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✫

✩

✪

Periodogram of Time Series

Consider the DFT of (z1, . . . , zN ),

ζv = 1√
N

∑N
t=1 zte

−i2πtv/N , v = 1, . . . , N .

Write ωj = j/N . The periodogram at ωj is given by I(ωj) = |ζj |2.
As angular frequencies with a 2π multiple, ωN−j = −ωj . We

consider ωj ∈ (− 1
2 ,

1
2 ]. At ω0 = 0, I(ω0) = N |z̄|2. At ωj 6= 0,

I(ωj) =
1

N

N
∑

t=1

N
∑

s=1

(zt − z̄)(zs − z̄)ei2π(s−t)ωj

=
1

N

[

N
∑

t=1

(zt − z̄)2 +

N−1
∑

k=1

(ei2πkωj + e
−i2πkωj )

N−k
∑

t=1

(zt − z̄)(zt+k − z̄)
]

= c0 + 2

N−1
∑

k=1

ck cos 2πkωj .

Hence, I(ωj) is the sample version of γ0f(ωj), the power spectrum.
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✫

✩

✪

Properties of Periodogram – I

The Fourier matrix Γ with the (t, v)th entry ei2πtv/N/
√
N is

orthogonal (ΓHΓ = I), so
∑N

t=1 |zt|2 =
∑N

v=1 |ζv|2.

For zt real, note that I(ω0) = Nz̄2 and I(−ωj) = I(ωj), one has
∑N

t=1(zt − z̄)2 = 2
∑

j∈(0,N/2) I(ωj) + I(ωN/2),

where the last term is 0 for N odd.

In terms of sines and cosines,

I(ωj) =
1
N (

∑N
t=1 zt cos 2πtωj)

2 + 1
N (

∑N
t=1 zt sin 2πtωj)

2.

It is known that

{
√

1
N ,

√

2
N cos 2πtωj ,

√

2
N sin 2πtωj , j ∈ (0, N

2 ),
√

1
N cosπt}

form an orthonormal basis in RN , where the last term disappears

for N odd.
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✫

✩

✪

Properties of Periodogram – II

For Gaussian white noise series zt with var[zt] = σ2, it is easy to

see that I(ωj)’s are independent, 2I(ωj)/σ
2 ∼ χ2

2, j ∈ (0, N/2), and

I(ωN/2)/σ
2 ∼ χ2

1 for N even. Note that χ2
2 is the exponential dist.

For general stationary series with N large, it can be shown that

E[I(0)]−Nµ2 ≈ σ2(1 + 2

∞∑
k=1

ρk) = σ2f(0),

E[I(ωj)] ≈ σ2f(ωj), j 6= 0, N/2.

In fact, I(ωj)’s are asymptotically independent exponential r.v.’s

for j ∈ (0, N/2).

I(ωj)’s are nearly the raw data, so can not be used as reliable

estimates of γ0f(ωj). Assuming a smooth spectral density, better

estimates of f(ω) can be obtained through moving averages.
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✫

✩

✪

Fourier Analysis of Convolution and Product

Extend f(ω), g(ω) beyond (−1/2, 1/2) by periodicity and consider their

convolution h(ω) =
∫ 1/2

−1/2
f(x)g(ω − x)dx. The Fourier coefficients of

h(ω) is seen to be the product of those of f(ω) and g(ω),

hv =

∫ 1/2

−1/2

ei2πvxdx

∫ 1/2

−1/2

f(y)g(x− y)dy

=

∫ 1/2

−1/2

f(y)ei2πvydy

∫ 1/2

−1/2

g(s)ei2πvsds = fvgv.

Similarly, the Fourier coefficients of the product h(ω) = f(ω)g(ω) are the

convolution of fv and gv, hv =
∑

u fugv−u.

h(x) =
∞∑

u=−∞

fue
−i2πux

∞∑
s=−∞

gse
−i2πsx

=

∞∑
v=−∞

(

∞∑
u=−∞

fugv−u)e
−i2πvx =

∞∑
v=−∞

hve
−i2πvx.
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✫

✩

✪

Lag-Window Estimates of Spectrum

A lag-window estimate of p(ω) = γ0f(ω) is of the form

p̂(ω) = c0 + 2
∑M

k=1 w(
k
M )ck cos 2πkω =

∑

|k|≤M w( k
M )cke

−i2πkω,

where the lag window w(x) is symmetric, |w(x)| ≤ 1 = w(0).

Write WM (ω) =
∑

v w(
v
M )ei2πvω the spectral window. It follows

from the Fourier analysis of convolution that

p̂(ω) =
∫ 1/2

−1/2
Ĩ(x)WM (ω − x)dx,

where Ĩ(ω) = c0 + 2
∑N−1

k=1 ck cos 2πkω coincides with the

periodogram at ωj 6= 0. Approximating the integral by a Riemann

sum, one has a weighted moving average (i.e., kernel estimate),

p̂(ω) ≈ 1
N

∑

j∈(−N/2,N/2] WM (ω − ωj)Ĩ(ωj).
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✫

✩

✪

Examples of Lag and Spectral Windows

Here are some examples of lag and spectral windows.

