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✫

✩

✪

State Space Models

A state space model consists of a state equation,

Yt = ΦtYt−1 + νt + at,

and an observation equation,

zt = HtYt + µt + bt,

where Yt is a state vector with a transition matrix Φt, at are

independent shocks with covariance matrices At, Ht is the

observation matrix, and bt are another set of shocks with

covariance matrices Bt, which are independent of at. The arrays

Φt, νt, Ht, and µt are deterministic, and often independent of t.

Through the construction of the state vector Yt, the AR(1) state

equation is capable of representing higher order structures. The

state space representation of a time series model is not unique.
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✫

✩

✪

ARIMA(p,d,q) in State Space Form

Consider an ARIMA(p,d,q) process in the generalized ARMA form

ϕ(B)zt = θ(B)at. Let m = max(p+ d, q + 1), one has

zt = ϕ1zt−1 + · · ·+ ϕmzt−m + at − θ1at−1 − · · · − θm−1at−m+1.

Let y
(m)
t = ϕmzt−1 − θm−1at, and y

(j)
t = ϕjzt−1 + y

(j+1)
t−1 − θj−1at,

j < m (θ0 = −1). The state vector Yt = (y
(1)
t , . . . , y

(m)
t )T satisfies

Yt =

















ϕ1 1 . . . 0

.

.

.
.
.
.

. . .
.
.
.

ϕm−1 0 · · · 1

ϕm 0 · · · 0

















Yt−1 +

















1

−θ1

.

.

.

−θm−1

















at.

It is easy to check that zt = y
(1)
t , so the observation equation is

simply zt = (1, 0, . . . , 0)Yt.

C. Gu Spring 2024



STAT 520 State Space Models and Kalman Filter 3✬

✫

✩

✪

Another State Space Form for ARIMA

Recall the complementary function

Ct(l) = zt+l −
∑l−1

j=0 ψjat+l−j = Ct−1(l + 1) + ψlat.

Set Yt = (Ct(0), . . . , Ct(m− 1))T , one has

Yt =

















0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1

ϕm ϕm−1 · · · ϕ1

















Yt−1 +

















1

ψ1

.

.

.

ψm−1

















at,

where the last equation follows from ϕ(B)Ct−1(m) = 0. The

observation equation is again zt = (1, 0, . . . , 0)Yt, as Ct(0) = zt.

Remember that the ψ weights are determined from ϕj , θj via

ψj = ϕ1ψj−1 + · · ·+ ϕmψj−m − θj , j > 0,
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✫

✩

✪

Example: ARIMA(1,1,1)

Consider (1− φB)(1−B)zt = (1− θB)at with ϕ1 = 1 + φ,

ϕ2 = −φ, θ1 = θ, and ψ1 = 1 + φ− θ.

With the first representation, Y
(2)
t = −φzt−1 − θat,

Yt =





1 + φ 1

−φ 0



Yt−1 +





1

−θ



 at.

With the second representation, Y
(2)
t = (1 + φ)zt − φzt−1 − θat,

Ỹt =





0 1

−φ 1 + φ



 Ỹt−1 +





1

1 + φ− θ



 at.

It is seen that Ỹt =
(

1 0
1+φ 1

)

Yt, as
(

1 0
1+φ 1

)

(

1
−θ

)

=
(

1
1+φ−θ

)

and
(

1 0
1+φ 1

)(

1+φ 1
−φ 0

)

=
(

0 1
−φ 1+φ

)(

1 0
1+φ 1

)

.
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✫

✩

✪

Kalman Filter: Derivation

Consider Gaussian process with initial state Y0 ∼ N(y0,V0). The

state at time 1, Y1 = Φ1Y0 + ν1 + a1, has mean and covariance

y1|0 = Φ1y0 + ν1, V1|0 = Φ1V0Φ
T
1 +A1.

