȳ···) + (Ȳ·j· − Ȳ···),
one obtains the sum of squares associated with αi, βj , (αβ)ij, and ǫijk in

SSA =
∑

i,j,k(Ȳi·· − Ȳ···)
2 =

∑

i,j,k(αi + ǭi·· − ǭ···)
2,

SSB =
∑

i,j,k(Ȳ·j· − Ȳ···)
2 =

∑

i,j,k(βj + ǭ·j· − ǭ···)
2,

SSAB =
∑

i,j,k(Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···)
2 =

∑

i,j,k((αβ)ij + ǭij· − ǭi·· − ǭ·j· + ǭ···)
2,

SSE =
∑

i,j,k

(Yijk − Ȳij·)
2 =

∑

i,j,k

(ǫijk − ǭij·)
2,
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where SSE has df ab(n− 1).
When

∑

i,j(αβ)
2
ij is small (insignificant?), one often chooses to work with an additive

model by setting (αβ)ij = 0, effectively shovling those into ǫijk; SSE
∗ = SSAB + SSE is the

SSE for an additive model, with df (abn−a− b+1). Additive models are easier to interpret,
and make the a× b structure “meaningful.”

When (αβ)ij’s are not negligible, the decomposition µij = µ+ αi + βj + (αβ)ij does not
necessarily bring much benefit, and one could be better off treating things as one composite
factor with ab levels.

When n = 1, (αβ)ij and ǫij are not identifiable from each other, so an additive model is
typically the only viable solution. Nevertheless, John Tukey considered a one df interaction
term of form (αβ)ij = δαiβj , and derived a test for δ = 0.

An experimental unit (EU) is material to which a treatment is applied in a single
trial of an experiment, and a measurement unit (MU) is material that is measured in an
experiment. In the design above, the EUs coincide with the MUs, totaling abn units.

For the design to be effective uncovering discrepancies among the µij’s, the magnitude
of ǫijk should be small and uniform, and the replication reduces the error magnitude in Ȳij·

by a factor of 1/
√
n.

The EU’s are assumed behaving “uniformly” for the purpose (no hidden extraneous
traits), and should be assigned randomly to the treatment combinations (equal chance to
any of the ab cells, or completely randomized design, CRD).

2 Blocking

Blocks are some physical entities on which experiments are conducted, and an additive block
effect is typically a nuisance. Blocks crossed with treatment levels often help to enhance
statistical power, whereas blocks nested under treatment levels are typically the experimental
units.

2.1 Crossed Blocks

Materials (subjects) used in experiments often carry extraneous traits, of which the effects
could be difficult or impossible to account for. Assuming the effects of the extraneous traits
(subject effects) are additive to the treatment effects, one may use the “same” subjects
multiple times, assigning a set of different treatment combinations in the process; the subject
effects typically cancel out for the purpose of assessing the treatment effects.

Examples include crossover studies using human subjects (with washout periods between
trials), before-after studies, agriculture experiments with treatments applied to subplots of
homogeneous fields, etc.

Write Yij = µ+αi+βj+ǫij, i = 1, . . . , a, j = 1, . . . , b, where αi’s are the treatment effects
satisfying

∑

i αi = 0 and βj’s are the nuisance subject (block) effects. This is a complete block
design (CBD). When the assignment of treatments to the EUs in each block is randomized,
one has a randomized complete block design (RCBD).

The sum of squares are as in §1 but with n = 1 and (αβ)ij = 0; SSE there vanishes and
SSAB there is the SSE here. SSB is usually not needed in the current setting.
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Treatment effects are usually assessed via contrasts of αi’s, θ =
∑

i ciαi for some known
ci’s satisfying

∑

i ci = 0, and Ỹi =
∑

i ciYij = θ +
∑

i ciǫij = θ + ǫ̃i.
When the treatment has only two levels i = 1, 2, one has paired data.
When αi’s represent more than one factors, they can be further decomposed similar to

the µij’s in §1.

2.2 Nested Random Blocks

Blocks generally do not carry any meaning and are not reproducible in the future, so block
effects are typically random by nature. One however may treat block effects as fixed in
settings where they cancel out, such as in §2.1.

For an example of nested blocks, consider agriculture experiments where treatments are
applied to plots of field (EUs), but responses are measured on individual plants (MUs).

Write Yijk = µi + gj(i) + ǫijk, where ǫijk ∼ N(0, σ2), gj(i) ∼ N(0, τ 2). We assume the
balanced case, with i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , n, which allows clean formulas.

