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Spectral Estimation 1
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Consider the DFT of (z1,...,2n),

Write w; = j/N. The periodogram at w; 1s given by I (w ) |CJ|2

angular frequen(nes with a 27 multiple, wy_; = —w;. We
consider w; € (—1,32]. At wp =0, I(wp) = N|z|?. At w; # 0,
wj)_ ZZ Zt—Z (28_2)67,271'(8 t)w;
t 1s=1
1
== [th -2 + Z (e2mhey 4 emidmhisy) Z (2 = 2)(ze0k — 2)]
t=1
N—1
=co+ 2 Z cy, cos 2mkw; .
k=1

Periodogram of Time Series' \

1 N —i27tv /N _
CU—\/——thlztG / ) U—l,...,N.

\ilence, I(wj;) is the sample version of vy f(w;), the power spectrum/
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/ Properties of Periodogram — II \

The Fourier matrix I' with the (¢, v)th entry e??™*/N /\/N is
orthogonal (THT = 1), s0 S35, |z|> = S0, G]?.

For z; real, note that I(wp) = Nz? and I(—w,;) = I(w;), one has
N _
Doz —2)2 =2 Zje(O,N/2) I(w;) + I(wny2),
where the last term is 0 for N odd.

In terms of sines and cosines,

I(wj) = %(Zi\il 24 €08 27w, )? %(Zt | 2 8in 2mtw; ).
It is known that

{\/ %1/ 2 cos2mtw;, y/ & sin 2mtw;, j € (0, %),/ + cos 7t}

form an orthonormal basis in RY, where the last term disappears

\Er N odd. /
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/ Properties of Periodogram — III \

520 Spectral Estimation 3

For Gaussian white noise series z; with var[z;] = 02, it is easy to
see that I(w;)’s are independent, 21 (w;)/0* ~ x3, j € (0, N/2), and
I(wpny2)/0? ~ xi for N even. Note that x3 is the exponential dist.

For general stationary series with NV large, it can be shown that

E[I(0)] — Nu* =~ o*(14+2) pr) = 0”f(0),

E[I(wj)] = o”f(w;), J#0,N/2.
In fact, I(w;)’s are asymptotically independent exponential r.v.’s
for 7 € (0,N/2).

I(w;)’s are nearly the raw data, so can not be used as reliable
estimates of vy f(w;). Assuming a smooth spectral density, better

\\estimates of f(w) can be obtained through moving averages. /
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/ Fourier Analysis of Convolution and Product I\

Extend f(w), g(w) beyond (—1/2,1/2) by periodicity and consider their
convolution h(w) = f—162 f(x)g(w — x)dx. The Fourier coefficients of

h(w) is seen to be the product of those of f(w) and g(w),

1/2 Y 1/2
By = / 1272 gy / F@)g(x — y)dy
—1/2 —1/2

1/2 , 1/2 .
:/ f(y)e’ ””ydy/ g(5)e” " ds = fugo.

—1/2 ~1/2
Similarly, the Fourier coefficients of the product h(w) = f(w)g(w) are the
convolution of f, and g, hy =) fuGv—u.

% oo
h(l’) _ Z fue—'LQTruac Z 986—1271'3:18
U=—00 s=—o00

- Z ( Z fugv—u)e_w”“”: Z hve—?:27'r'l)aj.
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/ Lag-Window Estimates of Spectrum' \

A lag-window estimate of p(w) = vy f(w) is of the form

ﬁ(w) = Co + 2 224:1 ’LU<%)C]€ cos 2mkw = Z|k|§M w(%)Cke_ﬂWkw,
where the lag window w(x) is symmetric, |w(z)| <1 = w(0).

i

Write Wy (w) =, w(5%)e?™ the spectral window. It follows

from the Fourier analysis of convolution that

v

pw) = [, 1) W (w — z)da,

where I(w) = ¢ + 2 Z],:;l ¢k cos 2mkw coincides with the
periodogram at w; # 0. Approximating the integral by a Riemann

sum, one has a weighted moving average (i.e., kernel estimate),

A

\\ plw) ~ & 2 je(—Ny2,ny2) W (w — Wil (wy). /
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/ Examples of Lag and Spectral Windows'

Here are some examples of lag and spectral windows.

sin Tw

known as the Dirichlet kernel.

