Periodogram of Time Series

Consider the DFT of (z_1, \ldots, z_N) ,

$$\zeta_v = \frac{1}{\sqrt{N}} \sum_{t=1}^N z_t e^{-i2\pi t v/N}, \quad v = 1, \dots, N.$$

Write $\omega_j = j/N$. The *periodogram* at ω_j is given by $I(\omega_j) = |\zeta_j|^2$. As angular frequencies with a 2π multiple, $\omega_{N-j} = -\omega_j$. We consider $\omega_j \in (-\frac{1}{2}, \frac{1}{2}]$. At $\omega_0 = 0$, $I(\omega_0) = N|\bar{z}|^2$. At $\omega_j \neq 0$,

$$I(\omega_j) = \frac{1}{N} \sum_{t=1}^{N} \sum_{s=1}^{N} (z_t - \bar{z})(z_s - \bar{z})e^{i2\pi(s-t)\omega_j}$$

= $\frac{1}{N} \Big[\sum_{t=1}^{N} (z_t - \bar{z})^2 + \sum_{k=1}^{N-1} (e^{i2\pi k\omega_j} + e^{-i2\pi k\omega_j}) \sum_{t=1}^{N-k} (z_t - \bar{z})(z_{t+k} - \bar{z}) \Big]$
= $c_0 + 2 \sum_{k=1}^{N-1} c_k \cos 2\pi k\omega_j.$

Hence, $I(\omega_j)$ is the sample version of $\gamma_0 f(\omega_j)$, the power spectrum.

Properties of Periodogram – I

The Fourier matrix Γ with the (t, v)th entry $e^{i2\pi tv/N}/\sqrt{N}$ is orthogonal $(\Gamma^{H}\Gamma = I)$, so $\sum_{t=1}^{N} |z_{t}|^{2} = \sum_{v=1}^{N} |\zeta_{v}|^{2}$.

For z_t real, note that $I(\omega_0) = N\bar{z}^2$ and $I(-\omega_j) = I(\omega_j)$, one has

$$\sum_{t=1}^{N} (z_t - \bar{z})^2 = 2 \sum_{j \in (0, N/2)} I(\omega_j) + I(\omega_{N/2}),$$

where the last term is 0 for N odd.

In terms of sines and cosines,

$$I(\omega_j) = \frac{1}{N} (\sum_{t=1}^N z_t \cos 2\pi t \omega_j)^2 + \frac{1}{N} (\sum_{t=1}^N z_t \sin 2\pi t \omega_j)^2.$$

It is known that

$$\left\{\sqrt{\frac{1}{N}}, \sqrt{\frac{2}{N}}\cos 2\pi t\omega_j, \sqrt{\frac{2}{N}}\sin 2\pi t\omega_j, j \in (0, \frac{N}{2}), \sqrt{\frac{1}{N}}\cos \pi t\right\}$$

form an orthonormal basis in \mathbb{R}^N , where the last term disappears for N odd.

Properties of Periodogram – II

For Gaussian white noise series z_t with $\operatorname{var}[z_t] = \sigma^2$, it is easy to see that $I(\omega_j)$'s are independent, $2I(\omega_j)/\sigma^2 \sim \chi_2^2$, $j \in (0, N/2)$, and $I(\omega_{N/2})/\sigma^2 \sim \chi_1^2$ for N even. Note that χ_2^2 is the exponential dist.

For general stationary series with N large, it can be shown that

$$E[I(0)] - N\mu^2 \approx \sigma^2 (1 + 2\sum_{k=1}^{\infty} \rho_k) = \sigma^2 f(0),$$
$$E[I(\omega_j)] \approx \sigma^2 f(\omega_j), \quad j \neq 0, N/2.$$

In fact, $I(\omega_j)$'s are asymptotically independent exponential r.v.'s for $j \in (0, N/2)$.

 $I(\omega_j)$'s are nearly the raw data, so can not be used as reliable estimates of $\gamma_0 f(\omega_j)$. Assuming a smooth spectral density, better estimates of $f(\omega)$ can be obtained through moving averages.

