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✫

✩

✪

Linear Transfer Function Models

Consider an input series {Xt} to a system and the corresponding

output series {Yt} from it.

Hold the input at a fixed level X and let the system reach its

equilibrium, one obtains the steady-state output Y∞(X). For a

linear system, Y∞ = µy + gX, where g is the steady-state gain.

Without loss of generality, assume µy = 0.

The inertia of a linear system may be represented by a linear filter,

Yt = v0Xt + v1Xt−1 + v2Xt−2 + · · · = v(B)Xt,

where v(B) is the transfer function of the filter.

The general linear process discussed earlier in the course is seen to

be the output from a linear filter with white noise input,

zt = ψ0at + ψ1at−1 + ψ2at−2 + · · · = ψ(B)at.
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✫

✩

✪

Difference Equation, Stability

Many continuous time dynamic systems follow certain differential

equations. On replacing the differential operators by difference

operators, one gets discrete models of the form

(1 + ξ1∇+ · · ·+ ξr∇
r)Yt = (1 + η1∇+ · · ·+ ηs∇

s)Xt−b,

where ∇ = 1−B. This leads to models similar to the ARMA

models for stationary processes,

(1− δ1B − · · · − δrB
r)Yt = (ω0 − ω1B − · · · − ωsB

s)Xt−b,

or δ(B)Yt = ω(B)Xt−b = Bbω(B)Xt = Ω(B)Xt.

The filter is stable if v(B) = δ−1(B)Ω(B) is convergent for all

|B| ≤ 1. For a stable filter, g =
∑∞

j=0 vj . The stability of the filter

is governed by the roots of δ(B).
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✫

✩

✪

Impulse and Step Responses, Added Noise

Responding to an impulse input, Xt = I[t=0], one has Yt = vt,

t = 0, 1, . . . , so the weights vj gives the impulse response. When the

response is delayed by b lags, one has v0 = · · · = vb−1 = 0.

Responding to a step input, Xt = I[t≥0], one has

Yt = Vt =
∑t

j=0 vj , t = 0, 1, . . . , which gives the step response.

Consider a filter δ(B)Yt = ω(B)Xt−b. The impulse response follows

the difference equation δ(B)vj = 0 for j > s+ b.

A system may be subject to various kinds of disturbance, and it is

convenient to model the effect of the disturbance in the form of

added noise in the output,

Yt = δ−1(B)ω(B)Xt−b +Nt,

where Nt may follow an ARIMA model, ϕ(B)Nt = θ(B)at.
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✫

✩

✪

Cross Correlation Function

Consider a stationary bivariate stochastic process (xt, yt) with

means µx, µy and variances σ2
x, σ

2
y. The cross covariance function

between x and y at lag k is defined by

γxy(k) = E[(xt − µx)(yt+k − µy)], k = 0, 1, 2, . . . .

Note that γxy(k) = γyx(−k), but in general γxy(k) 6= γxy(−k). The

cross correlation function is defined by

ρxy(k) = γxy(k)/σxσy, k = 0,±1,±2, . . . .

Observing (xt, yt), t = 1, . . . , n, one estimates γxy(k) by

cxy(k) =

{

1

n

∑
n−k

t=1
(xt − x̄)(yt+k − ȳ), k ≥ 0,

1

n

∑
n−k

t=1
(yt − ȳ)(xt−k − x̄), k ≤ 0,

and estimates ρxy(k) by rxy(k) = cxy(k)/sxsy, where

sx =
√

cxx(0), sy =
√

cyy(0).
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✫

✩

✪

Model Identification

Write yt = v(B)xt + nt and assume µx = 0, µn = 0, and the

independence of xt and nt. Taking expectation of

xt−kyt = v0xt−kxt + v1xt−kxt−1 + v2xt−kxt−2 + · · ·+ xt−knt,

one has, for k ≥ 0,

γxy(k) = v0γxx(k) + v1γxx(k − 1) + v2γxx(k − 2) + · · · .

When xt are white noise, one has γxy(k) = vkσ
2
x.

Model identification consists of the following steps.

1. Prewhitening xt: Obtain αt from φx(B)xt = θx(B)αt.

2. Estimating vk: Obtain βt = θ−1
x (B)φx(B)yt, calculate

v̂k = rαβ(k)sβ/sα, and guess r, s, b.

Note that βt = v(B)αt + ǫt, where ǫt = θ−1
x (B)φx(B)nt.
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✫

✩

✪

Model Identification: Example

Consider the gas furnace data (series J) in BJR.

series.J<-ts(matrix(scan("gas-furnace"),ncol=2,byrow=T))

x<-series.J[,1]; y<-series.J[,2]; acf(x); pacf(x); PP.test(x)

fit.x<-arima(x,c(3,0,0)); fit.x

acf(fit.x$res); Box.test(fit.x$res,10,,4)

alpha<-filter(x,c(1,-fit.x$coef[1:3]),sides=1)[-(1:3)]

beta<-filter(y,c(1,-fit.x$coef[1:3]),sides=1)[-(1:3)]

jk<-ccf(ts(beta),ts(alpha)); abline(v=0,lty=2,col=3)

The orders are seen to be (r, s, b) = (1, 2, 3) or (r, s, b) = (2, 2, 3).

v<-jk$acf[jk$lag%in%(3:7),1,1]*sqrt(var(beta))/sqrt(var(alpha))

v[4]/v[3]; v[5]/v[4]; sqrt(v[5]/v[3])

Take r = 1 and set δ = .61, one solves for ω0 = v3 = −.55,

ω1 = −(v4 − δv3) = .31, and ω2 = −(v5 − δv4) = .49.
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✫

✩

✪

Identification of Noise Model, Estimation

Given the preliminary estimates of δ(B), ω(B), and b, one may

calculate n̂t = yt − δ−1(B)ω(B)xt−b, then apply standard

techniques to identify the order of φ(B)nt = θ(B)at.

wk<-filter(x,c(0,0,0,-.55,-.31,-.49),sides=1)[-(1:5)]

nwk<-(y[-(1:5)]-filter(wk,.61,"recursive"))

acf(nwk); pacf(nwk); acf(arima(nwk,c(2,0,0))$res)

This suggest AR(2) for nt.

Putting things together, one may estimate the whole model using

arima as follows.

xy<-cbind(y,lag(y,-1),lag(x,-3),lag(x,-4),lag(x,-5))

ind<-is.na(apply(xy,1,sum)); xy<-xy[!ind,]

fit.y<-arima(xy[,1],c(2,0,2),xreg=xy[,-1])

fit.y; acf(fit.y$res)
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✫

✩

✪

Miscellaneous

If xt or yt are nonstationary, one may difference (both series) to

stationarity with v(B) intact.

Given a known transfer function model,

ϕ(B)δ(B)yt = ϕ(B)ω(B)xt−b + δ(B)θ(B)at,

where ϕx(B)xt = θxαt, one may conveniently calculate the forecast

ŷt(l) via the difference equation, with any at+k, k > 0 replaced by 0

and xt+k, k > 0 replaced by x̂t(k).

Let ν(B) =
∑∞

j=0 νjB
j satisfy δ(B)ϕx(B)ν(B) = ω(B)Bbθx(B)

and ψ(B) =
∑∞

j=0 ψjB
j satisfy ϕ(B)ψ(B) = θ(B), the variance of

the forecast error yt+l − ŷt(l) is seen to be

V (l) =
∑l−1

j=0(ν
2
j σ

2
α + ψ2

jσ
2
a).
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