Inferences concerning µi are based on Ȳi·· ∼ N
(

µi,
1
b
(τ 2 + σ2/n)

)

, and
∑

i,j(Ȳij· − Ȳi··)
2 =

∑

i,j(gj(i) − ḡ
·(i) + ǭij· − ǭi··)

2 has expectation a(b − 1)(τ 2 + σ2/n), so one may simply work

with the block means Ȳij· = µi + gj(i) + ǭij· = µi + eij; remember that the blocks are EUs.
This works as long as the block size n is fixed, regardless whether j(i)’s are balanced.

2.3 Split-Plots

In §1, the abn EUs are evenly allocated to the ab cells of treatment combinations, and the
index k has no meaning so can be arbitrarily permuted intra-cell.

Now suppose one can only assign the a levels of factor A to an blocks, but each block is
divided into b subplots to receive the b levels of factor B. This leads to a split-plot design,
with the an blocks as the EUs for factor A and the abn subplots as the EUs for factor B.

Write Yijk = µ + αi + βj + (αβ)ij + gk(i) + ǫijk, where ǫijk ∼ N(0, σ2), gk(i) ∼ N(0, τ 2).
The index k is now meaningful, nested under levels of factor A but crossed with levels of
factor B, and

∑

i,j,k(Yijk − Ȳij·)
2 involves both gk(i) and ǫijk. One has

∑

i,j,k(Yijk − Ȳij·)
2 =

∑

i,j,k(Ȳi·k − Ȳi··)
2 +

∑

i,j,k(Yijk − Ȳij· − Ȳi·k + Ȳi··)
2

=
∑

i,j,k(gk(i) − ḡ
·(i) + ǭi·k − ǭi··)

2 +
∑

i,j,k(ǫijk − ǭij· − ǭi·k + ǭi··)
2

= SSBlk + SSE,

where SSE has df a(b− 1)(n− 1), SSBlk has df a(n− 1), and MSBlk = SSBlk/a(n− 1) has
mean τ 2 + σ2/b. The sum of squares associated with αi, βj, and (αβ)ij are seen to be

SSA =
∑

i,j,k(Ȳi·· − Ȳ···)
2 =

∑

i,j,k(αi + ḡ
·(i) − ḡ

·(·) + ǭi·· − ǭ···)
2,

SSB =
∑

i,j,k(Ȳ·j· − Ȳ···)
2 =

∑

i,j,k(βj + ǭ·j· − ǭ···)
2,

SSAB =
∑

i,j,k(Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···)
2 =

∑

i,j,k((αβ)ij + ǭij· − ǭi·· − ǭ·j· + ǭ···)
2.

Test for
∑

ij(αβ)
2
ij = 0 is based on SSAB/SSE, and the SSE for an additive model is

SSE∗ = SSAB + SSE =
∑

i,j,k(Yijk − Ȳi·k − Ȳ·j· + Ȳ···)
2, with df (b − 1)(an − 1). In an
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additive model, one may test for
∑

i α
2
i = 0 using SSA/SSBlk, and test for

∑

j β
2
j = 0 using

SSB/SSE∗.

2.4 Split-Split-Plots

Now suppose each EU of factor B in §2.3 is further partitioned into c subsubplots to receive
the levels of factor C. One may write Yijkl = µijk + gl(i) + hj,l(i) + ǫijkl, where i = 1, . . . , a,
j = 1, . . . , b, k = 1, . . . , c, l = 1, . . . , n, for µijk fixed and gl(i), hj,l(i), ǫijkl random with
variances σ2

g , σ
2
h, σ

2; gl(i) is the block effect and hj,l(i) is the B× Blk interaction. One has

∑

i,j,k,l(Yijkl − Ȳijk·)
2 =

∑

i,j,k,l(Ȳi··l − Ȳi···)
2 +

∑

i,j,k,l(Yij·l − Ȳij·· − Ȳi··l + Ȳi···)
2

+
∑

i,j,k,l

(Yijkl − Ȳijk· − Ȳij·l + Ȳij··)
2

=
∑

i,j,k,l(gl(i) − ḡ
·(i) + h̄

·l(i) − h̄
··(i) + ǭi··l − ǭi···)

2

+
∑

i,j,k,l(hjl(i) − h̄j·(i) − h̄
·l(i) + h̄

··(i) + ǭij·l − ǭij·· − ǭi··l + ǭi···)
2

+
∑

i,j,k,l

(ǫijkl − ǭijk· − ǭij·l + ǭij··)
2

=SSBlk1 + SSBlk2 + SSE,

where SSE has df ab(c − 1)(n − 1), SSBlk2 has df a(b − 1)(n − 1) and MSBlk2 estimates
σ2
h + σ2/c, SSBlk1 has df a(n− 1) and MSBlk1 estimates σ2

g + σ2
h/b+ σ2/bc.