Truncated w(x) = I[|x|≤1]; WM (ω) = sinπ(2M+1)ω
sinπω

= DM (ω). DM (ω) is

known as the Dirichlet kernel.

Bartlett w(x) = (1− |x|)I[|x|≤1]; WM (ω) = 1
M
( sinπMω

sinπω
)2 = FM (ω).

FM (ω) is known as the Fejer kernel of order M .

Daniell w(x) = sinπx
πx

; WM (ω) = MI[|ω|≤1/2M ].

Blackman-Tukey w(x) = (1− 2a+ 2a cosx)I[|x|≤1];

WM (ω) = aDM (ω − 1
2M

) + (1− 2a)DM (ω) + aDM (ω + 1
2M

).

Parzen w(x) = (1− 6|x|2 + 6|x|3)I[|x|≤1/2] + 2(1− |x|)3I[1/2<|x|≤1];

WM (ω) = 12
M3 (

sin(πMω/2)
sinπω

)4(1− 2
3
sin2 πω).

The Bartlett, Daniell and Parzen windows assure nonnegative p̂(ω).
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✫

✩

✪

Properties of Lag-Window Estimates

Generally speaking, the lag-window estimate p̂(ω) converges to

p(ω) in probability as M → ∞ and N/M → ∞. WM (ω) gets

spikier as M increases. A large M reduces bias whereas a large

N/M keeps variance under control.

In practice, it is convenient to smooth the periodogram directly

through p̃(ωj) =
∑

|v|≤m w̃v Ĩ(ωj+v), with w̃v ∝ WM (ωv) truncated

for |v| > m and scaled to
∑

|v|≤m w̃v = 1. Asymptotics plus

moment matching approximation suggest that νp̃(ωj)/p(ωj) ∼ χ2
ν ,

where ν = 2/
∑

|v|≤m w̃2
v. It then follows that

log p̃(ωj) + log ν − (logχ2
.975,ν , logχ

2
.025,ν)

forms an approximate 95% CI for p(ωj).

C. Gu Spring 2024



STAT 520 Spectral Estimation 8✬

✫

✩

✪

Spectral Analysis in R

The spec.pgram function in the R library ts can be used to

calculate and plot the raw and smoothed periodogram. For the raw

periodogram, simply use

spec.pgram(x,detrend=F,demean=T,taper=0,fast=F)

where the options are specified to override defaults that alter the

raw data. To calculate p̃(ωj) =
1
9

∑

|v|≤4 Ĩ(ωj+v), add the option

kernel=kernel("daniell",4). The option spans=9 invokes a

9-point smoother with half weights at the edges, which can also be

specified via kernel=kernel("modified.daniell",4). Other

kernels implemented are the Dirichlet and Fejer kernels.

By default, the vertical axis is on the log scale (log="yes"); other

choices are log="no" or log="dB" for 10 log10 p̃(ωj).
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✫

✩

✪

Spectral Analysis in R: Convoluted Kernels

The kernel used in spec.pgram can be in convoluted form, as the

examples below demonstrate.

♣ kernel("daniell",c(2,1)); kernel("daniell",c(1,2)).

It is the convolution of (1, 1, 1, 1, 1)/5 and (1, 1, 1)/3.

♣ kernel("modified.daniell",c(2,3)).

It is the convolution of (.5, 1, 1, 1, .5)/4 and (.5, 1, 1, 1, 1, 1, .5)/6.

To use the kernel specified in the second example, one may simply

specify spec.pgram(...,spans=c(5,7)).

The scheme extends recursively to more layers of convolution, say

kernel("modified.daniell",c(1,2,3)), which is equivalent to

spans=c(3,5,7).
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✫

✩

✪

Cumulative Periodogram

Given the periodogram of z1, . . . , zN from a stationary process,

I(ωj) =
1
N (

∑N
t=1 zt cos 2πtωj)

2 + 1
N (

∑N
t=1 zt sin 2πtωj)

2,

where ωj = j/N , the cumulative periodogram on (0, 1/2),

C(ω) =
∑

0<ωj≤ω I(ωj)/
∑

0<ωj≤1/2 I(ωj),

is the empirical version of P (ω) =
∫ ω

−ω
p(λ)dλ = 2

∫ ω

0
p(λ)dλ, where

p(λ) is the spectral density. To test the hypothesis that the

spectral distribution is given by some known P (ω), one may use

the Kolmogorov-Smirnov statistic, sup |C(ω)− P (ω)|.

For white noise, the spectral density p(ω) = 1 is uniform, and

P (ω) = 2ω. Tolerance band for C(ω) under the null can be

constructed from the Kolmogorov-Smirnov distribution. The

cumulative periodogram check is implemented in cpgram.
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