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/ State Space Models' \

A state space model consists of a state equation,

Y =P Yy 1 v+ ay,
and an observation equation,
z; = Hy Yy + py + by,

where Y, is a state vector with a transition matrix ®,;, a; are
independent shocks with covariance matrices A;, H; is the
observation matrix, and b; are another set of shocks with
covariance matrices B;, which are independent of a;. The arrays
®,, v, H;, and p, are deterministic, and often independent of ¢.

Through the construction of the state vector Y, the AR(1) state
equation is capable of representing higher order structures. The
\itate space representation of a time series model is not unique. /
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/ ARIMA (p,d,q) in State Space Form' \

Consider an ARIMA((p,d,q) process in the generalized ARMA form
o(B)zt = 0(B)a;. Let m = max(p+d,q+ 1), one has

2 = 12¢—1+ + OmZt—m +ar — O1a—1 — - — Op_1Q1 1.

Let y,ﬁ”“ = O 2t—1 — Om_10+, and ygj) = Q21 T yﬁ‘f{l) — Hj_la,t,

j <m (0p = —1). The state vector Y; = (ygl), . ,ygm))T satisfies

(o1 1 ... 0) (1)
S . 0

Y, = ' ' | Yo+ . at .
0o ... 1

N A S

It is easy to check that z; = y,gl), so the observation equation is

\iimply 2z = (1,0,...,0)Y,. /
Gu
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Recall the complementary function

/() 1 0\

\om Pm1 e 1)

/ Another State Space Form for ARIMAI \

Ci(l) = 241 — X — Yjarti—5 = Coa(I+ 1) + thay.
Set Y; = (C¢(0),...,C¢y(m — 1)), one has

[ 1)

1
Y1+ . at,

\%—1/

where the last equation follows from p(B)C;_1(m) = 0. The
observation equation is again z; = (1,0,...,0)Y,, as C¢(0) = 2.

Remember that the i) weights are determined from ¢;, 0; via

\\ Y =11+ omi—m — 05, §>0,

/
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/ Example: ARIMA (1,1,1) I \

Consider (1 — ¢B)(1 — B)z; = (1 — 0B)a,; with ¢ = 1+ ¢,
2 = —¢, 01 =0,and 1 =1+ ¢ — 0.

With the first representation, Y( ) — = —@zi_1 — Oay,

Y, = <1+¢ 1) Y1+ ( 1)at-
—¢ 0 —0

With the second representation, Y( ) — = (14 @)zt — pzt—1 — Oay,

- 0 1 ~ 1
Y, = Y1+ at.
(qb 1+¢> (1+¢9)

It is seen that Y; = (1i¢ ?)Yt, as (1}r¢ (1)) (_19) = (1+q15_9>

\jnd<1i¢(1))(l+fé):(—o¢ o) (1) -
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/ Kalman Filter: Derivation' \

Consider Gaussian process with initial state Yo ~ N(yq, Vo). The

state at time 1, Y; = ®,Yy + v1 + a;, has mean and covariance
Yijo = ®1yo +v1, Vi =81 Vo®] +A;.
The joint distribution of (Y{,z{)? has mean and covariance
Yio V1|o V1|0H?
Hiyi0 + 14 | H,V,, H;V; H{ +B;
The conditional distribution of Y1|z; thus has the mean
y1 =Yyi0 + VioH] (HiVyoH +B1) (21 — Hiyi0 — 1),
and the covariance

Vi=Vy0—VyoH{ (H, V) oH] +B1)""H; V).

\i{eplacing 1 by t and 0 by ¢t — 1, one obtains the Kalman filter. /
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/ Kalman Filter: Prediction and Updating' \

At time t — 1, the prediction equations

Vijt—1 = Ptyt—1 + Vi, Vi1 = (I)tVt—ch)Z + Ay,

give the optimal estimator of Y; and its error covariance. For the
prediction Z;;—; = Hyyy ;-1 + p; of z4, one has the innovation
€; = 2y — Zyy—1 With the covariance X; = HtVt|t_1H%F + B;.

Once z; becomes available, the estimator of Y, is updated through
Yt = Yijt—1+ Vt|t—1H:?FEt_1€ta
which has a smaller covariance

V=V — Vg HES T H V.