As usual, SSTr =
∑

i,j,k,l(Ȳijk· − Ȳ····)
2 can be decomposed into terms of main effects,

two-way interactions, and a three-way interaction; SSA involves all random terms, SSB and
SSAB involve hj,l(i) and ǫijkl but not gl(i), and the remaining terms (all including factor C)
only involve ǫijkl.

One may test for the three-way interaction using MSABC/MSE. Absent the three-way
interaction, one may form SSE∗ = SSE + SSABC, and two-way interactions could be tested
using MSAB/MSBlk2, MSAC/MSE∗, and MSBC/MSE∗; when either or both of the latter
two are insignificant, one may choose to eliminate the term(s) in the model and add more
term(s) into SSE∗. When interactions involving factor A are absent, one may test for the
A main effect using MSA/MSBlk1. When interactions involving factor B are absent, one
may test for the B main effect using MSB/MSBlk2∗ for SSBlk2∗ = SSBlk2 + SSAB, and
when interactions involving factor C are absent, one may test for the C main effect using
MSC/MSE∗.

3 Nested Factors

With crossed factors, say A and B, any level of factor A can be combined with any level of
factor B to form a treatment combination. This is the more common scenario but there are
exceptions.

Consider a study of automobile fuel economy, where car models (factor B) are nested
under car makes (factor A); under each level of factor A, there is an entirely different set of
levels of factor B.
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Write Yijk = µ + αi + βj(i) + ǫijk, i = 1, . . . , a, j = 1, . . . , bi, k = 1, . . . , nij , with side
conditions

∑

i(
∑

j nij)αi = 0 and
∑

j nijβj(i) = 0, ∀i.
One may calculate SSA =

∑

i,j,k(Ȳi·· − Ȳ···)
2 with df (a− 1), SSB(A) =

∑

i,j,k(Ȳij· − Ȳi··)
2

with df
∑

i(bi − 1), and SSE =
∑

i,j,k(Yijk − Ȳij·)
2 with df

∑

i,j bj(nij − 1). It may not make
much sense to desire “balanced” design in the setting, especially for index j, and the dot
notation is a bit “abusive” as the averaging is generally over different number of observations
at different “localities.”

Aggregating i-specific
∑

j,k(Ȳij· − Ȳi··)
2 into SSB(A) may not be desirable, and one could

be better off performing separate one-way analysis for each level of factor A.

3.1 A Toy Example

Consider the setting of §2.2, Yijk = µ+αi+gj(i)+ǫijk, where ǫijk ∼ N(0, σ2), gj(i) ∼ N(0, τ 2).
Setting τ 2 = ∞, the nested random blocks become the levels of nested factor. Setting τ 2 = 0,
one ignores blocking and treats the MUs as EUs.

A “balanced” toy example is created with a = 3, b = 3, and n = 4, for a total of 36
entries of Yijk. R data frame toy has elements y, trt, and blk, where blk has values 1:9. A
“replicate” of toy is in toy1, where blk values 4:6 and 7:9 are coded as 1:3. In data frame
toy2, the 36 entries are collapsed down to 9 entries of block averages.

For blk as fixed effect nested under trt, toy and toy1 are equivalent.

summary(aov(y~trt/blk,toy)); summary(aov(y~trt/blk,toy1))

summary(lm(y~trt/blk,toy)); summary(lm(y~trt/blk,toy1))

For blk random nested under trt, toy1 is not usable, and the following are equivalent.

toy.fit=lmer(y~trt+(1|blk),toy)

anova(toy.fit); summary(toy.fit)

summary(aov(y~trt,toy2)); summary(lm(y~trt,toy2))

With unbalanced design where different EUs may contain different number of MUs, the lmer
fit should be used.

Ignoring blocks, MUs are taken as EUs.

summary(aov(y~trt,toy)); summary(lm(y~trt,toy))

4 Examples

Example 1 To study the effect of pesticides on bird, 65 chicks are randomly assigned to 5
diets, one control and 4 containing different pesticides.