Bartlett w(ac) = (1 — ‘ZIZ|)][|SU|§1]; WM(w) = L(sianw)Q = FM(CU)

M sin Tw

Far(w) is known as the Fejer kernel of order M.

Daniell w(z) = 2222 Wy (w) = M1, 1<1/207]-

T

Blackman-Tukey w(z) = (1 — 2a + 2a cos )1} <1];
W (w) =aDy(w— 55) + (1 — 2a) Dy (w) + aDp(w + 55-)-
Parzen w(z) = (1 — 6|x|® + 6|z|) [jzj<1/2) + 2(1 — |2])° I 11 j2< || <1);

W (w) = 1\1423 (sin(s?nl\/;frc:)ﬂ) )41 — % sin® Tw).

Truncated w(x) = Ijjy<1; Wn(w) = sinmQGMADe — Dy(w). Dag(w) is

\\The Bartlett, Daniell and Parzen windows assure nonnegative ﬁ(w)/

~
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Properties of Lag-Window Estimates'

Generally speaking, the lag-window estimate p(w) converges to
p(w) in probability as M — oo and N/M — oco. Wh,(w) gets
spikier as M increases. A large M reduces bias whereas a large

N/M keeps variance under control.

In practice, it is convenient to smooth the periodogram directly
through p(w;) = > _),1<m Wyl (Wjiy), With 1, o< Wiy (w,) truncated
for [v| > m and scaled to }_, <, Wy = 1. Asymptotics plus
moment matching approximation suggest that vp(w;)/p(w;) ~ x2,

where v =2/3% ., ;. It then follows that

log p(w;) + logv — (log X.2975,w log X.2025,u)

forms an approximate 95% CI for p(w;).

N /
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/ Spectral Analysis in RI \

520 Spectral Estimation 8

The spec.pgram function in the R library ts can be used to
calculate and plot the raw and smoothed periodogram. For the raw

periodogram, simply use
spec.pgram(x,detrend=F,demean=T,taper=0,fast=F)

where the options are specified to override defaults that alter the
raw data. To calculate p(w;) = 5 D jv|<4 I(wj4v), add the option
kernel=kernel ("daniell",4). The option spans=9 invokes a
9-point smoother with half weights at the edges, which can also be
specified via kernel=kernel ("modified.daniell",4). Other
kernels implemented are the Dirichlet and Fejer kernels.

By default, the vertical axis is on the log scale (Log="yes"); other

\ihoices are log="no" or log="dB" for 10log;, p(w;). /
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Spectral Analysis in R: Convoluted Kernels'

The kernel used in spec.pgram can be in convoluted form, as the

examples below demonstrate.

& kernel ("daniell",c(2,1)); kernel("daniell",c(1,2)).
It is the convolution of (1,1,1,1,1)/5 and (1,1,1)/3.

& kernel ("modified.daniell",c(2,3)).

It is the convolution of (.5,1,1,1,.5)/4 and (.5,1,1,1,1,1,.5)/6.

To use the kernel specified in the second example, one may simply

specify spec.pgram(...,spans=c(5,7)).

The scheme extends recursively to more layers of convolution, say

kernel ("modified.daniell",c(1,2,3)), which is equivalent to

spans=c(3,5,7).

/
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\Slmulative periodogram check is implemented in cpgram.
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/ Cumulative Periodogram I \

Given the periodogram of z1,..., 2y from a stationary process,
I(w;) = £ (3o, 20 cos 2mtw;)? + - (So4v, 2 sin 2mtw; )2,
where w; = j/N, the cumulative periodogram on (0,1/2),

Clw) = 20w, <w 1(W5)/ 20cw, <172 L(wj)),
is the empirical version of P(w) = [* p(A)d\ =2 [" p(X\)dA, where

p(A) is the spectral density. To test the hypothesis that the
spectral distribution is given by some known P(w), one may use

the Kolmogorov-Smirnov statistic, sup |C(w) — P(w)].

For white noise, the spectral density p(w) = 1 is uniform, and
P(w) = 2w. Tolerance band for C(w) under the null can be
constructed from the Kolmogorov-Smirnov distribution. The

/
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