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/ Linear Transfer Function Models' \

520 Transfer Function Models 1

Consider an input series {X;} to a system and the corresponding
output series {Y;} from it.

Hold the input at a fixed level X and let the system reach its
equilibrium, one obtains the steady-state output Y. (X). For a
linear system, Yo, = p, + gX, where g is the steady-state gain.
Without loss of generality, assume p,, = 0.

The inertia of a linear system may be represented by a linear filter,
Vi=0v0Xe + 01 X1 +02Xi 0+ -+ =v(B)Xq,
where v(B) is the transfer function of the filter.

The general linear process discussed earlier in the course is seen to
be the output from a linear filter with white noise input,

\\ 2 = Yoar + Y1a¢—1 + Yaas_o + - = P(B)ay. /
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/ Difference Equation, Stability' \

520 Transfer Function Models 2

Many continuous time dynamic systems follow certain differential
equations. On replacing the differential operators by difference

operators, one gets discrete models of the form
A+&V+- -+ &V =1 +mV + -+ 0,V Xy,
where V = 1 — B. This leads to models similar to the ARMA

models for stationary processes,
(1 — 513 — 57~BT)Y; — (WO — wlB — CUSBS)Xt_b,
or §(B)Y; = w(B)X;_, = Bw(B)X; = Q(B)X;.

The filter is stable if v(B) = 6~ 1(B)Q(B) is convergent for all
|B| < 1. For a stable filter, g = > =, v;. The stability of the filter

is governed by the roots of §(B). /
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STAT 520 Transfer Function Models 3

/ Impulse and Step Responses, Added Noise' \

Responding to an impulse input, Xy = I;—q), one has Y; = vy,

t=20,1,..., so the weights v; gives the impulse response. When the
response is delayed by b lags, one has vg = --- = v,_1 = 0.

Responding to a step input, Xy = I;;>0], one has
Y, =V, = Z;:o v, t =0,1,..., which gives the step response.

Consider a filter §(B)Y; = w(B)X;—p. The impulse response follows
the difference equation 6(B)v; =0 for j > s + 0.

A system may be subject to various kinds of disturbance, and it is
convenient to model the effect of the disturbance in the form of
added noise in the output,

Yt — 5_1(B)W(B)Xt_b + Nt,
\ivhere Ni may follow an ARIMA model, p(B)N; = 6(B)a;. /
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/ Cross Correlation Function.

Consider a stationary bivariate stochastic process (x¢,y:) with

means i, f, and variances o2,

between x and y at lag £ is deﬁned by
Yoy (k) = El(Tt — pa) Wesr — py)], k£=0,1,2,....

cross correlation function is defined by
Pay (k) = Yoy (k) JOzoy, k=0,£1,%2,....
Observing (x¢,y:), t = 1,. , one estimates v, (k) by

{711 Z::f(xt —Z)(Ye+x — ¥), k>0,
(

Cay(K) = _
L _1k Yt — g)(xt—k - :E)y k S 07

and estimates pyy, (k) by 72y (k) = oy (k)/Szs,, Where

\iﬂc =V C22(0); sy = /yy(0).

02 The cross covariance function

Note that v, (k) = v4z(—k), but in general v, (k) # Yoy (—k). The

~

/
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STAT 520 Transfer Function Models 5

/ Model Identification ' \

Write y; = v(B)z; + n; and assume p, = 0, u, = 0, and the

independence of x; and n;. Taking expectation of
Tt—kYt = V0Tt—kTt T V1Tt—kTt—1 + V2Tt Tt—2 + ** + Te—kNy,
one has, for k > 0,

wa(k) — 'UO’Yxx(k) + ’01%,;33(16 — 1) — vayxw(k — 2) 4+ ..

. . o 2
When z; are white noise, one has v, (k) = vioy.

Model identification consists of the following steps.
1. Prewhitening z;: Obtain a; from ¢, (B)x; = 0,.(B)a.
2. Estimating vg: Obtain 8; = 0 1(B)¢,(B)y:, calculate

Ok = rap(k)sg/5,, and guess , s, b.

\i\lote that 8; = v(B)ay + €;, where ¢; = 0_1(B)d,(B)n;. /

C. Gu Spring 2024



STAT 520 Transfer Function Models 6

/ Model Identification: Example' \

Consider the gas furnace data (series J) in BJR.

series.J<-ts(matrix(scan("gas-furnace") ,ncol=2,byrow=T))
x<-series.J[,1]; y<-series.J[,2]; acf(x); pacf(x); PP.test(x)
fit.x<-arima(x,c(3,0,0)); fit.x

acf(fit.xPres); Box.test(fit.x$res,10,,4)
alpha<-filter(x,c(1,-fit.x$coef[1:3]),sides=1)[-(1:3)]
beta<-filter(y,c(1l,-fit.x$coef[1:3]),sides=1)[-(1:3)]
jk<-ccf(ts(beta),ts(alpha)); abline(v=0,1lty=2,col=3)

The orders are seen to be (r,s,b) = (1,2,3) or (r,s,b) = (2,2, 3).

v<-jk$acf[jk$lag)in’(3:7),1,1]*sqrt(var(beta))/sqrt(var(alpha))
v[4]/v[3]; v[5]/v[4]; sqrt(v[5]/v[3])

Take r = 1 and set 0 = .61, one solves for wg = v3 = —.55,

\il = —(vq4 — dv3z) = .31, and wy = —(v5 — dvy) = .49. /
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/ Identification of Noise Model, Estimation' \

Given the preliminary estimates of §(B), w(B), and b, one may

calculate 7y = y; — 071 (B)w(B)xi_p, then apply standard
techniques to identify the order of ¢(B)n; = 0(B)ay.
wk<-filter(x,c(0,0,0,-.55,-.31,-.49),sides=1) [-(1:5)]

nwk<-(y[-(1:5)]-filter(wk,.61,"recursive"))
acf (nwk); pacf(nwk); acf(arima(nwk,c(2,0,0))$res)

This suggest AR(2) for ng.

Putting things together, one may estimate the whole model using

arima as follows.

xy<-cbind(y,lag(y,-1) ,lag(x,-3) ,lag(x,-4) ,1lag(x,-5))
ind<-is.na(apply(xy,1,sum)); xy<-xy['ind,]
fit.y<-arima(xyl[,1],c(2,0,2),xreg=xy[,-1])

\\\\ fit.y; acf(fit.y$res) ////
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/ Miscellaneous ' \

If x; or y; are nonstationary, one may difference (both series) to

stationarity with v(B) intact.

Given a known transfer function model,
A(BYS(B)y: = o(B)w(B)ze_y + 6(B)I(B)a,

where ¢, (B)x; = 0,0, one may conveniently calculate the forecast
y¢(1) via the difference equation, with any a;1x, £ > 0 replaced by 0
and x;1k, k > 0 replaced by z;(k).

Let v(B) = Z;io v; B satisfy 6(B)p,(B)v(B) = w(B)B%),(B)

and (B) = Y~ ¢; B’ satisfy ¢(B)y(B) = 0(B), the variance of
the forecast error y;.1; — 9¢(l) is seen to be

[—1

V() = Zj:O(Vj?O-gz + wgzo-ch)
N /
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