The joint distribution of (YT
1 , z

T
1 )

T has mean and covariance




y1|0

H1y1|0 + µ1



 ,





V1|0 V1|0H
T
1

H1V1|0 H1V1|0H
T
1 +B1



.

The conditional distribution of Y1|z1 thus has the mean

y1 = y1|0 +V1|0H
T
1 (H1V1|0H

T
1 +B1)

−1(z1 −H1y1|0 − µ1),

and the covariance

V1 = V1|0 −V1|0H
T
1 (H1V1|0H

T
1 +B1)

−1H1V1|0.

Replacing 1 by t and 0 by t− 1, one obtains the Kalman filter.
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✫

✩

✪

Kalman Filter: Prediction and Updating

At time t− 1, the prediction equations

yt|t−1 = Φtyt−1 + νt, Vt|t−1 = ΦtVt−1Φ
T
t +At,

give the optimal estimator of Yt and its error covariance. For the

prediction ẑt|t−1 = Htyt|t−1 + µt of zt, one has the innovation

et = zt − ẑt|t−1 with the covariance Σt = HtVt|t−1H
T
t +Bt.

Once zt becomes available, the estimator of Yt is updated through

yt = yt|t−1 +Vt|t−1H
T
t Σ

−1
t et,

which has a smaller covariance

Vt = Vt|t−1 −Vt|t−1H
T
t Σ

−1
t HtVt|t−1.

The matrix Kt = Vt|t−1H
T
t Σ

−1
t is the Kalman gain matrix.
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✫

✩

✪

Example: ARMA(1,1)

A state space representation of an ARMA(1,1) model is given by

Yt =





φ 1

0 0



Yt−1 +





1

−θ



 at,

where Y
(1)
t = zt and Y

(2)
t = −θat. Set y0 = 0 and

V0 = σ2
a





(1 + θ2 − 2φθ)/(1− φ2) −θ

−θ θ2



 = σ2
a





1 + v0 −θ

−θ θ2



,

where v0 = (φ− θ)2/(1− φ2). The updating equations give

y1|0 = 0, V1|0 = ΦV0Φ
T +A = V0.

The innovation is e1 = z1 and the Kalman gain matrix is

K1 = V1|0(1/σ
2
a(1 + v0), 0)

T =
(

1
−θ/(1+v0)

)

, so y1 =
( z1
−θz1/(1+v0)

)

and V1 = (I −K1(1, 0))V1|0 = σ2
av1 (

0 0
0 1 ), where

v1 = θ2v0/(1 + v0). Note that a1|z1 is not degenerate.
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✫

✩

✪

Example: ARMA(1,1)

At time t− 1 > 0, let Vt−1 = σ2
avt−1 ( 0 0

0 1 ). The updating equations

give y
(1)
t|t−1 = φzt−1 − θãt−1, where ãt−1 = E[at−1|zt−1, . . . , z1],

y
(2)
t|t−1 = 0, and

Vt|t−1 = ΦVt−1Φ
T +A = σ2

a

(

1 + vt−1 −θ

−θ θ2

)

The innovation et = zt − φzt−1 + θãt−1 = at − θ(at−1 − ãt−1) has

variance σ2
a(1 + vt−1) and the Kalman gain matrix is given by

Kt = Vt|t−1(1/σ
2
a(1 + vt−1), 0)

T =
(

1
−θ/(1+vt−1)

)

. One has

yt=
( zt
−θet/(1+vt−1)

)

and Vt=(I −Kt(1, 0))Vt|t−1 = σ2
avt (

0 0
0 1 ),

where vt = θ2vt−1/(1 + vt−1). Note that for |θ| < 1, vt → 0 at an

exponential rate.
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✫

✩

✪

Kalman Filter: Multiple Steps Ahead

To predict more than one step ahead based on information at time

T , one simply bypass the updating step,

yT+l|T = ΦT+lyT+l−1|T + νT+l, l = 1, 2, . . . ,

where yT |T = yT . The covariance of the prediction error is given by

VT+l|T = ΦT+lVT+l−1|TΦ
T
T+l +AT+l, l = 1, 2, . . . ,

where VT |T = VT . The predictor of zT+l is

ẑT+l|T = HT+lyT+l|T + µT+l,

with error covariance ET+l|T = HT+lVT+l|TH
T
T+l +BT+l.