Fourier Analysis of Convolution and Product

Extend $f(\omega)$, $g(\omega)$ beyond (-1/2, 1/2) by periodicity and consider their convolution $h(\omega) = \int_{-1/2}^{1/2} f(x)g(\omega - x)dx$. The Fourier coefficients of $h(\omega)$ is seen to be the product of those of $f(\omega)$ and $g(\omega)$,

$$h_{v} = \int_{-1/2}^{1/2} e^{i2\pi vx} dx \int_{-1/2}^{1/2} f(y)g(x-y)dy$$
$$= \int_{-1/2}^{1/2} f(y)e^{i2\pi vy} dy \int_{-1/2}^{1/2} g(s)e^{i2\pi vs} ds = f_{v}g_{v}.$$

Similarly, the Fourier coefficients of the product $h(\omega) = f(\omega)g(\omega)$ are the convolution of f_v and g_v , $h_v = \sum_u f_u g_{v-u}$.

$$h(x) = \sum_{u=-\infty}^{\infty} f_u e^{-i2\pi ux} \sum_{s=-\infty}^{\infty} g_s e^{-i2\pi sx}$$
$$= \sum_{v=-\infty}^{\infty} (\sum_{u=-\infty}^{\infty} f_u g_{v-u}) e^{-i2\pi vx} = \sum_{v=-\infty}^{\infty} h_v e^{-i2\pi vx}.$$

Lag-Window Estimates of Spectrum

A lag-window estimate of $p(\omega) = \gamma_0 f(\omega)$ is of the form

$$\hat{p}(\omega) = c_0 + 2\sum_{k=1}^M w(\frac{k}{M})c_k \cos 2\pi k\omega = \sum_{|k| \le M} w(\frac{k}{M})c_k e^{-i2\pi k\omega},$$

where the lag window w(x) is symmetric, $|w(x)| \le 1 = w(0)$.

Write $W_M(\omega) = \sum_v w(\frac{v}{M}) e^{i2\pi v\omega}$ the spectral window. It follows from the Fourier analysis of convolution that

$$\hat{p}(\omega) = \int_{-1/2}^{1/2} \tilde{I}(x) W_M(\omega - x) dx,$$

where $\tilde{I}(\omega) = c_0 + 2 \sum_{k=1}^{N-1} c_k \cos 2\pi k\omega$ coincides with the periodogram at $\omega_j \neq 0$. Approximating the integral by a Riemann sum, one has a weighted moving average (*i.e.*, kernel estimate),

$$\hat{p}(\omega) \approx \frac{1}{N} \sum_{j \in (-N/2, N/2]} W_M(\omega - \omega_j) \tilde{I}(\omega_j).$$

Here are some examples of lag and spectral windows.

- **Truncated** $w(x) = I_{[|x| \le 1]}; W_M(\omega) = \frac{\sin \pi (2M+1)\omega}{\sin \pi \omega} = D_M(\omega). D_M(\omega)$ is known as the Dirichlet kernel.
- **Bartlett** $w(x) = (1 |x|)I_{[|x| \le 1]}; W_M(\omega) = \frac{1}{M}(\frac{\sin \pi M\omega}{\sin \pi \omega})^2 = F_M(\omega).$ $F_M(\omega)$ is known as the Fejer kernel of order M.

Daniell $w(x) = \frac{\sin \pi x}{\pi x}; W_M(\omega) = MI_{[|\omega| \le 1/2M]}.$

Blackman-Tukey $w(x) = (1 - 2a + 2a \cos x) I_{[|x| \le 1]};$ $W_M(\omega) = a D_M(\omega - \frac{1}{2M}) + (1 - 2a) D_M(\omega) + a D_M(\omega + \frac{1}{2M}).$

Parzen $w(x) = (1 - 6|x|^2 + 6|x|^3)I_{[|x| \le 1/2]} + 2(1 - |x|)^3I_{[1/2 < |x| \le 1]};$ $W_M(\omega) = \frac{12}{M^3} (\frac{\sin(\pi M\omega/2)}{\sin \pi \omega})^4 (1 - \frac{2}{3}\sin^2 \pi \omega).$

The Bartlett, Daniell and Parzen windows assure nonnegative $\hat{p}(\omega)$.