This is one-way CRD, a special case of the design in §1 with b = 1. SSA has df 4 and
SSE has df 60; SSB and SSAB vanish. The chicks do not have to be evenly divided among
the 5 treatment levels.
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Example 2 Four different salt-sand mixtures are tested on 4 road sections for winter road
treatments. Each road section is divided into 4 portions to receive the 4 mixtures, randomly
assigned.

This is RCBD of §2.1. SSA has df 3 and SSE has df 9.

Example 3 To study the effects of feral pigs on the native vegetation in Santa Cruz Island,
a researcher collected data from 10 × 2 × 2 = 40 plots, 2 × 2 = 4 plots each around 10 oak
trees on the island; the two binary factors are under the canopy or not (factor C) and fenced
or not (factor F).

This is RCBD of §2.1, but with the 4 levels of treatment further decomposed into a
2 × 2 structure. The 10 oak trees are the blocks. The 3 df SSA in §2.1 is decomposed into
SSC+SSF+SSCF, each with df 1; this is the same SSA+SSB+SSAB decomposition in §1.

Example 4 In an experiment on the effect of treatments A and B on the amount of substance
S in mice’s blood, it was not practical to use more than 4 mice on any one day. The treatments
formed a 2× 2 system: (A0, A1)× (B0, B1). The mice used on one day were all of the same
sex. The data are recorded in the following table.

Sex Day A0B0 A1B0 A0B1 A1B1

Male 1 4.4 2.8 4.8 6.8
2 5.3 3.3 1.9 8.7
4 1.8 2.6 3.1 4.8
7 5.4 6.9 6.2 9.3

Female 3 5.3 7.0 4.3 7.2
5 3.7 5.9 6.2 5.1
6 6.5 5.4 5.7 6.7
8 5.2 6.8 7.9 7.9

This is the split-plot design of §2.3, with days as random blocks, nested under the sex
effect and crossed with the treatment effect; the 4-level treatment is further decomposed into
a 2× 2 structure.

SSE has df 18, SSBlk has df 6, SSs has df 1, SSTr has df 3, and SSsTr has df 3. Absent
the s× Tr interaction, SSE∗ has df 21.

The data are in an R data frame mice with elements A, B, sex, day, and S. One may fit
models and check results after loading packages lme4 and lmerTest.

fit0=lmer(S~sex*(A*B)+(1|day),data=mice); summary(fit0)

fit1=lmer(S~sex+(A*B)+(1|day),data=mice); summary(fit1)

5 Analysis of Paired Data

Setting a = 2 in §2.1, one gets paired data.
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5.1 Paired t-Test

Working with dj = Y2j − Y1j = (α2 − α1) + (ǫ2j − ǫ1j) = 2α2 + ej, one may test for α2 = 0
using a one-sample t-test, known as paired t-test. Paired t-test is equivalent to the F -test
based on SSA/SSE in §2.1.

5.2 Before-After Studies

Before-after studies are commonly used to assess the effect of intervention, in which the
measure of interest (Y ) is taken on each subject before and after some training/intervention
session; characteristics of the subjects (x) may also be collected.

For Y continuous, one may write Yij = µ+αi+f(xj)+g(i,xj)+ ǫij , where i = 1, 2 codes
before-after and j = 1, . . . , n labels the subjects. Note that no model forms are specified for
f(x) and g(i,x) here. For an additive model with g(i,xj) = 0, this reduces to the setting of
§5.1 with βj = f(xj), and xj are not needed for the assessment of the intervention effect αi.

In general, the intervention effect may vary with x, and for continuous Y , a common
practice is to model Y2j − Y1j = (α2 − α1) + (g(2,xj) − g(1,xj)) + (ǫ2j − ǫ1,j). Assuming
g(2,x) − g(1,x) = xTβ, say, one should expect the same inferential results concerning β

using either lm(y2-y1~x1+x2) or lm(y~id+trt+trt:(x1+x2)), where trt represents αi and
id represents βj = f(xj). For Y not continuous, literal differencing y2-y1 no longer makes
sense, but the model formula y~id+trt+trt:(x1+x2)) can be used to achieve the effect.