For ARMA(1,1) with T > 0, yT+l|T = ΦlyT = φl−1yT+1|T , and

VT+l|T = σ2
avT+l|T ( 1 0

0 0 ) +A, where

vT+1|T = vT , vT+l|T = φ2vT+l−1|T + (φ− θ)2 → v0.
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✫

✩

✪

Kalman Filter: Maximum Likelihood

Recall that the joint likelihood of z1, . . . , zN can be factored as

L(ZN ) =
∏N

t=1 p(zt|Zt−1), where Zt−1 = {z1, . . . , zt−1}. For

Gaussian processes, p(zt|Zt−1) is normal with mean ẑt|t−1 and

covariance Σt. For zt univariate, drop boldface and write ςt for Σt,

one has the prediction error decomposition form of the likelihood,

logL(ZN ) = −N
2 log 2π − 1

2

∑N
t=1 log ςt −

1
2

∑N
t=1

e2
t

ςt
.

As a function of model parameters, logL(ZN ) can be maximized

using optimization tools to yield the MLE of parameters.

For ARMA(1,1), one has ςt = σ2
a(1 + vt−1). Dropping the constant,

logL(ZN ) = − 1
2

∑N
t=1 log(1 + vt−1)−

N
2 log σ2

a −
1

2σ2
a

∑N
t=1

e2
t

1+vt−1

.

One can “profile” out σ2
a, then work on the profile likelihood.
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✫

✩

✪

Example: ARIMA(1,1,1)

A state space representation of an ARIMA(1,1,1) model is

Yt =





1 + φ 1

−φ 0



Yt−1 +





1

−θ



 at,

where Y
(1)
t = zt and Y

(2)
t = −φzt−1 − θat.

Write V1|0 =
(

a b
b c

)

. K1 =
(

1
b/a

)

, V1 =
(

0 0
0 c−b2/a

)

= σ2
av1 (

0 0
0 1 ).

For t > 1, Vt|t−1 = ΦVt−1Φ
T +A = σ2

a

(

1+vt−1 −θ

−θ θ2

)

,

Kt =
(

1
−θ/(1+vt−1)

)

, Vt = σ2
avt (

0 0
0 1 ) for vt = θ2vt−1/(1 + vt−1),

following the same calculus as in ARMA(1,1). For multiple steps

ahead, however, the filter does not simplify as in ARMA(1,1).

Obviousely, the same formulas hold for ARMA(2,1) in general.
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✫

✩

✪

Example: AR(2)

Consider a stationary AR(2) model in state space form,

Yt =





φ1 1

φ2 0



Yt−1 +





1

0



 at,

where Y
(1)
t = zt and Y

(2)
t = φ2zt−1.

Set V0 = γ0

(

1 φ2ρ1

φ2ρ1 φ2

2

)

, the stationary variance-covariance of Yt.

Remember that ρ2 = φ1ρ1 + φ2 and σ2
a = γ0(1− φ1ρ1 − φ2ρ2).

Some algebra yields V1|0 = ΦV0Φ
T +A = V0. K1 =

(

1
φ2ρ1

)

,

V1 = ṽ1 ( 0 0
0 1 ) for ṽ1 = γ0φ

2
2(1− ρ21).

V2|1 = ΦV1Φ
T +A =

(

ṽ1+σ2

a
0

0 0

)

, where ṽ1 + σ2
a = γ0(1− ρ21) as

ρ1 = φ1 + φ2ρ1. K2 = (1, 0)T , V2 = O.

For t > 2, Vt|t−1 = A =
(

σ2

a
0

0 0

)

, Kt = (1, 0)T , Vt = O.
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