Properties of Lag-Window Estimates

Generally speaking, the lag-window estimate $\hat{p}(\omega)$ converges to $p(\omega)$ in probability as $M \to \infty$ and $N/M \to \infty$. $W_M(\omega)$ gets spikier as M increases. A large M reduces bias whereas a large N/M keeps variance under control.

In practice, it is convenient to smooth the periodogram directly through $\tilde{p}(\omega_j) = \sum_{|v| \le m} \tilde{w}_v \tilde{I}(\omega_{j+v})$, with $\tilde{w}_v \propto W_M(\omega_v)$ truncated for |v| > m and scaled to $\sum_{|v| \le m} \tilde{w}_v = 1$. Asymptotics plus moment matching approximation suggest that $\nu \tilde{p}(\omega_j)/p(\omega_j) \sim \chi^2_{\nu}$, where $\nu = 2/\sum_{|v| \le m} \tilde{w}_v^2$. It then follows that

$$\log \tilde{p}(\omega_j) + \log \nu - (\log \chi^2_{.975,\nu}, \log \chi^2_{.025,\nu})$$

forms an approximate 95% CI for $p(\omega_j)$.

Spectral Analysis in R

The spec.pgram function in the R library ts can be used to calculate and plot the raw and smoothed periodogram. For the raw periodogram, simply use

spec.pgram(x,detrend=F,demean=T,taper=0,fast=F)

where the options are specified to override defaults that alter the raw data. To calculate $\tilde{p}(\omega_j) = \frac{1}{9} \sum_{|v| \le 4} \tilde{I}(\omega_{j+v})$, add the option kernel=kernel("daniell",4). The option spans=9 invokes a 9-point smoother with half weights at the edges, which can also be specified via kernel=kernel("modified.daniell",4). Other kernels implemented are the Dirichlet and Fejer kernels.

By default, the vertical axis is on the log scale (log="yes"); other choices are log="no" or log="dB" for $10 \log_{10} \tilde{p}(\omega_j)$.

Spectral Analysis in R: Convoluted Kernels

The kernel used in **spec.pgram** can be in convoluted form, as the examples below demonstrate.

& kernel("daniell", c(2,1)); kernel("daniell", c(1,2)). It is the convolution of (1,1,1,1,1)/5 and (1,1,1)/3.

& kernel("modified.daniell",c(2,3)).

It is the convolution of (.5, 1, 1, 1, .5)/4 and (.5, 1, 1, 1, 1, 1, .5)/6.

To use the kernel specified in the second example, one may simply specify spec.pgram(...,spans=c(5,7)).

The scheme extends recursively to more layers of convolution, say kernel("modified.daniell",c(1,2,3)), which is equivalent to spans=c(3,5,7).

Cumulative Periodogram

Given the periodogram of z_1, \ldots, z_N from a stationary process,

$$I(\omega_j) = \frac{1}{N} \left(\sum_{t=1}^{N} z_t \cos 2\pi t \omega_j \right)^2 + \frac{1}{N} \left(\sum_{t=1}^{N} z_t \sin 2\pi t \omega_j \right)^2,$$

where $\omega_j = j/N$, the *cumulative periodogram* on (0, 1/2),

$$C(\omega) = \sum_{0 < \omega_j \le \omega} I(\omega_j) / \sum_{0 < \omega_j \le 1/2} I(\omega_j),$$

is the empirical version of $P(\omega) = \int_{-\omega}^{\omega} p(\lambda) d\lambda = 2 \int_{0}^{\omega} p(\lambda) d\lambda$, where $p(\lambda)$ is the spectral density. To test the hypothesis that the spectral distribution is given by some known $P(\omega)$, one may use the Kolmogorov-Smirnov statistic, $\sup |C(\omega) - P(\omega)|$.

For white noise, the spectral density $p(\omega) = 1$ is uniform, and $P(\omega) = 2\omega$. Tolerance band for $C(\omega)$ under the null can be constructed from the Kolmogorov-Smirnov distribution. The cumulative periodogram check is implemented in cpgram.