5.3 A Toy Example

Generating synthetic data.

x=rnorm(20); y1=rnorm(20); y2=y1+2*x+rnorm(20,,0.3)

dat=data.frame(trt=as.factor(rep(1:2,c(20,20))),

id=as.factor(c(1:20,1:20)),y=c(y1,y2),x=c(x,x))

Paired t-test and equivalents; this makes no practical sense for the data generated, but the
purpose here is to numerically verify the equivalence of different implementations.

t.test(y2-y1) ## paired t-test

summary(lm(y~trt+id,dat)) ## RCBD with fixed blocks

summary(lmer(y~trt+(1|id),dat)) ## random blocks

Modeling g(2,xj)− g(1,xj)

summary(lm(y2-y1~x)) ## direct differencing

summary(lm(y~id+trt+trt:x,dat)) ## implicit differencing

5.4 Crippled Pairs

Suppose one expects to collect paired data, but some pairs have one arm missing; technically
this could be viewed as unbalanced block design. Instead of dropping the crippled pairs, one
may include all available data using lmer(y~trt+(1|id)).

When all pairs are crippled, βj and ǫij are not identifiable from each other, and one is
left with independent samples for use in a two-sample t-test.
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5.5 Another Toy Example

Generating synthetic data; trt1 is unbalanced.

x=rnorm(20); y1=x+rnorm(x,,0.3); y2=x+rnorm(x,0.5,0.3)

dat=data.frame(trt1=as.factor(rep(c("a","b","a","b"),c(9,11,9,11))),

trt2=as.factor(rep(1:2,c(20,20))),

blk=as.factor(c(1:20,1:20)),y=c(y1,y2))

This is a split-plot design with the whole plots the EUs of trt1 and the subplots the EUs
of trt2; both factors are binary. In an additive model Yijk = µ + αi + βj + gk(i) + ǫijk, the
test for αi (MSA/MSBlk) is the same as a two-sample t-test, and that for βj (MSB/MSE∗)
is the same as a paired t-test; need package lmerTest.

fit=lmer(y~trt1+trt2+(1|blk),dat) ## split-plot additive model

anova(fit)

t.test((y1+y2)[1:9],(y1+y2)[10:20],var.equal=TRUE) ## t-test for trt1

t.test(y1,y2,paired=TRUE) ## t-test for trt2

Now ignore trt1, test for the effect of trt2 using partly paired data, and compare with
results using only pairs.

fit=lmer(y~trt2+(1|blk),dat[5:34,])

anova(fit)

t.test(y1[5:14],y2[5:14],paired=TRUE)

summary(lm(y~trt2+blk,dat[c(5:14,25:34),]))

5.6 Difference of Differences

Suppose one is to compare two therapies using a crossover design, and the effect of a therapy
on a patient is assessed via the difference between the measurements at the onset and the exit
of the treatment duration. With continuous measurements, one may perform a one-sample
t-test using difference of differences, a natural extension of the paired t-test.

A model reflecting the scenario is seen to be Yijk = µij + βik + βjk + ǫijk, where i = 1, 2
denote the two therapies, j = 1, 2 mark onset/exit, k = 1, . . . , n label the subjects, and
the β’s represent inter-subject/period variability. One has (Y22k − Y21k) − (Y12k − Y11k) =
µ22−µ21−µ12+µ11+ǫ22k−ǫ21k−ǫ12k+ǫ11k = δ+ek, where the (i, j)-interaction δ quantifies
the difference in the treatment effects of the two therapies.

Generating synthetic data.

x=rnorm(20); xx=rnorm(20)

y1=rnorm(20); y2=y1+0.5*x+rnorm(x,1,0.3)

y3=rnorm(20); y4=y3+1.5*x+rnorm(x,1.5,0.3)

dat=data.frame(trt1=as.factor(rep(1:2,rep(40,2))),

trt2=as.factor(rep(c(1:2,1:2),rep(20,4))),

id=as.factor(rep(1:20,4)),

y=c(y1,y2,y3,y4),x=rep(x,4),xx=rep(xx,4))
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Equivalent implementations of one-sample t-test using difference of differences; the implicit
version could be used for non-continuous responses.

t.test(y4-y3-y2+y1) ## diff of diff

t.test(y4-y3,y2-y1,paired=TRUE)

summary(lm(y~(id+trt1+trt2)^2,dat)) ## implicit d-o-d in trt1:trt2

Regressing difference of differences on covariates.

summary(lm(y4-y3-y2+y1~x+xx)) ## direct differencing

summary(lm(y~(id+trt1+trt2)^2+trt1:trt2:(x+xx),dat)) ## implicit d-o-d
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