\\The matrix K; = Vt|t_1H;;FEt_1 is the Kalman gain matrix. /
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/ Example: ARMA(1,1) I \

A state space representation of an ARMA(1,1) model is given by

Yt = Yt—l —|— at,
0O O —0

where th — z; and Y;(Q) = —fa;. Set yo = 0 and

Vo o o2 ((1 + 0% —200)/(1 — ¢?) 9) _ 2 (1 + o 9) |
0 0 0 0

where vy = (¢ — 0)?/(1 — ¢?). The updating equations give
Yio =0, Vio=®V® +A =V,

The innovation is e; = z; and the Kalman gain matrix is

K1 = Vyo(1/0(1+vp),0)" = (—9/(}+vo))> SO Y1 = (—HZ1/Z(11+00))
and Vi = (I — K1(1,0))Vy)p = 02v1 (3 9), where

\il = 0%vo/(1 + vg). Note that aq|z; is not degenerate. /
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Example: ARMA(1,1) I

At time t — 1> 0, let Vi1 = c2v;_1 (9 9). The updating equations
(1)

give yt|t—1 — ¢Zt—1 — eat—la where gLt—l — E[at—llzt—la R Zl]a
(2)  _
Yejt—1 = 0, and

1 1 —0
Vt|t—1 — @Vt_léT —|— A — O-C2L< —l_/lg 1 02)

The innovation e; = 2y — ¢z 1 + a1 = ay — 0(as_1 — az—1) has
variance (1 + v;_1) and the Kalman gain matrix is given by
Kt = Vt|t_1(l/0'2(1 + ’Ut_l), O)T — (—9/(1}#%—1) ) One has

Yt = ( —eet/(irvt_l)) and Vt:([ — Kt(la 0))Vt|t—1 = aﬁvt (8 (1))7
where v; = 0%v;_1/(1 +v;_1). Note that for |§] < 1, v; — 0 at an

\icponential rate. /
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/ Kalman Filter: Multiple Steps Ahead' \

\\ Ur41|T = VT, UT4T = ¢2UT+Z—1|T + (¢ — 9)2 — . /

520 State Space Models and Kalman Filter 9

To predict more than one step ahead based on information at time
T', one simply bypass the updating step,

YT+ = PrayYr+i—yr VT4, [=1,2,...
where yr|7 = yr. The covariance of the prediction error is given by
Vrar =®ra Ve 1r®ry + Arp, 1=1,2,.,
where V7 = V. The predictor of zp; is

zr+yr = Hroyrpyr + Brog,

. . _ T
with error covariance Eq;r = Hr Vo rHp ) + By

For ARMA(1,1) with T' > 0, yryyr = by, = gbl_lyT+1|T, and
VT+l|T = O'C2L’UT_|_Z|T ((1) 8) + A, where
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/ Kalman Filter: Maximum Likelihood' \
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Recall that the joint likelihood of z1,...,zxy can be factored as
L(Zyn) = Hi\il p(z¢|Zs—1), where Z,_1 = {2z1,...,2;_1}. For
Gaussian processes, p(z¢|Z;—1) is normal with mean z;,_; and
covariance ;. For z; univariate, drop boldface and write ¢; for 3,

one has the prediction error decomposition form of the likelihood,

log L(Zy) = —% log 2 — %Zé\; log e — 5 Zt 13 R

As a function of model parameters, log L(Zy) can be maximized
using optimization tools to yield the MLE of parameters.

For ARMA(1,1), one has ¢; = 02(1 + v;_1). Dropping the constant,

N
log L(ZNn) = —% thl log(1 4 ve—1) — % logag, - Zt 1 1+vt L

\i)ne can “profile” out o2, then work on the profile likelihood. /
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\i)bviousely, the same formulas hold for ARMA(2,1) in general. /

520 State Space Models and Kalman Filter

Example: ARIMA (1,1,1) I

A state space representation of an ARIMA(1,1,1) model is

(2 (o)

where Yt(l) = 2 and Yt(2) = —¢z—1 — Oay.

11

~

1+ ¢
—¢

Y

Wl“ite V1|0 — (zg) Kl — (b}a,)? Vl — (OC 15)2/a,) :O?Lvl (8(1))
For t > ]., tht—l = @Vt_léT ‘I’A — 0'2 (1+i)7:9_1 ;20)7

Ky = (—9/(11»%_1))7 V; = 062,,’015 (8 (1)) for vy = 92Ut—1/(1 + Ut—l)a
following the same calculus as in ARMA(1,1). For multiple steps
ahead, however, the filter does not simplify as in ARMA(1,1).
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/ Example: AR(2) I

Consider a stationary AR(2) model in state space form,

Y = <¢1 1) Y1+ <1> at,
$2 O 0

where Yt(l) — z; and Yt(2) = (PoZt_1.

Set Vo = v ( L P2 ), the stationary variance-covariance of Y.

p2p1 b3
Remember that ps = ¢1p1 + ¢2 and 02 = v9(1 — P1p1 — P2p2).
Some algebra yields Vg = PV, P! + A=V, K| = (¢21p1 ),
Vi =101(97) for 51 = v¢5(1 — p?).

Vo = PV, + A = (61303 8)7 where 1 + 05 = 70(1 — pi) as

p1= @1+ d2p1. Ko = (1,0)1, Vo = 0.

Fort>2 Vi, = A= (003 g), K, = (1,007, V, = O.

/
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